

Civil and Surveying Software

Course Notes

CIVIL AND SURVEYING SOFTWARE

THE 12d PERSPECTIVE

STORMWATER DESIGN

12d Solutions Pty Limited

12d Solutions Pty Limited ACN 101 351 991 Phone: +61 (2) 9970 7117 Fax: +61 (2) 9970 7118Email training@12d.com

12d Stormwater Design Course Notes

These course notes assume that the trainee has the basic 12d Model skills usually obtained from the "**12d Model Training Manual**"

These notes are intended to cover basic Stormwater Design. For more information regarding training courses contact 12d Solutions Training Manager.

These notes were prepared by Robert Graham

Revised February 2006

Copyright © 12d Solutions Pty Limited 2006

These notes may be copied and distributed freely.

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in these notes and the program 12d Model is correct, however, no warranty is expressed or implied by 12d Solutions.

Copyright © 12d Solutions Pty Limited 2006

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

1.0	Stormwater Design - Introduction	5
2.0	Setup Files and Their Locations	6
3.0	Survey data and design surfaces (TINs)	7
3.1	Importing the Raw Survey Data	
3.2	Creating the existing Ground Surface	
3.3	Inquiring about Heights on the Surface	
3.4	Viewing the Surface Tin in a 3d Perspective	
3.5	Reducing the number of points for the 12d Practice Version	
3.6	Importing the Road Design Data and Creating the Design TIN	
3.7	Nulling the long Triangles	
3.8	Creating a Super Tin from the Survey and Design Data.	
3.9	Changing the Colour of a Tin	
4.0	Drainage Layout	16
4.1	Setting Drainage Defaults	17
4.1.1	Tin Default	17
4.1.2	Manhole Defaults	18
4.1.3	Pipe Defaults	19
4.2	String Colour and manhole Label Text Size/location (string defaults)	19
4.3	Create the drainage strings from the dwg strings	21
4.4	Drawing the Drainage Network in 12d	22
4.5	Manhole Setout Point, setout strings and selecting the location for the manhole centre	22
4.6	Creating the Drainage Strings in 12d	24
4.7	Exact Methods for Placing Manholes	
4.8	Junction manholes on Trunk Drainage Lines	
4.9	Flow in the Wrong Direction	28
4.10	Drainage Section Views and Plots in the Wrong Direction	29
4.11	Moving, Adding and Deleting Manholes	29
5.0	Drainage Network Editor	
5.1	Setting manholes names (and pipes)	
5.1.1	Displaying View Text	
5.2	Labelling the Manholes and Pipes	
5.2.1	Turn off View Text Manhole Labels	
5.2.2	Moving Text	
5.3	Catchment Areas	
5.4	Network Editor - Global, Default Settings and Explicit Settings	
5.5	Drainage Templates	
5.6	Network Editor - Hydrology	
5.6.1	Catchment Areas	
5.6.2	Coefficients of Runoff	
5.6.3	Percent Impervious	
5.6.4	Times of Concentration	47
5.7	Tc Path Strings	48
5.7.1	Catchment slope (equal area)	
5.8	Network Editor - Hydraulics	
5.8.1	Setout to Grate Offset	
5.8.2	Pit Losses Ku, and Direct Flow	51
5.8.3	Pipe Friction Method	51
5.8.4	Pipe Friction Values and Freeboard Limit	52

