12d Stormwater Design Course Notes - Part 1

These course notes assume that the trainee has the basic 12d Model skills usually obtained from the “12d Model Training Manual”

These notes are intended to cover basic Stormwater Design. For more information regarding training courses contact 12d Solutions Training Manager.

These notes were prepared by
Robert Graham

Revised 17 Sept 2007

Copyright © 12d Solutions Pty Limited 2007

These notes may be copied and distributed freely.

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in these notes and the program 12d Model is correct, however, no warranty is expressed or implied by 12d Solutions.

Copyright © 12d Solutions Pty Limited 2007
COURSE NOTES

STORMWATER DESIGN

1.0 Stormwater Design - Introduction

2.0 Using the Course Notes

3.0 Setup Files and Their Locations

4.0 Survey data and design surfaces (TINs)

5.0 Drainage Layout

6.0 Drainage Network Editor

5.1 Setting Drainage Defaults

5.2 String Colour and pit Label Text Size/location (string defaults)

5.3 Importing Drainage Layouts from AutoCAD

5.4 Create the drainage strings from the dwg strings

5.5 Drawing the Drainage Network in 12d

5.6 Pit Levels (cover level, grate level and setout level)

5.7 Pit Setout strings

5.8 Creating the Drainage Strings in 12d

5.9 Additional Notes for Junction Pits

5.10 Exact Methods for Placing Pits

5.11 Flow in the Wrong Direction

5.12 Drainage Section Views (downhill left to right OR right to left)

5.13 Moving, Adding and Deleting Pits

5.14 Drainage Split and Join

6.1 Moving through the Drainage Network

6.2 Auto-Apply, Auto-Pan, Auto-Profile and Auto-Redraw

6.3 Set Pit Details

6.4 Regrade Pipes

6.5 Set Pit names (and pipes)

6.6 Set Pit Names using Pit Type

6.6.1 Trouble Shooting Displaying View Text

6.7 Labelling the Pits and Pipes

6.7.1 Turn off View Text Pit Labels

6.7.2 Moving Text

6.8 Catchment Areas

6.9 Network Editor - Global, Default Settings and Explicit Settings

6.10 Network Editor - Hydrology

6.10.1 Catchment Areas
1.0 Stormwater Design - Introduction

The 12d drainage module contains functions to perform the following steps in the drainage design and documentation process. This user manual will lead the user through the steps itemised below:

- Set drainage defaults and layout a drainage network,
- Use the powerful 12d drainage network editor to avoid service clashes, grade pipes, align obverts, minimise depth and many other design tools,
- Automatically assign names to the pit/pipes in the network,
- Designate catchment areas and produce catchment plans,
- Transfer data to and from electronic spreadsheets to enable the user to easily review the data and add user defined data to the 12d pipe network. This data may include such data as pipe bedding types and trench width,
- Create pit setout schedules to export to spreadsheets or word processors for final formatting,
- Running the 12d storm analysis calculations,
- Produce long section drainage profiles including HGL data, flows, invert levels and service crossings,
- Create plan drawings with pipe sizes, flows, pit symbols, linestyles for pipe sizes, design parameters for pit and pipes and user defined data,
- Locate pits/manholes at exact chainage and offset locations.

In addition to this manual there is the *Stormwater Design - Part 2* training manual which includes the following topics.

- Drainage trench excavation volume calculations
- Pipe and pit quantity calculations
- Customising the drainage.4d file
- Design or evaluate the drainage system using 12d storm analysis or create input files for the XP SWMM/RAT2000, Micro drainage, Drains and PCdrain drainage design packages,
- Read the output from the drainage design packages (automatic if using 12d Drainage), update the drainage network and store the hydraulic data, such as hgl (hydraulic grade line) levels, peak pipe flows and pipe capacities,
- Pit inlet capacity calculations and bypass flow
- Flooded width analysis and flooding at SAG pits
- Creating drainage symbols with grates and upstream side inlets,
- Detailed drainage plan labelling and long sections with hatching under roads.

In this document, the generic term *pit* refers to manholes, inlets, catch basin and manholes. When the term *manhole* is used on the 12d menu system it refers to any type of pit. Pit types, dimensions and inlet capacities of the pits are set in the drainage.4d file.
COURSE NOTES

STORMWATER DESIGN

2.0 Using the Course Notes

Areas markered in yellow (grey for black and white prints) are the exact steps required to complete the tasks. The numbers in the panels are the order to preform the tasks and they are always written to the right of the button, drop down or data field.

The additional text explains in more detail the tasks you are preforming.

3.0 Setup Files and Their Locations

The drainage module consists of the optional 12d Drainage Analysis, utilities, startup configuration files for RAT2000, XP SWMM and the 12d drainage configuration file (drainage.4d).

All setup files have been configured for the training version. However, when you start working on real projects you may want customise the drainage module. More - Customising the drainage module

The drainage.4d file contains pipe types (RCP, Class 2 etc.) and example pit inlet capacities for inlet pits. Detailed pit type descriptions and internal pit dimensions can be included in this file to be inserted into your pit schedules. For PCdrain and Drains users there are routines to read your gully pit/database files and create the drainage.4d file More.

REVIEW THIS DATA CAREFULLY! The drainage.4d file may be customised for any additional inlet capacity data you may have.

To edit the drainage.4d file, from the main menu select

Design->Drainage-Sewer->More->Edit drainage.4d

Select the Find button to search the 12d path for the current drainage.4d file. Select the More info button and then Open to edit the file.

You must restart 12d for these changes to become active. Select Project->Restart!
4.0 Survey data and design surfaces (TINs)

We will begin a 12d project from the beginning by first creating the project and then reading in the survey and design data. The data can then be triangulated so that we have a final surface to measure pipe cover from and set structure cover levels to.

Start up the 12d model by selecting the 12d icon from your desktop.

The project selection panel will appear. The bottom corner of the panel is shown below:

1) LB to browse to the working folder indicated.
2) Type a project name for your work *Stormwater Part 1* for example.
3) Select Proceed.

12d will first look in your working folder for any input data files and output files will be created here unless you specify another folder. 12d stores it's data in a folder not a single file. Therefore, a folder named *Stormwater Part 1* will be created when you select Proceed.

12d model will load and you will see the following panel.
4.1 Importing the Raw Survey Data

You have created a new project into which we will import the survey data. From the main menu select:

File I/O->Data Input->12da/4da data

1) **LB** the folder icon to display the file list.
2) **LB Read** to read the data
3) **LB Finish** to remove the panel

The data will not appear on the view until it is added.

Enter data as desired. This data is both for reference and can be included on your drawings.

Later these details can be changed via

Project=>Management=>Details Editor
COURSE NOTES

STORMWATER DESIGN

Add the data to the view

LB the + then select EXISTING SURVEY.

Next LB Fit on the plan view tool bar. You should see the following survey data.
Now we will display the z values for the survey data.

1) LB the toggle button
2) LB Z values

Use your mouse wheel to zoom in and read the z values.

4.2 Creating the existing Ground Surface
From the main menu select

\[\text{Tins} \Rightarrow \text{Create} \Rightarrow \text{Triangulate data} \]

1) Type a name for the new tin then press Enter
2) LB Remove Bubbles because the data contains contours. nd LB EXISTING SURVEY

Preserve strings will make one side of a triangle follow the string thereby preserving the levels along the string.

Weed tin removes all duplicate points from the tin database.

The Cell method is a good speed enhancement for data that is in a grid type pattern.

Triangle data is used for string that form triangles (tins imported from other packages).
4.3 Viewing the Ground Surface Tin

1) Move your pointer over the “+” sign on the plan view title toolbar
2) press the t key (all of the models beginning with lower case t will appear)
3) Double click on tin existing survey
4) LB Finish

The tin will be shown with the tin edges turned on. This is the default when you have all tin display modes turned off.
Display Contours
1) LB the toggle button
2) LB Tin contours.

The contours are displayed with their default colours and increment (1 unit).

Display Flow Arrows
1) LB the toggle button
2) LB Tin flow.

Flow arrows are now visible at the centre of every triangle.

Change Contour Intervals and Colours
1) LB the View menu button
2) Walk right (do not select) on settings.
3) Walk right on Tins.
4) LB Contours
4.4 Inquiring about Heights on the Surface

The elevation anywhere on the tin can be obtained by simply moving the pointer over the desired spot. To obtain the tin elevations select,

1) Type a new Cont inc
2) Type a new Bold inc.
3) LB Set to see the new contours.
4) LB Finish when done.
You will see that data in the panel change as you move the pointer around the screen. Move the panel to the bottom right corner of the screen and leave it there.

4.5 Viewing the Surface Tin in a 3d Perspective
To create a 3d perspective view select

View=>New=>Perspective Open GL

1) Add the model **tin existing surface** to the view.
2) **Toggle** the contours on.
3) **Toggle** the shading on (note that the contours are no longer seen).
4) Use the Orbit control (planet on the toolbar) and zoom wheel to move around the view.

4.6 Reducing the number of points for the 12d Practice Version
We can delete the survey data to save space for those using the practice version of 12d. If you have a full version of 12d this is not required. From the main menu select.

Models=>Delete=>Delete a Model

and the following dialog will appear.

1) LB the model icon and select **EXISTING SURVEY**
2) LB **Delete** and then confirm each panel
3) LB **Finish**
COURSE NOTES

STORMWATER DESIGN

4.7 Importing the Road Design Centre lines
Repeat the process of importing 12da data.

File I/O->Data Input->12da/4da data

4.8 Using Create Roads
We are going to create the roadways from the road centre lines (vertical grading has already been done). First we will need the road templates that we will read from a templates file.

File IO=>Templates input

Now we are ready to create the road strings and design tin.

Design=>Roads=>Create=>Create Roads - Manager
To view the road strings, add on all of the Road * models. To view the tin add on the tin design model. You can also add the tin design model onto the perspective view. Important: On the OpenGL perspective view, 12d will show the tin data with the greatest z values (when viewed from the top side).
COURSE NOTES

STORMWATER DESIGN

4.9 Creating a Super Tin from the Survey and Design Data.

The drainage fs tin may be used to set pipe inverts, pit levels, sag catchment overflow points and catchment slopes for tc strings. Therefore, the tin often needs to include several tins combined into one tin. To create a tin that is the combination of the survey data and the road design data you will need to create a 12d super tin. From the main menu

Tins=>Create=>supertin

7. Type a New tin name of combined
8. RB in the cell and select the existing tin.
9. RB in the cell and select the design tin.
10. LB the Create button TWICE.
11. LB the Finish button.
12. Add tin combined onto the plan view.

Notes about super tins:
- Tin colour is only used in section views,
- The super tin is the 2 tins “glued” together,
- The super tin is opaque so it will “cover up” other models already on the view. Use the Menu button on the View toolstrip and select Models->models to back and select the super tin.

- Tin 1 is the tin on the bottom (like the levels in a building) and tin 2 is above. i.e. wherever tin 2 exists it will be used. If there is no tin 2 at a location then tin 1 will be used. - Tin flow arrows are not available,
- Contours can be displayed but not created for export.

4.10 Changing the Colour of a Tin

To emphasise the super tin is just the 2 tins “glued” together, we will change the colour of the existing tin and see how the super tin changes colour as well.
Tins=>Colour=>Colour of tin

1. LB tin icon and select the **existing** tin
2. LB colour icon and select **dark green**
3. LB Colour
4. LB Finish

Toggle the Tin solid on and note the colours of the super tin.
5.0 Drainage Layout

Before creating drainage strings in 12d we should set default values for the pit and pipes. This ensures that most of the pit and pipes will have the desired type, size etc and then we only need to modify the pit and pipes that are different to the default values.

Where a drainage designer chooses to start their design is a depends a great deal on the project and the designer. Identifying overland flow routes is essential because it is on these routes that the inlets are to be placed. Inlet structures are then placed at critical locations (sag points, flattening of grades, upstream of pedestrian crossings etc.), and then the spacing of additional inlets is determined by the size of the catchments. Finally, the pipe drainage system can be created linking the drainage structures.

5.1 Setting Drainage Defaults

The defaults for the drainage network are accessed through three panels; pipe defaults, manhole defaults and Tin defaults.

5.1.1 Tin Default

Design => Drainage-Sewer => Defaults => Tin

The default TIN is used to set the initial manhole cover and setout levels, and using with the default cover (yet to come), the pipe invert levels. Super tins may be used if you want to place manholes on both the existing and the design ground surface (see Creating Super tins).

1. LB the tin icon and select the combined tin.
2. LB the Set button
3. LB the Finish button.

Warnings about using tins. If you place a pit outside the tin boundary:

- then no elevation will be set for the top of the pit, (it can be set later manually or by linking it to a design string).
- Pipe invert levels cannot be set using the default cover. Pipe invert levels must be set manually as 12d cannot automatically determine cover levels without a TIN.
- Finally, if your drainage design package accepts surface levels along the string, then an error message will be displayed at export time. The message will say that the surface level string is shorter than the pipe length.
5.1.2 Manhole (Pit) Defaults

Notes on pit Diameters

The pit diameter is specified in metres/feet not mm/inches. Although most stormwater pits are rectangular, 12d uses circular pits to eliminate problems showing the alignment of the pit. If the actual size and orientation of the pit are needed on the final drawings, a symbol may be used in the drainage plot annotations. For rectangular pits, dimensions and a detailed description can be added to your drainage.4d file (mhszie command) so that they can be added to your pit schedules.

The diameter can also be set in the drainage.4d file via the mh_diam command.

The Diameter is used for:
1. for visual service clash identification in long section drawings,
2. to clip the pipe lines drawn in the plan annotations so that symbols can be inserted in the space created,
3. maximum distance the bypass flow strings can be drawn from an inlet centre.

1. Type the desired diameter.
2. LB the Type drop down and select the most common manhole type.
3. LB the Set button.
4. LB the Finish button.

The minimum drop will be used to set the invert level of the outlet pipe relative to the invert level of the inlet pipe. The drop should always be entered as a positive value. The network editor has many more options for aligning the pipe inverts at the pits.

Generally, do not use a default name. Leave all of the pits unnamed and then use the Set Pit Names function on the drainage network editor.

The pit type is selected from a list by selecting the icon beside the Type. This list is obtained from the drainage.4d file. This pit type will be used by 12d storm analysis, ILSAX, PCdrain and RAT-HGL, RAT2000 and XP SWMM to identify the inlet capacity. This value is not exported to the Drains program but it will determine the pit family. See Drainage Import/Export. It is best to set this to the most common pit type and then change the few that are different later in the network editor.

You must click the Set button to set the default values. Finish alone will not set the defaults.
5.1.3 Pipe Defaults

The pipe diameter is set in metres or feet not mm or inches. Set this to a minimum pipe diameter for your project and then your drainage design package can increase them if required. To model an existing system enter the most common pipe size and then alter other pipes as required in the network editor.

Allowing for Pipe Thickness

When 12d set the pipe inverts it checks the minimum cover from the obvert of the pipe to the finished ground surface at both pits.

\[
\text{Cover} = \text{surface level} - \text{diameter} - \text{invert}
\]

Therefore, an allowance for pipe thickness should be added to the minimum cover.

If the grade of the pipe is less than the minimum grade, the grade of the pipe is increased. Finally, 12d checks if there is anywhere along the pipe length that has less than the minimum cover. If there is such a low point in the design surface, the pipe is shifted vertically downwards to achieve the cover required. 12 defines cover as

When using the network editors to change the pipe diameters the invert levels will remain fixed and the obverts will change. The inverts may be reset using Regrade Network on the network editor.

The list of available pipe types is set in the drainage.4d file.

5.2 String Colour and pit Label Text Size/location (string defaults)

12d can automatically label the pits at a fixed offset from the pit using view text OR you can use the network editor Plot to create text labels that can be moved/rotated etc.

For view text, the default line colour and text size are set by selecting

\[
\text{Project} => \text{Management} => \text{Defaults}
\]

The following panel will appear.
1. LB **colour** icon to set the default colour of the drainage string and manhole labels.
2. Type the height of the text in pixels
3. LB the **Set** button. This will set the defaults for this project only.
4. LB the **Finish** button.

Optionally, you may LB the **Write** button to set the defaults for other projects. The following panel will appear. Selecting **Current folder** will save ALL these defaults for projects in this working folder only. The defaults set in the **user** or **setups** directories will not be used if you select this option.

Selecting **User folder** will save your defaults so that all other 12d projects will use this defaults. This is the most common option (unless your network administrator has not given you write access to this area (check **Properties**).

Select **Write** then **Finish**
5.3 Importing Drainage Layouts from AutoCAD

We are now going to import a pipe layout that was drawn in AutoCAD along with the overland flow routes and catchment areas (These could have been created in 12d as well). When these were drawn the following rules were followed:

1. Strings are drawn where the pipes are NOT to setout x,y locations,
2. Polylines are used in AutoCAD,
3. Lines drawn from upstream to downstream (direction of flow),
4. A vertex was placed at every pit location.

To import the AutoCAD drawing, from the main menu select

File IO->Data Input=>DWG/DXF/DXB

1. LB the folder icon and select the **drainage data** file
2. Type a **prefix** for the models. It will help organise the layers from AutoCAD as every layer goes into a separate model in 12d. Specifying a prefix causes all of the layer names to be prefixed with this text and therefore kept together in the model list. The prefix used is dwg<space>.
3. LB **Read** button. If you select the **Read** button more than once the data will be imported again and you will get duplicate, triplicate...etc data.
4. LB **Finish**

The models that have been created are,

- dwg d catchments
- dwg d overland flow
- dwg drainage network

1. Remove all of the models from the view
2. add the model **dwg drainage network**

This is a 2d drainage layout that we will use to locate the pits in our drainage design.

5.4 Create the drainage strings from the dwg strings

12d will convert the import strings into 12d drainage strings. The default pipe, pit and tin data will
be used to set the levels for the network.

From the menu select

Design=>Drainage-Sewer=>Create from strings

The following panel will appear.

![Convert to Drainage Strings Panel]

The fields and buttons used in this panel have the following functions:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source</td>
<td>source box</td>
<td>model</td>
<td></td>
</tr>
<tr>
<td>Model for drainage strings</td>
<td>model box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow direction</td>
<td>choice box</td>
<td>same as string direction</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>button</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important notes:

The imported strings must all be drawn in the same direction. Either all in the direction the water flows or all opposite the direction of flow.

Pits are created at all vertices on the strings.

Trunk lines must have a vertex where the branch lines join.
String names can be used to control the order in which the drainage lines are numbered. These names will be transferred to the 12d drainage strings. Later, the string names can be changed in the Drainage Network editor.

The drainage lines must have string names to use the Set Pit Names feature on the network editor.

Pits can always be renamed in 12d after the import is complete.

5.5 Drawing the Drainage Network in 12d

The following method of drawing the drainage pipe systems has proved very efficient in the past. However, many people will have their own, “tricks of the trade”. Therefore, the rational behind the following procedure will be important for the user to understand when they want to try out their own procedures.

Key Points

1. Draw the pipes where they actually are! Do not place the pit centres at the setout point and have the pipes in the wrong location (pipe cover will be affected). Use setout strings for setout points!

2. Drawing all drainage lines in the same direction may help you keep your drainage work organised. Either draw all string uphill to downhill (flow same as string direction) OR downhill to uphill (flow opposite to string direction).

3. The Drainage Network Editor Regrade Pipes is the key to setting pipe invert levels! Use this after modifying the drainage plan layout as it will update all initial grading described below.

 However, 12d will perform an initial grading as as you draw the string. If you choose opposite to string direction then will need to select Pipe=>Default Grading then Grade to have achieve this initial estimate. If you create branch lines before the trunk lines the initial grading will ensure the trunk line inverts remain below the branch line.

5.6 Pit Levels (cover level, grate level and setout level)

12d has 3 levels for every pit, cover, grate and setout.

- **Cover level** is used for the section views and long section drawings,
- **Grate level** is the reference elevation for freeboard calculations,
- **Setout level** construction setout levels

These levels can be set to be dependant on each other or completely independant. Also there are several options for determining these levels. These are described below,
COURSE NOTES

STORMWATER DESIGN

Pit Level (z) Options

There are currently 9 modes for determining the pit levels.

- **Cover RL** - this ensures the level is the same as the Cover RL (not available for Cover level).
- **FS tin** - The level is obtained from the finished surface tin at the pit centre.
- **NS tin** - The level is obtained from the existing surface tin at the pit centre.
- **Setout String** - The pit centre is dropped perpendicular onto the setout string and the level is obtained from the elevation on the string.
- **Sz + Setout String** - an offset is added to the level from Setout string described above.
- **Max Obvert** - all connecting pipes, usually open channels, are checked for the highest obvert.
- **DS Invert** - the invert of the outlet pipe (there is only one).
- **Sump Invert** - the lowest pipe invert plus the Sump offset.
- **Manual** - The user must manually type in the cover levels (rarely used as a default).