5.8.5	Outlet and Tailwater Conditions	53
5.9	Pipe Design Parameters - Sizes, Invert alignment, Min Cover, Max Height	54
5.9.1	Invert Alignment Modes	54
5.9.2	Pipe sizes, Max pipe height and Multiple Pipes and Box Culverts	55
5.9.3	Pipe Size Design	55
5.10	Road Design File for Pit Setout - x,y, level, road chainage and setout offset	56
5.11	Calculate Bypass flow routes	59
6.0	Service and Utility Clashes	60
7.0	Drainage Design in 12d Drainage Design	63
7.1	12d Rational Method Hydrology - Drainage Rainfall Editor	
7.1.1	IFD Tables	
7.1.2	Australian Rainfall and Runoff 1987 Method	64
7.1.3	Australian Rainfall and Runoff 1977 Method	65
7.2	Drainage Network Design	66
7.3	The Run Button and HGL data on the Section View	69
7.4	Importing Text into a 12d model	69
7.4.1	Design Results	71
/	5	
8.0	-	
	Drainage Data Input and Output to Spreadsheets	73
8.0	Drainage Data Input and Output to Spreadsheets	73 73
8.0 8.1	Drainage Data Input and Output to Spreadsheets	73 7374
8.0 8.1 8.2	Drainage Data Input and Output to Spreadsheets	73 73 74 75
8.0 8.1 8.2 8.2.1	Drainage Data Input and Output to Spreadsheets 12d to spreadsheet transfers Spreadsheet to 12d transfers Updating an Existing Model	73 73 74 75 76
8.0 8.1 8.2 8.2.1 8.2.2	Drainage Data Input and Output to Spreadsheets	73 73 74 75 76 77
8.0 8.1 8.2 8.2.1 8.2.2 8.3	Drainage Data Input and Output to Spreadsheets	73 73 74 75 76 77 79
8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4	Drainage Data Input and Output to Spreadsheets	73 74 75 76 76 77 79 80
8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4 9.0	Drainage Data Input and Output to Spreadsheets	73 74 75 76 76 77 79 80 81
 8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4 9.0 10.0 	Drainage Data Input and Output to Spreadsheets	73 74 75 76 77 79 80 81 84
 8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4 9.0 10.0 11.0 	Drainage Data Input and Output to Spreadsheets	73 74 75 76 76 77 79 80 81 84 88
 8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4 9.0 10.0 11.0 12.0 	Drainage Data Input and Output to Spreadsheets	73 74 75 76 77 79 80 81 84 88 88
 8.0 8.1 8.2 8.2.1 8.2.2 8.3 8.4 9.0 10.0 11.0 12.0 12.1 	Drainage Data Input and Output to Spreadsheets	73 74 75 76 77 79 80 81 84 88 88 88 88 88

COURSE NOTES STORMWATER DESIGN

1.0 Stormwater Design - Introduction

The 12d drainage module contains functions to perform the following steps in the drainage design and documentation process:

- s set drainage defaults and layout a drainage network,
- s use the powerful 12d drainage network editor to avoid service clashes, grade pipes, align obverts, minimise depth and many other design tools,
- s automatically assign names to the pit/pipes in the network,
- s designate catchment areas and produce catchment plans,
- s transfer data to and from electronic spreadsheets to enable the user to easily review the data and add user defined data to the 12d pipe network. This data may include such data as pipe bedding types and trench width,
- s create pit layout schedules to export to spreadsheets or word processors for final formatting.
- s produce long section drainage profiles including HGL data, flows, invert levels, service crossings
- s create plan drawings with pipe sizes, flows, manhole symbols, linestyles for pipe sizes, design parameters for manhole and pipes and user defined data
- s locate pits/manholes at exact chainage and offset locations

This user manual will lead the user through the steps itemised above.

In addition to this manual there is the *Advanced Stormwater Design* training manual which includes the following topics.

- s drainage trench excavation volume calculations
- s pipe and manhole quantity calculation
- s customising the drainage.4d file
- s design or evaluate the drainage system using 12d Drainage or create input files for the XP SWMM/RAT2000, Micro drainage, Drains and PCdrain drainage design packages,
- s read the output from the drainage design packages (automatic if using 12d Drainage), update the drainage network and store the hydraulic data, such as hgl (hydraulic grade line) levels, peak pipe flows and pipe capacities,
- s pit inlet capacity calculations and over land flow
- s flooded width analysis
- s surcharge volumes at SAG pits
- s and detailed drainage plan labelling

The terms pit, catch basin and manhole are used interchangeably throughout this document. The type, dimensions and inlet capacities of the structures are set in the drainage.4d file.

COURSE NOTES STORMWATER DESIGN

2.0 Setup Files and Their Locations

The drainage module consists of the optional 12d Drainage engine, utilities, startup configuration files for RAT2000, XP SWMM and the 12d drainage configuration file (drainage.4d). Demonstration versions of Drains, RAT2000 and PCdrain have been included on the CD along with a copy of the ILSAX hydrology package. Manuals for the ILSAX program may be obtained from the Civil Engineering Department at the University of Technology Sydney.

All setup files have been configured for the training version. However, when you start working on real projects you may want customise the drainage module. **More - Customising the drainage module**

The **drainage.4d** file contains pipe types (RCP, Class 2 etc.) and example pit inlet capacity tables for RTA (NSW Road and Traffic Authority) standard pits. Detailed pit type descriptions and internal pit dimensions can be included in this file to be inserted into your pit schedules. For PCdrain users there is a routine to read your gully pit file and include these pit types in 12d **More**.

REVIEW THIS DATA CAREFULLY! The **drainage.4d** file may be customised for any additional inlet capacity data you may have.