5.7 Pit Setout strings

The centre of the pit (x,y and z) need not be the pit setout point used in the setout tables. The construction setout location can also be set independently of the pit centre. It is recommended that you place the pit centre so that the pipes are shown in their actual location and then use the desired option for setout. With the pipe in the proper location, the pipe cover and service clashes will be calculated correctly. The default settings for the pit setout location are found on the network editor-defaults-pits-setout data.
COURSE NOTES

STORMWATER DESIGN

Setout x,y Options

Option 1 Pit Centre

The x,y location will be the centre of the pit.

Option 2 Road Centre Line

The road chainage and offset are measured perpendicular to the road centre line out to the pit centre or setout point.

Option 3 Setout string

The pit centre is dropped perpendicular onto the set out string to obtain the x and y.

Example

In the diagram below the setout point is lip of kerb. The setout x,y location level z will be obtained from the setout string and the pipe will be shown at its proper position.
5.8 Creating the Drainage Strings in 12d

Drainage strings can also be created in 12d. A drainage string is created by selecting

Design => Drainage-Sewer => Create

1. Type a string name (used for pit naming later).
2. Type a new model name for the network
3. LB the Colour icon and select colour (optional).
4. Leave unless drawing in uphill direction.
5. From the default, leave as is.
6. Existing tin can be used for long section dwg levels
7. Select if creating more than 1 string.
8. LB the Create button, the menu below will appear.

TIP: If you have already created a drainage string, click the Same as button and select the drainage string to obtain the panel values from that string. After selecting the string, change the string Name.

Additional Notes

Name:

Each drainage string in the model must have a unique Name if you plan on using the Set Pit Names option after all of the strings have been drawn. The name of the string should be kept short, for example, as it will be used as the prefix or suffix for the pit names. Examples of pit naming schemes available for a string labelled, , are B1, B2, B3 … or 1B, 2B,3B… or 1/B,2/B, 3/B… etc.

Sequential numbering all of the pits (1,2,3 etc.) is also an option. The pits on the string named 1 will be labelled first and then 2 and so on. If you insert a new string with a name in the middle an existing series (i.e. add a new string 2 when strings 1,2 and 3 already exist) then name the new string 1.1 (for this example) and then use the Strings=>User=>Set String Name by number command.

Flow direction:

It should be same as string direction if drawing uphill to downhill or opposite to string direction if drawing downstream to upstream. All of the strings in the model can have their direction changed later using the Design=>Drainage-Sewer=>More=>Reverse all strings command. To graphically check the flow direction of all strings see Flow in the Wrong Direction.
We are going to place our manholes on the back of kerb near the vertices of the layout that we imported. Name the eastern branch line \(2\), the west branch line \(3\) and finally the trunk line running from east to west \(1\). The drawing below shows the manhole names. You will not see these names as you draw the strings but we will create them later.

To create your first manhole on line 1, select

1. **Edits => Append.** A +MH will appear with your pointer.
2. LB and accept each manhole location starting at 1-1.
3. LB the **Finish** button after the last manhole is placed (1-4).

The Create Drainage String panel will appear again for you to create additional drainage strings.

1. Begin creating line 2 in a similar fashion and place the manhole 2-1.
2. To connect to line 1, a point snap is required to the centre of manhole 1-2. This creates a junction pit.
3. LB the **Finish** button after the junction manhole is placed.
4. Repeat for line 3.

5.9 Additional Notes for Junction Pits

Key Points

1. The branch line must **Point Snap** onto the centre of a pit on the trunk line.
2. All strings must be in the same model.
3. The downstream end of the string (depends on flow direction) must join onto the trunk line.
COURSE NOTES

STORMWATER DESIGN

Trunk drainage lines are created the same way as the branch lines except special care must be used when placing the junction pits. When placing the junction pit on top of the branch line turn the point snap on and the line snap off (the F3 and F4 keys are convenient for this). Zoom into the branch line junction pit so that you can snap onto the centre of the pit.

A pit contains three points; one at each point where the pipes join (invert level points) and the one you want to snap onto at the centre of the pit (setout level point). In the figure below, the blue line is being placed to join the magenta line. Note that the diamond indicates that there is a point snap and the information panel indicates that we are snapping to line 2. The information panel also indicates the snap was a point snap.

You can tell that you have created a junction pit correctly when you profile the trunk line and you can see the branch lines joining at the junction pit. If the branch lines are not shown then one of three things have gone wrong.

1) centre of the pits did not align, Use Strings=>Points Edit=>Move to move the branch string pit

2) the “downstream end” of the branch line must be the junction pit. With the direction of flow for the string set to “same as string direction” the junction pit must be at the high chainage end of the string. If the direction of flow for the string set to “opposite to string direction” the junction pit must be at the low chainage end of the string. To check the flow direction see Flow in the Wrong Direction.

3) The branch string and the trunk string have not been created in the same drainage model. From the main menu select Strings->Inquire (F2) and select the strings to check their models. If this is the problem, use Strings=>Edit=>Change and specify the correct drainage model (enter the model BEFORE picking the string) or Strings=>Edit=>Duplicate to duplicate one of the strings into the correct model.

5.10 Exact Methods for Placing Pits

To place your pits on a kerb line string, turn the line snap on and the point snap off. Keep the height snap off.

For locating pits at specific x, y coordinates, simply start typing the x coordinate instead of clicking onto a location. An input panel will appear for you to enter the x and y coordinate separated by a space.
To place the pits at a specified distance from a point use the RB and select Snaps Cad=>Points=>Locate Offset. Follow the prompts given in the message area (bottom left corner of the screen). You will need experience with the 12d “directional pick” to use this capability.

5.11 Flow in the Wrong Direction
The direction of flow is used by 12d to determine where the outlet is on the drainage line.

The direction of flow will be indicated with the arrow on the manhole when using the Drainage Network Editor. No arrow will appear if the outlet is selected. If you find the arrow is pointing in the wrong direction use the Strings->Properties->String option from the main menu. Select the string and then change the Flow direction value to the other value.

5.12 Drainage Section Views (downhill left to right OR right to left)
The long section views and the profile plots are running downhill from left to right. If you want them downhill from right to left use the reverse function.

To reverse only one string, from the main menu select

Strings =>Strings Edit =>Reverse

and pick the drainage strings to reverse. This will also change the drainage flow direction attribute from **same as string direction** to **opposite to string direction**.
To reverse all of the strings in a model select the Reverse all strings option,

Design => Drainage-Sewer => More => Reverse all strings

5.13 Moving, Adding and Deleting Pits
The best way to edit the plan layout of the drainage is via the Strings->Points Edit commands.

The Append, Between, Delete, Insert and Move commands are the most common.

The Move command has an extra option for moving junction pits. Selecting All points with the same coordinate will move all points on the view that are at the same x,y coordinate. The point selected will move first and the others will follow after the new location has been accepted.
5.14 Drainage Split and Join

To change the pipe route between the pits use the String split/join from the Drainage menu not the one on the Strings->Strings edit.

Split Option

The split must be done at a pit.

1. Type a new name for the upstream string (optional).
2. Type a new name for the downstream string (optional).
3. LB the Split button and then select the pit where the split is to occur.

Join Option

This routine will add a new pipe between the 2 strings if required. The properties and attributes of the new joined string (and the new pit at the join) will come from the upstream string if Join US to DS is selected. Join DS to US will cause the properties and attributes to come from the ds string. Upstream and downstream is determined by the flow direction.

1. Select either of the join option buttons.
2. Pick and accept the drainage strings in the order indicated on the option button (follow the messages in the 12d message area).
6.0 Drainage Network Editor

The drainage network editor is used to automatically or manually change the attributes of your drainage network. These abilities include:

General
- Changing the vertical alignment of the network
- Setting pit names
- Service Clash Checking

Hydrology
- Catchment Areas
- Checking the Automatic Catchment Linking
- Global and Defaults Tab for C values and Tc calcs
- Drainage Templates
- Bypass flow routes

Hydraulics
- Grate Levels
- Outlet and Tailwater Conditions

The drainage network editor is accessed through the main menu by selecting **Design=>Drainage-Sewer=>Network Editor**

The bottom section of the network editor panel is shown below. You can change tabs but no data can be entered in the panel until a drainage pit or pipe has been selected.

1. Pick and accept a drainage string and the network will be loaded into the panel.

The pit that was selected is highlighted with a circle and an arrow shows the direction of flow (see image below). The option buttons on the drainage editor now become active.
6.1 Moving through the Drainage Network

There are 3 ways to change pits in the network editor. None of these methods will work if you are on the **Defaults** or **Global** tabs. If the editor finds an error on a pit, it will take you to the error and you must correct the error before moving to the next pit.

Try all 3.

1. Pick Edit Button - Pick and pit or pipe in section or plan view
2. GoTo List - Select the pit from a list of pit name
3. Next and Previous Buttons - loop through all of the pits in the network

6.2 Auto-Apply, Auto-Pan, Auto-Profile and Auto-Redraw

With **Auto-Apply** (A) enabled, the **Apply** button need not be selected after making changes in the editor settings.

Auto-Pan is always on and any plan view showing active drainage network selected will always auto pan if the selected pit is not in the view. With the Auto-Profile (P) enabled, the same will happen for the section view. The image below has the auto profile turned off (note the blue trim on the P button).
COURSE NOTES

STORMWATER DESIGN

With Auto-Redraw (R) enabled, the editor will regenerate the section view when changes are made in the vertical. This saves selecting Regen on the section views.

6.3 Set Pit Details

Selecting Set Pit Details will set the cover levels and setout coordinates for all of the pits in the network. Other attributes are set as well but they will be discussed later.

6.4 Regrade Pipes

Selecting the Regrade Pipes button regrades all of the pipe in the network. Minimum grade and cover are checked and trunk lines are lowered to accept incoming branch lines. Grade is calculated using the pit centre to centre distance. Locks and explicit settings for pit and pipes will be discussed later in these notes.

To inquire about the cover on a pipe use the following option.

Tins->Inquire->Depth from string

6.5 Set Pit names (and pipes)

Use the drainage network editor to manually change explicit ones or quickly change all the names using a different naming method.

The pit names are based on the string names so make sure the string names are set. To view string names on the plan view, go to the Plan View tool bar and select Toggle=>Names. If they do not
6.6 Set Pit Names using Pit Type

Currently all of the pits have the default pit type. To exclude the outlet headwall from the numbering we can change its type to HW and then set the pit names again.
1. Move to the outlet using any of the 3 methods.

2. On the pit tab change the type to HW.

1. Move to the outlet using any of the 3 methods.
2. Change the pit type to HW
3. LB Select Pit Names

1. Type the file name for the pit selection scheme.
2. LB the folder icon and select Open.
1. RB to select the **Pit type**
2. Type the **Pre text**
3. LB **Write** to save the settings to the file.
4. LB **Finish** to return to the panel.

1. Type **Pre text** for those not included in the pit naming file.
2. LB **Run** to name the pits
3. LB **Back to Editor** to return to the main panel.

Note that the headwall still get the sequential numbering continued from the last numbering method. To start at a new number the **Sub sequence group number** would have to be included in the file.
COURSE NOTES

STORMWATER DESIGN

6.6.1 Trouble Shooting Displaying View Text
After you have named the pits in your network, the names should appear beside each pit in plan. If they do not appear then some 12d settings have been changed.

You can change the text size for each string by selecting Strings->Editor and then pick-accept the drainage string. The text size is set from the selection Utilities->Size.

The offset from the pit is set by selecting Strings->Properties->Strings, picking the drainage string and setting the values for Delta x, and Delta y.

Note: Auto pit names are NOT shown in the section view.

Trouble shooting auto pit names not being displayed

Problem: Plan text is toggled off
Solution: select Toggle on the plan view title area

Check that the Text is toggles on. If it is on then walk right and ensure the text is turned on or n/a for your drainage network.

Problem: Small text is turned off
Solution: select the Menu button on the plan view title area and select Settings =>Text => Text
- if these values are too large the text will not appear on the screen. Either decrease these values or increase the text size.
Problem: string text size is 0

Solution: Each drainage line can have its own size of the text. To change it, select Strings=>Editor then pick-accept the drainage string. The text size is set from the selection Utilities=>Size. If this is set to zero the labels are not drawn.

6.7 Labelling the Pits and Pipes

To label the pits and the pipes use Drainage Plan Annotations. This may be accessed from one of three locations.

Location 1: From the plan toolbar

Note (The following panel has been reduced in size).
Location 2: The Plot Button on the Drainage Network Editor

The following panel will be displayed.

This option can plot both the long section and plan at the same time. Select a ppf file from the library (drainage_design).

Enter a model for the plan annotations.

Select **Full clean model beforehand** if you have not manually moved any of your manhole labels.

Turn off the long section plot for now.

Select **Plot**.

Now add the **Model for plan annotations** onto the plan view.

Note: if you rename the manholes you will need to replot these labels!
The text properties can all be customised using the plot parameter file but this will be discussed later in the plotting section. These labels are not automatically updated when you change the names or pipe diameters. You must rerun the plot routine to update the labels.

6.7.1 Turn off View Text Pit Labels
To turn off the automatic view text pit labels for this view select Toggle=>Text and then walk right to select the drainage model. Do not click on Text, rather walk right. If you click Text you will toggle on/off all of your text on the view, not just the drainage model.
COURSE NOTES
STORMWATER DESIGN

6.7.2 Moving Text
The labels created may be manually moved using the CAD toolbar but if the model is relabelled the text will return to its original location! Text moved via the Drafting->Multi string translate will remain in the moved position when Smart Clean is selected in the Plan Annotation panel.

Before selecting text turn on your teXt snap.

To move a single line of text use the CAD toolbar. Select the Move text justify button. To use this toolbar you must DRAG the Create text button to the right and then release when the pointer is on the Move Text Justify Point.

To move a pre-defined Group of text select Drafting->Multi string translate

Select Group and then pick and accept one of the text items in the group. Move it to its new location and accept.

Note: To move another group you must select the Group button again.

6.8 Catchment Areas
Key Points
1. You can enter the catchment area manually (ha or acres) and have no drainage string.
2. When drawing catchment polygons, start near the inlet for auto linking.
3. 3 catchment sets are available and all catchment polygons must be in these models.
COURSE NOTES

STORMWATER DESIGN

5. Network Editor Set Catchment button links the polygons and calculates the areas.

6. Once a string has been linked to an inlet, it will remain linked until it is deleted or the link has been cleared (Clear Catchment Links on theGlobals->Utility Models tab).

7. Manual linking available via Network Editor->Catchments->Pick button.

8. Manholes (set via cap_config in drainage.4d or Inlet config on the Pit->Main tab) cannot have linked catchments.

9. Use the CAD polygon tool for drawing catchments OR close the string for SAG pits.

10. You may fill the strings using “Utilities->Super strings->Fills”

11. You can disable the auto selection of a string via Right mouse on the pick button then select Clear.

The catchment strings may be drawn in a CAD package and then imported into 12d or drawn inside 12d. The strings may be easily drawn in 12d with the tin contours and/or flow arrows displayed in the plan view.

When a catchment string is created to define the area for an inlet then all other data entry types will be ignored and the area from the string will be used.

There are 3 sets of catchments and it is up to the user to decide how they are to be used (roads, lots and park land for example). Often set 1 will be all the impervious areas and set 2 the pervious and set 3 for special areas. Each set has its own percent impervious. The 3 catchment sets are drawn in three different models.

If exporting to external drainage design programs, the package may not accept all three sets so check the interface notes before defining the catchments.

Set Catchments - Auto Linking

In each set/model, 12d will automatically link the catchment string to the inlet that is closest to the first point on your catchment string. This is the preferred method. If this is not possible, then an inlet may be manually linked to a catchment string using the Catchment manual link.

Linking Rules

1. If an area is typed in before Set Catchments is selected, a catchment string will not be linked to this inlet-catchment set. Erase the typed input if you want a link to occur.

2. Strings will link to the inlet closest its vertex 1.

3. If more than one string tries to link to an inlet, the closest vertex 1 point will be linked.

4. If an inlet has a string linked and a new string is drawn with a closer vertex 1, the new string will NOT replay the old string. Use the manual pick or Network Editor->Global->Utility Models Clear Catchment Links to start new.

Also see Checking the Automatic Catchment Linking

Drawing Catchment Strings in 12d

Before creating the catchment string set the CAD control bar data.
Type the name of a model for the catchment strings

Now to create the catchment string use the Create line string button on the CAD toolbar.

DRAG the Create line button and release at the Create Line String button.

The first point should always be placed near the inlet. 12d will assume that the catchment will drain to the inlet closest to this first point.

There is no need to go “overboard” with the accuracy of the catchment strings (except maybe with SAG pit catchments near the low points). From experience, it is more important to spend time verifying catchments in the field than spending a lot of time getting them “exactly” placed on the catchment plan. If you want to use the drawing as a catchment plan submission then the extra care in creating the strings may be warranted. Continue selecting and accepting the points on the catchment string and the press ESC to finish creating this string. You are now ready to create the next catchment string.

SAG inlet catchments: DO NOT START AT THE INLET, just start nearer to this inlet than any other! If you start at the inlet then move out to the crest of the catchment, the catchment overflow level cannot be determined from the catchment string.

Once the catchments are drawn they become linked to the drainage network in the Drainage network editor. We will label the catchment with the inlet name and area at the same time.

Start the Drainage network editor and move to the Global Tab and then the Utility Models sub tab.

Solid Translucent Fill for the Catchment Areas

Super strings may have a translucent fill add to them so that you can see if areas have been missed or if they overlap.

From the main menu select

Utilities=>Super strings=>Fills
1. Select the catchment model.
2. Change the action to Set.
3. Select a colour for the catchments.
4. Type a blending value between 0 and 1 (1 is opaque).
5. LB the replace option.
6. LB Change.
7. LB Finish

Note that the edges are no longer visible.

Adding the edges to the fills
To view the edges go to the View Menu button and select Settings->Faces
1. LB Draw Edges
2. LB Set
3. LB Finish
Every inlet can have 3 catchments, row 1 is catchment set 1, row 2 for catchment set 2 and row 3 for catchment set 3.

The **Auto-rename catchment polygons** will set the name of the catchment string to the pit name that it is linked to. If it is not linked to any inlet it will be named **“not used”**. The model can be checked for **not used** strings by selecting **Models->String Info Table**.

To label the catchment areas with the names of the inlets they are linked to we need a catchment labels model and a textstyle favourite. We need to create a label textstyle favourite if you do not have any favourites defined.
Select the **textstyle** button and then the drop down for **Favourites**. Now select **Edit**.

Enter the data as show. Some data you will have to type on the keyboard (**type**) and other you may use the right mouse button (**RB**) and then select browse.

Type	**RB**	**RB**
caught labels | **write** | **world**

Select **Set** to store the textstyle favourite for this session only. To permanently save this text-style favourite and have access to it in all of your projects select **Write** and the following
Label Catchments

Select the **User folder.**

Select **Write** to save the favourite to the **User folder.**

If you are in a network environment and want to see if you have write access to this files select the **Properties** button.

Finally select **Set catchments.** This will link the catchments to the inlets and label the catchments. Now add the model **labels** onto the plan view.
There are some cases where linking the closest inlet to vertex 1 is not feasible. In these cases you may manually link the inlet to a catchment.

Catchment manual link

The manual links are used when the first point on the catchment string is closest to the wrong inlet. Note that the following restrictions still apply.

1. The string selected for catchment 1 must be in the model for set 1. To check if you have selected a valid string select the **Set Catchments** button.
2. If the catchment string has already been linked to another inlet (automatic or manual) then the new link will be created and the old link erased.
3. If you change the catchment model for one of the sets on the **Network Editor->Global->Utility Models->catchments** than all of the manual links in that set will be erased.
Checking the Automatic Catchment Linking

The automatic inlet-catchment linking is easily checked by specifying a Catchment labels model with Labels textstyle on the Global->Utility models tab and selecting the Set Catchments button on the network editor. Also once the Set Catchments has been selected, the catchment is indicated when the inlet is selected using the network editor. Since there may be three catchments per inlet the catchment data last viewed in the editor is the catchment that is highlighted.