To edit the **drainage.4d** file, from the main menu select

Design->Drainage-Sewer->More->Edit drainage.4d

Select the **Find** button to search the 12d path for the current **drainage.4d** file. Select the **More info** button and then **Edit** to edit the file.

You must restart 12d for these changes to become active. Select Project->Restart!

COURSE NOTES STORMWATER DESIGN

3.0 Survey data and design surfaces (TINs)

We will begin a 12d project from scratch by first creating the project and then reading in the survey design data. The design can then be triangulated so that we have a final surface profile to design the drainage for.

Start up the 12d model by selecting the courses icon from your desktop.

The project selection panel will appear. The bottom corner of the panel is shown below Note: If you are using the practice version the folder will be:

C:\12d Model v7.00 Practise\courses\7.00

<u>.</u>			▶
Folder Project		C:\12djobs	<u> </u>
Project			
Proceed	Cancel	Help	
		/	

LB select the icon and the following panel will appear.

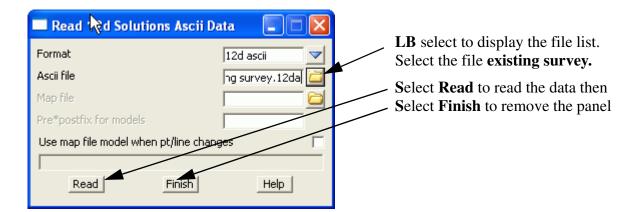
COURSE NOTES STORMWATER DESIGN

Select Folder		? ×
Look jn: 🔀) 7.00 🔽 🖨 🛍 🖬 🕇	
District Distribution Distribut		
Folder:	C:\12djobs\Courses\7.00\ Open	
Files of type:	Show Folders Only Cancel	

12d works with a folder **NOT** a single file. Therefore, to open the folder we are going to work in, double click the **Drainage** folder and then select **Open**.

T			
Folder		C:\12djobs\Courses\7.00\Drainage	
Project			+
Folder <c:\12djobs\courses\7.00\drainage> exists</c:\12djobs\courses\7.00\drainage>			
Proceed	Cancel	Help	
			11.

In the **Project** field type the name for your new project an then select **Proceed.** 12d will create a sub folder with this name. All of the 12d files that you should not touch will be created in this sub folder. Please stay out of the sub folder. All files created for the user will be kept in the folder that you opened (i.e. c:\12jobs\Courses\7.00\Drainage).


3.1 Importing the Raw Survey Data

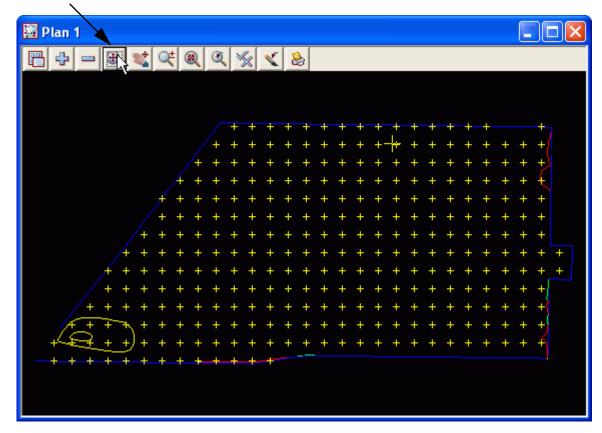
You have created a new project into which we will import the survey data. From the main menu select.

File I/O => Data input => 12da/4da data

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

To add all of the data to the view select **Menu** icon in the **plan view title area** and then from the drop down menu select


Models=> Add all models or select this "+" icon and select existing survey data.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Next select Fit on the plan view title area. You should see the following data.

The view will contain survey data.

3.2 Creating the existing Ground Surface

From the main menu select

Tins=>Create=> Triangulate data

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

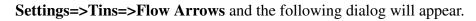
Triangulate a Data Source Data to triangulate View View New tin name rin colour green Tin style 1 Model for tin Preserve strings	 Select the View button LB select then LB the view to be triangulated. Type a new tin name, not the model for the tin. Remember a tin is like a string and it must reside in a model. Press enter and the Model for tin field will be filled in for you. Select if creating a tin with contour data.
Weed tin 🔲 🔫 Tiangle data 🔲	angle thereby preserving the levels along the string
Data polygon	all duplicate points are removed from the tin database
Null polygon	The cell method is a good enhancement for data that is
View <1> exists	in a grid type pattern but it is not required.
zmin -6.050 zmax 41.694	Select Triangulate to create the tin.
Triangulate Finish Help	Select Finish to remove the panel from the screen.

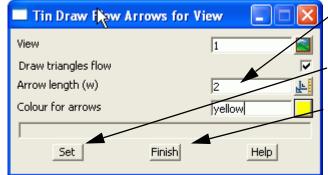
Now we are ready to look at the existing surface tin. Place you pointer over the "+" sign on the **plan** view title area and press the t key. All of the models beginning with lower case t will appear. **Double click** on **tin existing survey** to add it to the view.

The tin will be shown with the tin edges turned on. This is the default when you have all tin display modes turned off. Let us now turn on the fast contours and the fast flow arrows. Select **Toggle** on the **plan view title area** and then **LB** on **Tin contours**. The contours will be shown on the view. LB **Toggle** on the **plan view title area** and then LB on **Tin flow.** Now the flow arrows will be shown on the view.

📴 Plan 1				
E - E V	2	*	K	2

To change the contour intervals and the contour colours select the **Menu** button on the **plan view title area** and then select.


Settings=>Tins=>Contours and the following dialog will appear.


Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Tin D w Contours for	View 🔳 🗖 🔀	
View	1	Turns the contours on or off
Draw triangles contours		Minor contour interval.
Cont inc	1	-Value for first bold contour (usually 0)
Cont ref	0	Minor contour colour.
Cont colour	red	Major interval.
Bold inc	5 🗕 🛃	, , , , , , , , , , , , , , , , , , ,
Bold colour	green	- Major contour colour.
		LB to observe the new settings on the view.
Set Finish	Help	If you like the settings LB on finish to remove the select.

To change the length and the colour of the flow arrows select the **Menu** button on the **plan view title area** and then select.

A length of about 2 units looks very small now but it is good when you are zooming into the actual catchments.

LB to observe the new settings on the view.

When you like the settings **LB** on **Finish** to remove the panel.

3.3 Inquiring about Heights on the Surface

The elevation anywhere on the tin can be obtained by simply moving the pointer over the desired spot. To obtain the tin elevations select,

Tins=>Inquire=>Height

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

📲 Tin Hei	ght Inquire	_ 🗆 ×
Tin	existing su	rvey 💋
z=30.208 x	=5369.453 y=7	307.339
Finis	h	Help

You will see that data in the panel change as you move the pointer around the screen,

3.4 Viewing the Surface Tin in a 3d Perspective

To create a 3d perspective view select

View=>New=>Perspective and a persective view will appear.

Add the model **tin existing surface** to the view and then **toggle** the **shading** on. You may also want to **toggle** the **contours** on as well.

Now remove the tin from the view as it is not needed for the next steps (Hint: use the "-" button).

3.5 Reducing the number of points for the 12d Practice Version

We can delete the survey data to save space for those using the practice version of 12d. If you have a full version of 12d this is not required. From the main menu select.

Models=>Delete=>Delete a Model and the following dialog will appear.

LB then select the model existing survey data and then LB to delete the model and then Select yes to confirm the deletion.

3.6 Importing the Road Design Data and Creating the Design TIN Repeat the process of importing the 12da data.

File I/O => Data input => 12d ascii

(file is road design.12da).

Remove all of the models from the view and then add the road design models onto the view.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Road Centrelines Road Strings Road sections

Now create a new tin called design using the TINS->Create->Triangulate data option.

3.7 Nulling the long Triangles

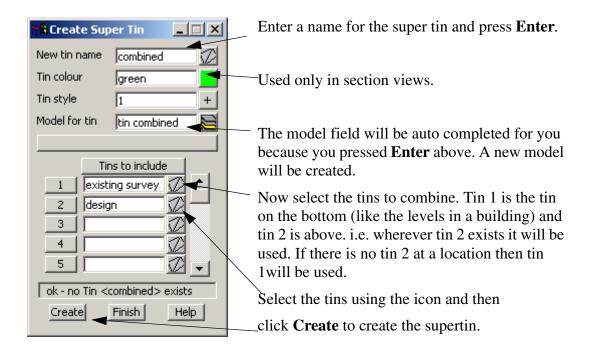
Add the tin that you just created onto the view. Toggle the **tin contours** off and the **tin flow** off. Now toggle the **tin edges** on. Notice the long triangles around the edge of the design.