Finally, as mentioned above, the Auto-rename catchment polygons on the Global->Utility Models tab will set the name of the catchment string to the pit name that it is linked to. If it is not linked to any inlet, it will be named “not used”. The model can be checked for not used strings by selecting Models->String Info Table.
6.9 Network Editor - Global, Default Settings and Explicit Settings
Design values for the hydrology and hydraulics calculations are set either globally (one value for the entire network) or via Defaults for the pits or pipes. Defaults values may be overridden by explicit settings found on the catchment, pits or pipes tab. Explicit pit/pipe settings need only be specified if the default value is not desired.

6.10 Network Editor - Hydrology
The network editor edits both the network and catchment data and it has already been introduced in the previous sections. This section will discuss the Global, Defaults and explicit setting for the hydrology parameters. The parameters described on the defaults tab will also be found on the Catchment or Pit tabs.

6.10.1 Catchment Areas
The catchment areas have already been discussed in the previous section. There is no default catchment area to apply to all catchments (as would be expected).

Note! If a catchment string is linked to the pit and the Set catchments button is selected, this string area will override any manual value that you type into the drain-
age area field. To ensure manual entry is maintained, RB select the string selection but-
ton and select Clear.

6.10.2 Coefficients of Runoff

Global Settings

Runoff C methods include **Direct** and **ARR 1987**. For the **ARR 1987**.

Direct: There is a global impervious C value for both the minor and major storms.

ARR 1987: The com-
po-site C value is calcu-
lated using the **1hr-10yr intensity**, the percent impervious, ARR fre-
cuency factors and the return period specified when hydrology runs are made. **No C values are entered if this method is used!**
The Direct method has both defaults and explicit settings on Catchment tabs (see below).
Explicit Settings

The default percent impervious for the network is set on the Defaults->Catchment Defaults tab and the explicit settings are on the Catchment tab (see above). The percent impervious is used to determine the area for the impervious and pervious components and the composite C value if using the ARR 1987 method for calculating runoff coefficients.

6.10.4 Times of Concentration

There are several methods for entering times of concentration for the catchment areas (see list below). Default and explicit settings (catchment tabs) are entered/calculated for both the methods and values for the pervious and impervious areas. Since each catchment may use a different tc method, all of the tc parameter fields on the defaults tab are active. They must be filled in even if you do not plan on using that value.
1. **Direct method** requires minor and major tc values.

2. **Friend, Kinematic Wave, Bransby Williams** and QDUM methods require the retardance, length and slope of the catchments to be entered. Default values must be entered but the optional **explicit settings** for slope and length can be entered on the catchment tabs or a catchment characteristic strings may be drawn (see **Catchment Tc path strings**). The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method.

3. Data for the remaining methods is entered in a similar fashion.

6.11 Tc Path Strings

These strings are used to calculate the time of concentration for the impervious and pervious areas. For each catchment set, they are drawn in two models; one for the impervious paths and one for pervious paths. The models are specified using the **Catchment file** field on the **network editor** (Global->Utility model tab). The 3 rows in the **catchment file** correspond to the 3 catchments available for each inlet. Therefore it is possible to have a maximum of 6 Tc paths models!

Key Points

1. Each Catchment set may have 2 Tc paths models. Pervious and impervious paths are kept in separate models.

2. End the Tc path string near the inlet that it is to be linked to.

3. Enter the paths models via **Catchment file** field on the **network editor** (Global->Utility model tab)

4. You must select a Tc method (explicit or implicit) via the **Defaults->Catchments tab** or the **Catchments Tabs**. Just specifying the models is NOT enough!
5. Select Set Catchments to perform the calculations of length and slope.

The tc strings can be drawn in the same way as the catchment strings but make sure that you change the model name first! The tc string model is then entered in either the impervious or pervious paths model columns (You could have up to 6 tc string models!).

6.11.1 Catchment slope (equal area)

The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method. These strings are drawn from upstream to downstream, finishing nearest to the inlet they are to be linked to.
The equal area slope is calculated when Set Catchments is selected. After the export the slope string, it may be profiled to see the slope (see below).

6.12 Network Editor - Hydraulics

This section will discuss the hydraulic Global, Defaults and explicit settings for the hydraulic parameters. The explicit settings for the parameters described on the defaults tab will also be found on the Pit or Pipe tabs.
6.12.1 Cover RL mode, Grate RL mode and Sump offset

Both Cover RL and Grate RL modes has the same options with the exception that the Grate RL mode can be set to the Cover RL model so that both always have the same level.

The Sump offset creates a sump below the lowest pipe invert connecting to the pit. It is generally zero or negative.

6.12.2 Pit Losses Ku, and Direct Flow

The Direct flow (cms/cfs) is water flowing into the manhole. It is added to the approach flow and is subject to pit inlet capacity. This field will be disabled if the inlet type is set to a manhole.

The Pit loss Ku is used to model the energy losses through the pits. Three methods are available, Direct (user entered), Ku,Kw via charts (may be negative), or Ku,Kw >0 via charts where all negative values are changed to zero.
COURSE NOTES

STORMWATER DESIGN

Ku config has 4 options: **Preferred**, **Good**, **Fair** and **Poor**. The settings have no effect for 100% grate flow, straight through and 90° bends. For pipes with bends they determine the charts to use. The following are guidelines in selecting the Ku config.

- **Preferred**: water impacts the opposite wall where it exits
- **Good**: water impacts the side wall where it exits
- **Fair**: water impacts the side wall and exits on the end
- **Poor**: water impacts the opposite wall of the pit and exits on the side wall.

Introduction to 12d Ku/Kw Calculations

The following description is a very general overview of the Ku calculations in 12d. For a detailed description please see the 12d forum site [http://forums.12dmodel.com/](http://forums.12dmodel.com/+).

When 12d uses the Ku and Kw Charts, the values of upstream pipe angle, \((Q_{\text{grate}}/Q_{\text{outlet}})\), \((\text{Upstream diameter}/\text{outlet diameter})\) and \((\text{pit depth}/\text{outlet diameter})\) are calculated and used in the Ku/Kw charts. Three cases exist which determine which chart is used.

Case 1 - Pits with 100% Grate Flow

The angle between the ground approach flow and the exit pipe is measured. Charts, compiled from Sangster et al (1958) are used; G1 is used for angles less than 15 degrees (rare) and G2 for angles > 15 degrees. 12d’s names G1 and G2 can be referenced to other publications in the table below.

Case 2 - Pits with More than 50% Through Flow

12d has 10 charts (T1-T10) compiled from the Hare (1981) and cross referenced to the QUDM and ACTDS Charts. In general T10 charts have greater losses than T1 charts.

Ku Config

<table>
<thead>
<tr>
<th>Ku Config</th>
<th>0°</th>
<th>22.5°</th>
<th>45°</th>
<th>67.5°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
<td>T1</td>
<td>T2</td>
<td>T4</td>
<td>T8</td>
<td>T10</td>
</tr>
<tr>
<td>Good</td>
<td>T1</td>
<td>T2</td>
<td>T5</td>
<td>T8</td>
<td>T10</td>
</tr>
<tr>
<td>Fair</td>
<td>T1</td>
<td>T3</td>
<td>T6</td>
<td>T9</td>
<td>T10</td>
</tr>
<tr>
<td>Poor</td>
<td>T1</td>
<td>T3</td>
<td>T7</td>
<td>T9</td>
<td>T10</td>
</tr>
</tbody>
</table>

12d Chart Cross References

<table>
<thead>
<tr>
<th>12d Pit Config</th>
<th>G1</th>
<th>G2</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUDM Ku Chart #</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>QUDM Kw Chart #</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>ACTDS Ku Chart #</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>ACTDS Kw Chart #</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>ACTDS Pit Type #</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

Case 3 - Pits with between 0 and 50% Through Flow

With the flow condition between grate flow and through flow, a K value interpolation is performed based on the percentage through flow.
6.12.3 Pipe Friction Method, Roughness Values and Direct pipe flow

Direct pipe flow is flow at the upstream end of the pipe that is included in the pipe flow calculations but is not included in the upstream pit losses nor restricted by the pits inlet capacity.

6.12.4 Design mode, Freeboard Limit and Flow-depth limit

The default friction loss method and pipe roughness method are set here (Colebrook or Manning).

The ranges for pipe peak velocities are used for checking purposes only. If the velocities are outside this range, warning messages will be given in the output window.

The Design mode has 4 options.

Pressurised Pipe: Freeboard Design does not use partial depths in the pipes and pipe sizes selected by checking the pit freeboard.

Part-full Pipe: Freeboard Design is similar to option 1 except gradual varied flow and hydraulic jumps are calculated in the pipes. Critical depth is the minimum depth at the upstream end of the pipe.
COURSE NOTES

STORMWATER DESIGN

Part-full Pipe: Flow-depth Design is the similar to option 2 except the pipe sizes are selected by checking the normal depth in the pipe against the Flow-depth limit. Freeboard is also checked in this mode and if required the pipe will increase in size.

Open Channel: Freeboard Design is similar to option 2 except depths at the upstream end of the pipe may be less than critical depth for steep pipes (supercritical flow at the entrance).

The Freeboard limit is used for all Design modes. The freeboard is measured down from the grate level (Cover RL plus Grate offset).

The Flow-depth limit at pipe entrance (%) is used in Design mode 3. If the flow depth in the pipe is greater than this value the pipe size is increased.

6.12.5 Outlet and Tailwater Conditions

The most downstream pit on each network requires tailwater conditions. Often the invert level on the downstream end of the last pipe also needs to have the invert level locked to either discharge into a waterway or join into an existing drainage system. When the most downstream pit is selected the following fields will become active on the Network Editor - Pit - Main tab. If these field are not active and you think you are at the outlet see Flow in the Wrong Direction.

6.13 Pipe Design Parameters - Sizes, Invert alignment, Min Cover, Max Height

The invert levels during design are controlled by the pipe sizes, max pipe height, min pipe cover and invert alignment mode.
6.13.1 Invert Alignment Modes

12d has 4 design modes for setting the pipe inverts upstream and downstream of the manholes. These work together with the 2 pipe cover modes as follows.

The tin specified in the Global-Main Finished Surface Tin field is used for these calculations. The description below assumes that none of the inverts have been manually locked.

NOTE! Invert design parameters are set on the Pipe-Design tab not the Pit tab. The Alignment mode refers to the DOWNSTREAM INVERT ONLY.