To remove the long triangles select

Tins->Null->by angle/length

🕎 Plan 1					<u>_ </u>
	@ ⊕ ₱ ₽ ₽	<u>×</u> 🖉 😂			
	Null Triangles by A	ngle and Length			
	Tin to null	design			
	Angle	5°		D K D K D K	
	Length	100	+	2 M	
	Combined				
	Combined angle	60°	$ \Delta $		
	Combined length	20	+		
	Tin <design> exists</design>				
	Null	<u>Finish</u>			

Select the design tin and then select **Null.** Using the default values removes most of the long triangles. Note that this option removes triangles from the outside inwards and it stops whenever it reaches a breakline.


Now reduce the **Length** value to 1 and then select **Null** again. Any exterior triangles with a length greater than 1 have now been removed!

COURSE NOTES STORMWATER DESIGN

3.8 Creating a Super Tin from the Survey and Design Data.

To create a tin that is the combination of the survey data and the design data you will need to create a super tin. From the main menu

Tins=>Create=>supertin

3.9 Changing the Colour of a Tin

👷 Tin Colour 💦 💶 💌				
Tin	design 💋			
Colour	grey			
Tin <design> exists</design>				
Colou	r Finish Help			

To change the colour of the design tin use

Tins->Colour->Colour of tin

Select the design tin and choose a new colour and then select **Colour** to change the tin colour (you may have to do a **Menu-**>**redraw** on the view to see the new colour).

COURSE NOTES STORMWATER DESIGN

4.0 Drainage Layout

Where a drainage designer chooses to start their design is a depends a great deal on the project and the designer. Identifying overland flow routes is essential because it is on these routes that the manholes are to be placed. Inlet manholes are then placed at critical locations (sag points, upstream of pedestrian crossings etc.). and then the spacing of additional manholes is determined by the size of the catchments. Finally, the pipe drainage system can be created linking the drainage manholes.

However, during training, most users want to get straight to the manhole and pipes. Therefore, lets import a pipe layout that was drawn in AutoCAD along with the overland flow routes and catchment areas (These could have been created in 12d as well). When these were drawn the following rules were followed.

1.polylines were used

2.lines drawn from upstream to downstream (direction of flow)

3.a vertex was placed at every manhole location

From the main menu select

File IO->Data Input=>DWG/DXF.

🗖 Read DWG/DXF Data 🛛 🔲 🔀				
Format	dwg 🔺 🔻			
File	inage data.dwg 🔁			
Map file				
Pre*postfix for mode	dwg			
Target layer				
Null level value	-999			
Default lineweight	0.25			
Spline approximation	12			
Blocks	to symbols 🛛 🔽			
Images	to plan images 🛛 🔽			
Only create visible symbo	ols 🔽			
Translate 3DFaces to Fac	Z			
Use 12d Acad colour num				
Create 2d/3d polys from	ctrl points 🔽			
Head to tail points/lines				
Only load visible layers				
Load paper space				
Read Finish Help				

Verify setting as dwg

Select the dwg file (drainage data.dwg)

Entering a prefix for the models will help organise the layers that will be read from AutoCAD. Every layer goes into a separate model in 12d. If you specify a prefix then all of the layer names will be prefixed with this text. The prefix used is dwg<space>.

The rest of the data can remain as the default value. Refer to the **Help** button if more detail is desired.

Select **Read** to import the data. **The data will not immediately appear on the plan view**. The new models have to be added to the view using the "+" on the view tool bar. Every time you press the **Read** button the data will be imported again and you will get duplicate, triplicate...etc data.

All of the models imported will begin with dwg.

COURSE NOTES STORMWATER DESIGN

The models that have been created are,

dwg d catchments dwg d overland flow dwg drainage network

Remove all of the models from the view and add the model **dwg drainage network**. This is a 2d drainage layout that we will use to locate the manholes in our drainage design.

4.1 Setting Drainage Defaults

The defaults for the drainage network are accessed through three panels; pipe defaults, manhole defaults and Tin defaults. They may be accessed through the menu system as

Design =>Drainage-Sewer =>Defaults

Warning! You **must** click the **Set** button to set the default values. **Finish** alone will **not** set the defaults. If you plan to export to other drainage software packages you will have additional defaults to set before you export. See **Drainage Import/Export**.

4.1.1 Tin Default

🏙 Drainage Tin Defaults 💦 📃 🖂 🗙				
Tin (fs)	combined desigr 💋			
Set	Finish	Help		

The default TIN is used to set the initial setout level of the manhole and the pipe invert levels. Super tins may be used if you want to place manholes on both the existing and the design ground surface (see Creating Super tins). Select the icon to choose from a list of existing TINS. Note that the panel will list the tins not the models that contain the tin. Remember a tin is like a string. It has a name and is stored in a model.