1. The initial pipe grade is set as the Minimum grade (Minimum Grade mode) or the grade between the ground levels at the pits (Minimum Depth mode). Even in the Minimum depth mode the minimum grade constraint is checked.

2. 12d shifts the pipe down so that there is at least the Pipe cover limit along the pipe. The Pipe cover limit should include an amount for the pipe thickness.

3. Inverts are moved down if required according to the setting in Align mode. Obverts are aligned using OL-OL Drop with a zero drop in the Drop file. Similarly the invert is aligned with the IL-IL Drop mode. Min drop ensure that the inverts drop a minimum of the specified drop in the file but the drop may well be more than the Alignment drop specified. As the inverts are moved down the minimum pipe grade is maintained.

NOTE! If Obvert Drop is selected and the downstream pipe is a smaller pipe then the inverts will be aligned!
6.13.2 Pipe sizes, Max pipe height and Multiple Pipes and Box Culverts

The 12d design engine will select pipe sizes from the file specified on the **Drainage Network Design** panel, **Preferred pipes file** field list. See **selecting pipe sizes**. However, the maximum pipe height allowed before multiple pipes are used and the selection of box culverts is set on the **pipe->main** and **pipe >design** tabs respectively.

The **Drop file** contains the drops that change with the pipe deflection angle. A sample file is included in the library.

If only one drop value is to be used set the deflection angle to 180 degrees.

#Pipes specifies the number of identical pipes. The pipe flow is divided by this value when calculating losses.

To specify a box culvert in your network, select the pipe segment and enter a width for the pipe.
COURSE NOTES

STORMWATER DESIGN

For box culverts, the design engine increases the widths and maintains the height through the available sizes. Once the maximum height has been reached, the next culvert height and minimum width is checked.

6.13.3 Pipe Size Design

On the Pipe->Design tab the Lock Pipe size prevents the 12d design engine from resizing the pipe.

Max pipe height can be set for each pipe segment (there is no default for this value). If the 12d design engine requires a larger pipe, then multiple pipes will be selected.

6.14 Road Design File for Pit Setout - x,y, level, road chainage and setout offset

The road design file is used to automatically link the pit to a road setout string and a road centre line string. Explicit picking of these strings may be found on Pits->Setout->String selection. These strings may be used calculate road grades and crossfalls (bypass model required) and/or construction setout data.

The construction setout point defines the location on the pit to be printed in the pit schedules, plotted on the plan annotations or listed on the drainage long sections. The setout point and level can be set to the centre of the pit or it can be linked to a road design string. The cover rl plus the Grate offset determines the grate level for surcharging calculations.

The centre of the pit or setout point can also be dropped perpendicular onto the road centre line to obtain the road chainage and offset distance.

Key Points in Using Setout Strings

1. Enter the road models and the strings names (identifies) via the Network Editor->Global-Utility Models tab, Road design file.
2. Specify how these strings are to be used. On the **Defaults->Pits-Setout data** area or **Pits->Setout** tab.
 Select **Setout string** for the XY or Z setout modes.
 Select **centre string** for **Road ch mode** to calculate road chainages and offsets.

3. Select the **Set Pit Details** button.

4. Once a string has been linked to a pit, it will remain linked until it is deleted or the link has been cleared (**Clear Road Links** on the **Globals->Utility Models** tab).

5. Manual string selection is available on the **Pit->Setout** tab.

Setout xy mode - Pit centre is the centre point of the manhole (the intersection of the joining pipes). Often the setout point for a manhole or catch basin is not the centre of the manhole but rather a point on the kerb or back on the foot path. The **setout string** option will drop the centre point of the manhole onto the closest string in the **Road design** model list specified on the **Global->Utility models** tab.

Setout z mode options are listed in the panel. This levels are used in the pit schedules.
IMPORTANT! If no ID is entered then this model will NOT be searched!

The **Centre string ID** is used in the same way to find the centre line string. If needed, this string is used for road chainage and to determine which direction to measure the crossfall (between the setout string and the centre string).

The distances and searches are optional. The **setout** and **centre search distances** are the maximum distance that the routine will look when trying to locate the setout and centre line strings respectively.

The **grade offset** is the distance upstream from the setout point that the road grade measurement will start and the **Xfall offset** is the distance from the setout point to the start of the crossfall measure-
COURSE NOTES

STORMWATER DESIGN

The measurements will be taken over a distance of **slope measurement distance** with the actual levels taken from the finished surface tin specified on the Global-Main tab.

Repeat this for each road string model used in the design. **Remember to select Write when finished!**

Select the **Set Pit Details** button on the bottom of the panel the calculate these values.

Explicit settings for the setout strings and the auto calculated values are found on the **Pit-Setout** tab. If the **manual** mode is selected the Easting and Northing locations may be picked in plan view or typed into the input boxes.

The setout level defines the level of the pit to be printed in the pit setout tables and in the drainage longsection plots. The **FS Tin** selection obtains the level from the FS tin, specified on the **Global-Main** tab, at the centre point of the pit. The **Setout String** location obtains the z level from the setout string as described in the section above. **Explicit settings** and the auto calculated value are found on the **Pit-Setout** tab.

If **Road chainage mode** is set to **Centre string**, then the **Centre String ID** in the **Road design file** (shown above) is used to select the road string to measure the chainage and offset from. The values and **explicit settings** for the road chainage and offset are found on the **Pit->Setout** tab.

6.15 Calculate Bypass flow routes

This option is required for pit inlet capacity calculations and is covered in the Drainage Part 2 training.

As an introduction, the bypass strings determine the downstream bypass inlet for each inlet. Inlet capacity is determined from commands in the drainage.4d file. Road grade and crossfall measurements require the inlet to be linked to a setout string and pond depth measurements require a link to catchment string.
7.0 Service and Utility Clashes

We will import some services from a 12da file. From the main menu select,

File I/O->Data Input->12da/4da data

1. LB the **Folder icon**
2. Select the service file
3. LB the **Read** button.
4. LB the **Finish** button.
5. Add the model **services** onto the plan and section views.

WARNING!

12d service clash routines notify the user of crossing services but not parallel services that are close to each other. To view parallel services, add the services model onto a section view, profile a drainage string and then set the corridor value for the section view.
Settings->Corridor and then set the **Width left** and **Width Right** to the desired clearance. If the service can be seen then it is within the tolerance. 11 is used in this example only so that you can see the service on the other side of the road.

Use the **Next** and **Prev** button to switch drainage strings.

To obtain a report of all strings inside or crossing the drainage string profiled, select the **View menu** button then **Utilities->Report**
The service clash model list is entered on the Global-Utilities Model field.

To create a list enter a list name, select the folder icon and then select Open.

In the Service model column RB to select the model. Enter Minimum Clearance for the services in this model. Include an extra amount for the thickness of the drainage pipe. If different clearances are required for different services then place the services in different models. Warnings will be issued when you Regrade Pipes, Set Pit details, Import or Storm Analysis. Cover levels or fixed inverts can be used to avoid the services.

To quickly move to the section view of the string, use the pit selection dropdown beside the pick button. With auto profile on the section view will update to this string.
The most common method to avoid the clash is to increase the **Pipe cover limit** for this pipe segment so that the pipe is pushed down.

If the clash problem is above the pipe then the **Max pipe height** may be used and multiple pipes are selected.

This method is preferred over locking the inverts as this leaves more flexibility for aligning the inverts.

TIP: often changing the **Grade mode** to **Min grade** on a branch line will raise the downstream invert. This may allow the entire trunk line to rise and thus reduce excavation costs. This is especially true if the service clash is near the upstream end of the pipe.

Once the invert levels have been reset by selecting **Regrade pipes**, the output window will indicate the final clearance.

After a pipe design run in **Storm Analysis**, details of the service clash data will again be listed in the output window.
8.0 Drainage Design in 12d Drainage Design

12d has a sophisticated rational method hydrology and hydraulic grade line pipe design engine. In addition it has the capability to export this data to several other popular drainage packages. Regardless of the design method selected the drainage network in 12d is updated from the design so that drainage plans, long sections and pit schedules can be quickly produced.

8.1 12d Rational Method Hydrology - Drainage Rainfall Editor

The Drainage Rainfall Editor is used to input rainfall IFD data using several methods. The data is stored in Meteorology files (each file is for a specific location) that can be shared between 12d projects. The data is edited using an editor similar to those used for the plot parameter files (ppf). Seven methods for entering/calculating the rainfall intensities are shown in the panel below. From the main menu select Design->Drainage-Sewer->Rainfall Editor.

Data is entered using one (or more if desired) input methods and then saved by entering a Meteorology file name and selecting Write. The standard 12d system file search paths are used (project folder, user library folder and then library folder).

Select the folder icon and then walk right on the Lib item to display a list of sample files. Select a file then select Read. YOU MUST SELECT THE READ BUTTON!

8.1.1 IFD Tables

IFD tables are often available from meteorological services. The table input format follows. The first row is used to define up to 9 return periods and the following rows list the rainfall intensities for the duration entered in the first column.
Hint: to increase the size of the grid control select another method, ARR 1987 for example, and then select IFD table again.

8.1.2 Australian Rainfall and Runoff 1987 Method
The rainfall intensities and other factors from Volume 2 of ARR 1987 are entered in this table.
8.1.3 Australian Rainfall and Runoff 1977 Method
The seven coefficients for each return period from ARR 1977 are entered in this table.
8.2 Drainage Network Design

The **Storm Analysis** button on the **Network Editor** executes the 12d drainage design, plots the drainage long section and plan annotation and prepares the hydrology and hydraulic design tables.

From the **Drainage Network Editor** select **Storm Analysis**. The following design panel will appear.
Storm Factors

The valid ARI will depend on the method selected but you cannot extrapolate beyond your data. Select the folder icon on the Rainfall location file and then walk right on the Lib line to select one of the rainfall files in the 12d library. If the file has only one type of rainfall definition then the Rainfall method field will be completed. Otherwise select the Rainfall method desired.

Storm event type determines which set of design values (minor or major) will be used for this run. Pipe travel time method should be set to the authorities requirements.

Enable the 12d rational method engine partial area calculations by selecting the Partial area effects box.

Network Design Factors

Modify Pipe Sizes

These values control the values to be designed in the run. Consider bypass flows causes the engine to use the bypass flow routes and inlet capacity data from the drainage.4d file.

Ensure Pipe Q < Qcap will increase the pipe size if this criteria is violated.
COURSE NOTES

STORMWATER DESIGN

Modify pipe inverts will allow the design engine to shift the inverts if required (usually pipe size changes).

If Modify pipe sizes is selected then a files containing the available pipe sizes must be supplied. The pipe sizes in this file are in the Units specified in the drainage network editor. To create a new file, enter the file name and then select the folder icon followed by the Edit line. The following panel will appear.

The diameters/heights are required and the width is optional to specify a box culvert.

YOU MUST SELECT THE WRITE BUTTON!

The Upsize only selection will stop pipes in the system from being reduced in the design. Regardless of this selection, the 12d design engine will not allow a smaller pipe to be selected in the downstream direction.

Pipe Sizes too Large?

A few comments on why you may have large pipes in your design. After checking the design discharge consider the following.

If one pipe is sized large then 12d will not allow a smaller pipe downstream. So when pipes seem large, check the most upstream large pipe. HGL restraints will require you to look downstream of the large pipe.

Check List

1. High roughness values, accidentally setting roughness to Manning with a 0.6 roughness value (Colebrook)!
2. Grate levels not set correctly. Freeboard is measured from these levels.
3. Pipe min pipe cover set very close to freeboard.
4. Selecting [b]Ensure Q<Qcap[/b] in the storm analysys dialog. This is required by some authorities but can cause larger pipes in flat areas.
5. NOT selecting [b]Modify pipe sizes[/b] in the storm analysys dialog. 12d will not change the pipe size.
6. Selecting [b]Only allow pipes to upsize[/b] in the storm analysys dialog. 12d will not check if a smaller pipe will do.
COURSE NOTES

STORMWATER DESIGN

Generate Results in Plan

This selection automatically runs the drainage plot annotation function. A Drainage plan ppf must be entered and samples are supplied in the 12d library. A Model for plan results is required if this option is selected. The Full clean model before hand tick box forces the model to be cleaned before the labels are created. When not selected a “Smart clean” is performed.

Generate Results in Long Section

This selection automatically runs the drainage long section plotter. A Drainage long section ppf is required and examples are found in the 12d library. A Model stem for long section results is required if this option is selected. In almost all cases the Clean model before hand tick box should be selected.

Generate hydrology report

The hydrology report may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases Overwrite existing report file will be selected.

8.3 The Run Button and HGL data on the Section View

When the Run button is selected the discharges are calculated, the HGL check is performed and the pipes sizes and inverts are designed (if selected). The plan and long section drawings will also be
updated with the new data (if selected).

The HGL values will also be available on the 12d section views when profiling the drainage strings. The colour of the HGL line may be changed via the view’s menu button then Settings->Drainage.

8.4 Importing Text into a 12d model

Formatted text may be inserted into a 12d model by selecting

Drafting->Text and Tables->Create edit paragraph text
Change to File.
Select the folder icon and then pick the formatted text file. It will be displayed then select Set.
Next select the location in plan for the text.
The font selected must be a fixed space font or the data will not align properly.
Select the Font to display the following panel.

Enter a Text Model for the report.
The Text Style must be a fixed space font.
Select Set then Finish.
Now add the Text Model onto the

Generate hydraulic report

The hydraulic report may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases Overwrite existing report file will be selected.
COURSE NOTES

STORMWATER DESIGN

If you want both the hydrology and hydraulic report in the same file, enter the same file name in both file fields but turn off the **Overwrite existing report file** for the hydraulic report.

8.4.1 Design Results

Results from the design runs are shown in several forms:

1. Hydrology and hydraulic reports
2. Drainage plan annotations
3. Drainage longsections
4. Hydraulic Grade line on the Section view
5. Output window data - Service/utility clashes

Samples of the hydrology and hydraulics report are shown below.
LID MODEL - HYDROLOGICAL DESIGN SHEET

<table>
<thead>
<tr>
<th>Event</th>
<th>Area</th>
<th>Using</th>
<th>Extracting</th>
<th>Catchment</th>
<th>Intensity</th>
<th>Runoff</th>
<th>Area</th>
<th>Full</th>
<th>Partial</th>
<th>Qo-CIA</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2</td>
<td>3328.20</td>
<td>7322.04</td>
<td>30.09</td>
<td>16</td>
<td>10.09</td>
<td>163.00</td>
<td>0.75</td>
<td>0.0603</td>
<td>0.6092</td>
<td>0.0792</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>3103.11</td>
<td>7322.04</td>
<td>29.09</td>
<td>16</td>
<td>10.09</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0605</td>
<td>0.6070</td>
<td>0.0792</td>
</tr>
<tr>
<td>3</td>
<td>A2</td>
<td>3785.65</td>
<td>7322.04</td>
<td>27.00</td>
<td>16</td>
<td>10.09</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0581</td>
<td>0.6478</td>
<td>0.0478</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>5140.70</td>
<td>7322.04</td>
<td>26.70</td>
<td>16</td>
<td>10.09</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0498</td>
<td>0.6041</td>
<td>0.0481</td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>4148.17</td>
<td>7336.94</td>
<td>29.22</td>
<td>16</td>
<td>10.09</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0464</td>
<td>0.4397</td>
<td>0.4197</td>
</tr>
<tr>
<td>6</td>
<td>A2</td>
<td>5275.10</td>
<td>7336.94</td>
<td>28.40</td>
<td>16</td>
<td>10.09</td>
<td>204.00</td>
<td>0.90</td>
<td>0.0469</td>
<td>0.4397</td>
<td>0.4197</td>
</tr>
</tbody>
</table>
Stormwater Design

Major 5 Year Storm Event

<table>
<thead>
<tr>
<th>ID</th>
<th>Size</th>
<th>Grade</th>
<th>Pct</th>
<th>T</th>
<th>Sum A</th>
<th>Sum CA</th>
<th>Qc+CA</th>
<th>Sum A+Qc+CA</th>
<th>T/t</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>48.98</td>
<td>306</td>
<td></td>
<td>2.18</td>
<td>16.90</td>
<td>16.00</td>
<td>0.087</td>
<td>0.0702</td>
<td>38.1</td>
<td>5.09</td>
</tr>
<tr>
<td>2-3</td>
<td>48.91</td>
<td>456</td>
<td></td>
<td>2.18</td>
<td>16.90</td>
<td>16.00</td>
<td>0.087</td>
<td>0.0702</td>
<td>38.1</td>
<td>5.09</td>
</tr>
<tr>
<td>3-4</td>
<td>48.91</td>
<td>456</td>
<td></td>
<td>2.18</td>
<td>16.90</td>
<td>16.00</td>
<td>0.087</td>
<td>0.0702</td>
<td>38.1</td>
<td>5.09</td>
</tr>
<tr>
<td>4-5</td>
<td>48.91</td>
<td>456</td>
<td></td>
<td>2.18</td>
<td>16.90</td>
<td>16.00</td>
<td>0.087</td>
<td>0.0702</td>
<td>38.1</td>
<td>5.09</td>
</tr>
<tr>
<td>5-6</td>
<td>48.91</td>
<td>456</td>
<td></td>
<td>2.18</td>
<td>16.90</td>
<td>16.00</td>
<td>0.087</td>
<td>0.0702</td>
<td>38.1</td>
<td>5.09</td>
</tr>
</tbody>
</table>

Major 1 Year Storm Event

<table>
<thead>
<tr>
<th>ID</th>
<th>Size</th>
<th>Grade</th>
<th>Pct</th>
<th>T</th>
<th>Sum A</th>
<th>Sum CA</th>
<th>Qc+CA</th>
<th>Sum A+Qc+CA</th>
<th>T/t</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>29.7</td>
<td>184.5</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>1.95</td>
<td>2.61</td>
<td>36.99</td>
<td>25.55</td>
<td>6.09</td>
</tr>
<tr>
<td>2-3</td>
<td>21.3</td>
<td>144.5</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>1.95</td>
<td>2.61</td>
<td>36.99</td>
<td>25.55</td>
<td>6.09</td>
</tr>
<tr>
<td>3-4</td>
<td>24.1</td>
<td>144.5</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>1.95</td>
<td>2.61</td>
<td>36.99</td>
<td>25.55</td>
<td>6.09</td>
</tr>
<tr>
<td>4-5</td>
<td>24.1</td>
<td>144.5</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>1.95</td>
<td>2.61</td>
<td>36.99</td>
<td>25.55</td>
<td>6.09</td>
</tr>
<tr>
<td>5-6</td>
<td>24.1</td>
<td>144.5</td>
<td></td>
<td>2.55</td>
<td>2.58</td>
<td>1.95</td>
<td>2.61</td>
<td>36.99</td>
<td>25.55</td>
<td>6.09</td>
</tr>
</tbody>
</table>

Pipe US Fit F'head Loss

<table>
<thead>
<tr>
<th>ID</th>
<th>Ku (Ku.V'head)</th>
<th>T'head Loss</th>
<th>ESL</th>
<th>ESL</th>
<th>ESL</th>
<th>ESL</th>
<th>ESL</th>
<th>Grade</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>2.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>1.60</td>
</tr>
<tr>
<td>2-3</td>
<td>2.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>1.60</td>
</tr>
<tr>
<td>3-4</td>
<td>2.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>1.60</td>
</tr>
<tr>
<td>4-5</td>
<td>2.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>1.60</td>
</tr>
<tr>
<td>5-6</td>
<td>2.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>1.60</td>
</tr>
</tbody>
</table>
9.0 Drainage Templates (Saving Defaults and Globals)

The default and global settings may be saved as a template for other projects/networks. After setting the globals and defaults for a network follow these steps.

1. Export the model using File IO->Data output->12da/4da data.
2. Start a new 12d project.
3. Import the file created in step 1 using File IO->Data input->12da/4da data.
4. Clean the model to remove the old networks Models->Clean.

Since the global and default values are stored as model attributes, they will be remain with the network model. Cleaning does not remove the attributes.
COURSE NOTES

STORMWATER DESIGN

10.0 Drainage Data Input and Output to Spreadsheets

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as “user definable attributes”. These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the “arrows” data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but pits cannot be added to existing strings.

See also

- 12d to spreadsheet transfers
- Spreadsheet to 12d update and create
- Spreadsheet options

10.1 12d to spreadsheet transfers

This interface is accessed the Import/Export button on the Drainage Network Editor.
Select **Spreadsheet clipboard**

These options are not used for spreadsheet export.

Usually leave this off! Select to export the junction pit at the end of all drainage lines (very rarely needed).

You may also select to limit the output if desired. If you like using spreadsheets for data entry, the PCdrain data and ILSAX data formats are useful for adding data for the first time for either program.

Select **Run** to place the data on the clipboard.
11.0 Manhole/Pit Schedules

Manhole/pit schedules or construction tables are generated in tab or space delimited formats. This panel is accessed from the menu selection
Design => Drainage => Reports => Pit schedule

This routine prints the calculations from the last time Set Pit Details was selected in the Drainage Network Editor.

The fields and buttons used in this panel have the following functions.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Defaults</th>
<th>Pop-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage model name</td>
<td>input box</td>
<td>drainage network</td>
<td></td>
</tr>
<tr>
<td>Pit schedule file name</td>
<td>input box</td>
<td>pit report</td>
<td></td>
</tr>
<tr>
<td>Report Format</td>
<td>choice box</td>
<td>Road change.,Easting...</td>
<td></td>
</tr>
<tr>
<td>Data delimiter</td>
<td>choice box</td>
<td>Tab, Space</td>
<td>tab delimiters are best for spreadsheets and space for some text editors</td>
</tr>
<tr>
<td>Repeat header for each line</td>
<td>tick box</td>
<td>selected</td>
<td>when selected, the column headings will be printed each drainage line</td>
</tr>
<tr>
<td>Process</td>
<td>button</td>
<td></td>
<td>Create the pit report</td>
</tr>
</tbody>
</table>
Notes:
The columns of data may be separated by spaces or a tab. (tab is used for spreadsheet transfers). The internal width and length data are retrieved from the **drainage.4d** file for the pit type specified. If you want a longer description for the pit then the type used inside 12d this can also be entered in the drainage.4d file. The remarks for each pit are entered as user defined pit attribute named **remarks** and may be set using the attribute editor (on the drainage menu) or via a spreadsheet.

Easting Northing Sample

<table>
<thead>
<tr>
<th>Pit Schedule</th>
<th>Internal</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Pit Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit No.</td>
<td>Type</td>
<td>Easting</td>
<td>Northing</td>
<td>WD</td>
<td>Len</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>B1</td>
<td>SA2</td>
<td>5302.458</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A2</td>
<td>SA2</td>
<td>5264.372</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>C1</td>
<td>SA2</td>
<td>5224.155</td>
<td>7336.936</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A3</td>
<td>SA2</td>
<td>5187.910</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A1</td>
<td>SA2</td>
<td>5309.458</td>
<td>7321.100</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A2</td>
<td>SA2</td>
<td>5264.372</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A3</td>
<td>SA2</td>
<td>5187.910</td>
<td>7322.036</td>
<td>450.000</td>
<td>900.000</td>
</tr>
<tr>
<td>A4</td>
<td>SA2</td>
<td>5157.411</td>
<td>7321.332</td>
<td>450.000</td>
<td>900.000</td>
</tr>
</tbody>
</table>

NOTE:
1. ALL SETOUT POINTS QUOTED TO CENTRE OF PIT

Road Chainage Offset Example

<table>
<thead>
<tr>
<th>DRAINAGE LINE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIT LOCATION</td>
</tr>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>A/1</td>
</tr>
<tr>
<td>A/2</td>
</tr>
<tr>
<td>A/3</td>
</tr>
<tr>
<td>A/4</td>
</tr>
<tr>
<td>A/5</td>
</tr>
<tr>
<td>A/6</td>
</tr>
<tr>
<td>A/7</td>
</tr>
</tbody>
</table>

Notes
COURSE NOTES

STORMWATER DESIGN

The Set pit details must be run at least once to before printing the report. If the pits are moved or the
designed strings changed then this option must re rerun.

The easting northing data obtained for the road design string option is obtained by dropping the pit centre
perpendicular onto the selected road design string. This data is stored as pit attributes setout x and setout
y. It is calculated when the Set Pit Detail is selected in the Drainage Network editor.
12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES
STORMWATER DESIGN

12.0 Long Section Plotting

Detailed description of the 12d drainage long section plotting may be found in the 12d Reference manual. The long section plots are customised using the drainage plot parameter files (drainppf). Title blocks, user defined text may be added and then plotted directly or to various file formats (dwg, dgn etc.). From the main menu

Design=>Drainage-Sewer=>Plots=>Longsections

See Also

Set Pit Details to set road chainage and name data

To access the drainppf files supplied select the icon and then walk right on Lib to select this drainppf file. Select Read Enter a new name for this drawing and select Write. This will save the setting we are about to make should you want to replot this long section.

This section view determines the additional models (such as services) to show plot. These are referred to as corridor models. The vertical exaggeration is also obtained from this view.
COURSE NOTES

STORMWATER DESIGN

The **network model** field will be completed with the model of the string being profiled. If this is not your drainage network model then select it now.

When **Plotter Type** is set to model then **plot file stem** is the model name prefix for plots that will be created. The first sheet of plots will be in model **plot1**, the second in **plot2** etc.

The **plot height** determines how much room is left vertically for the actual plot. This specifies the total height of the plot. 12d then constructs the box area and arrow area on the bottom and then arrow area on the top. The amount left over is used for the long section itself.

To stop datum breaks from occurring increase this height, increase your plot scale or decrease your vertical exaggeration. If there is too much white space in the graph area then reduce this value.
The **Drainage plot**-title block-User title info allow you to enter the text for the title block. The list displayed is retrieve from the title file selected above. Enter the data for the plot and then select **Write** to save the changed to the local drainppf file you entered earlier.

Select **Plot** and the plots will be send to the plot file stem entered. These models may be added (one at a time) to a plan view to inspect them before plotting to paper or exporting to other drawing packages.
13.0 Working with Kerb/Lip Strings

The reference point for kerb inlet pits is usually on the kerb lip string or a fixed distance off the string. The rest of the strings only complicate the picture so we will take copies of the kerb strings to be placed in another model. Isolating the kerb strings into a separate model and joining them together is the recommended way to work with them. This may take a few minutes but sometimes you have even less time than that. So first lets look at how to pick kerb strings quickly.

13.1 Picking kerb strings - name snap

Strings generated by 12d have specific names attached to them. The lip string is often called “lok”. Therefore, if we could restrict our string selection to those strings named “lok” it would make placing the pits very efficient. We are going to do this with the Name snap.

There are 3 types off snap tool bars available. Standard, vertical and horizontal. To obtain the standard snaps toolbar select, Utilities=>Snaps=>Snaps and the following snap toolbar will appear.

Select Name and the following panel will appear.

![Snap Name panel](image)

Enter lok and select Set. Now only strings with this name will be selected.

Leave the panel up to remind your erase the lok entry and select Set again so that you will once again be able to pick any string.

When creating a junction pit you will have to snap to a drainage line that is not named lok. Therefore, if you have 2 Snap Name panel open, a second one that is blank, you can turn the name snap on and off quickly.
13.1.1 Placing a pit at a Specific Control String Chainage

When appending or moving drainage pits, the following steps will place the pit at a specific chainage along the control string.

1. **RB** and then select **Snaps cogo=>Create=>Perpend** from the menu. Messages indicating what to be done next are given in the bottom left corner of the 12d window.

 Short Cut: Just before selecting the string **RB** then select **Find by name** from the menu. This will display the **Snap Name** panel.

2. **LB** select but **do not** accept the road centre line (control string).

3. To place the pit across from chainage 2100 Type ch2100 then press enter.
4. **MB** accept the inserted point. This identifies the point on the control string. Next

5. **LB** select the lip line then **MB** accept. The construction point will be displayed on the lip line

6. **MB** accept the construction point to place the pit.

13.1.2 Placing a pit at a Specific Distance/Offset along the kerb string

When appending drainage pits, the following steps will place the pit at a specified distance along a string and if desired an offset.
12d Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN

1. RB and then select Snaps Cad=>Points=>Locate Offset from the menu. Messages indicating what to be done next are given in the bottom left corner of the 12d window.

2. When you select the string to measure the distance along, do not click but rather drag in the direction you want to offset. Next MB accept

3. LB select then MB accept the control point to measure the distance from. (If this point is not on the string selected in step 2 the point will be dropped perpendicularly onto that string).

4. Type the distance along the string then press Enter (a negative value would go in the opposite direction to the drag in step 2).

5. Type the offset distance from the string then press Enter (positive is defined using a right hand rule method from the direction in step 2).

6. MB accept the construction point to place the pit.

13.2 Locating Crests and Sag Points

This step will place tick marks at the crest and sag points of your kerb strings. It is an optional step but it will help ensure that a drainage inlet is always placed at SAG inlet locations.

If your road designer has given you kerb inverts strings split into numerous sections, use the “head to tail” feature described in section 4.2 above before using this section. The crests and sag locations along the design string can be identified using the selection

 Strings =>Label => Chainages
To get a clear picture of what the kerbs look like in profile lets create a section view and profile the kerb string.

Enter the view for the road strings.
Select **crests/sags** from drop down list.

Enter a model to contain the text labels. A ,1 after the model name, requests that the model be added to view 1. This saves you adding the model to the view later to see the labels.

Select icon to define the text style.

Select the **Marks** property sheet

Type the same model name as above for the tick marks.

LB to select **ticks centred** from the drop down list.

5m white marks stand out well on the screen.

Select **Label** to create the labels.

Select **Finish** to remove the panel.
COURSE NOTES

STORMWATER DESIGN

To obtain more working area, hide the Output Window (Window=>Output window).

From the main menu select,

View=>New=>Section View

Now Select Profile on the section view tool bar and then pick the kerb string in the plan view. Your screen should now look like the following.

Place your pointer in the section view and notice how the cross in the plan view indicates your position in plan.
14.0 Training Check List

Network plan
- convert from strings
- insert, append, delete and move pits

Network Vertical
- Set Pit Details and Regrade pipes
- Pipe alignment modes

Set Pit Names

Catchments
- draw, label, link and check
- tc strings

Hydrology
- Area, Tc, C values with defaults

Hydraulics
- setout to grate
- method (pipe full or HGL)
- available pipe sizes and box culverts

Services
- over and under drainage pipes

Road strings
- rotate symbols
- x,y and/or z for setout
- road grade and crossfall for inlet capacity
- road chainage from centre line

12d design engine
understanding the reports

Setout pit schedules
- easting, northing and road centre line

Drawings
Long Section plotting
Plan drawings

Kerb Strings
- select by name
- crests and sags