Warnings about using tins. If you place a manhole outside the tin boundary:

- s then no elevation will be set for the top of manhole, (it can be set later manually or by linking it to a design string).
- ^s Pipe invert levels cannot be set using the default cover. Pipe invert levels must be set manually as 12d cannot automatically determine cover levels without a TIN.
- s Finally, if your drainage design package accepts surface levels along the string, then an error message will be displayed at export time. The message will say that the surface level string is shorter than the pipe length.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

4.1.2 Manhole Defaults

🗖 Drainage Manhole Defaults 💦 💶 🗙						
Diameter	1.1	+				
Drop	0.02	+				
Name						
Туре	SA2	•				
Set	Finish	Help				

The manhole diameter is specified in metres/feet **not** mm/inches. Although most stormwater manholes are rectangular, 12d uses circular manholes to eliminate problems showing the alignment of the manhole. If the actual dimensions and orientation of the manhole need to be drawn on the final construction drawings, a symbol may be used in the drainage plot annotations.

The actual internal manhole dimensions and a detailed manhole description can be added to your **drainage.4d** file so that they can be added to your manhole schedules.

The **Diameter** is used:

- 1. for visual service clash identification is long section drawings,
- 2. to clip the pipe lines drawn in the plan annotations,
- 3. maximum distance the bypass flow strings can be drawn from an inlet.

The **drop** will be used to set the invert level of the outlet pipe relative to the invert level of the inlet pipe. The drop should always be entered as a positive value. The **network editor** has many more options for aligning the pipe inverts at the manholes.

Generally, do not use a default name. Leave all of the manholes unnamed and then use the **Set Pit Names** function on the drainage network editor.

The manhole **type** is selected from a list by selecting the icon beside the **Type**. This list is obtained from the **drainage.4d** file. This manhole type will be used by ILSAX, PCdrain and RAT-HGL, RAT2000 and XP SWMM to identify the inlet capacity of the manholes. This value is not exported to the Drains program but it will be imported after a Drains design run. See **Drainage Import/Export**. It is best to set this to the most common manhole type and then change the few that are different later in the **network editor**.

You **must** click the Set button to set the default values. Finish alone will **not** set the defaults.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

4.1.3 Pipe Defaults

🏙 Drainage Pipe Defaults 💦 📃 🖂				
0.15	+			
100	+			
1.1	+			
PVC	_			
Finish	Heig			
	0.15 100 1.1 FVC			

The pipe **diameter** is set in metres or feet <u>**not**</u> mm or inches. Set this to a minimum pipe diameter for your project and then your drainage design package can increase them if required. To model an existing system enter the most common pipe size and then alter as required in the **network editor**.

Allowing for Pipe Thickness

When 12d set the pipe inverts it checks the **minimum cover** from the obvert of the pipe to the finished ground surface at both manholes. If the grade of the pipe is less than the **minimum** grade, the grade of the pipe is increased. Finally, 12d checks if there is anywhere along the pipe length that has less than the **minimum cover**. If there is such a low point in the design surface, the pipe is shifted vertically downwards to achieve the cover required. 12 defines cover as

Cover = surface level - diameter - invert

Therefore, an allowance for pipe thickness may be added to the minimum cover.

When using the network editors to change the pipe diameters the invert levels will remain fixed and the obverts will change. The inverts may be reset using **Regrade Network** on the **network editor**.

Select the drop down icon beside the **Type** field to select from a list of pipe **types**. These pipe types will be sent to your drainage design package so make sure you use the same names in 12d as you plan on using in the design package. The list of available pipe types is set in the **drainage.4d** file.

You must click the Set button to set the default values. Finish alone will not set the defaults.

4.2 String Colour and manhole Label Text Size/location (string defaults)

12d can automatically label the manholes at a fixed offset from the manhole using **view text** OR you can use the network editor **Set Catchments** to create text labels that can be moved/rotated etc.

For view text, the default line colour and text size are set by selecting **Utilities =>Defaults.** The following panel will appear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

📑 Defaults		
Trash Settings Default Settings	Name Settings System Settings	LB to set the colour of the drainage string and manhole labels.
Colour	magenta 📃	
Point colour	yellow 📃	
Tin colour	green	
Contour colour	cyan 📃	
Contour bold colour	red 📕	The default size of the text is set in the Text height (pixels) field. A text size of 6 to 8 pixels is generally
I/O null height	-999 +	adequate. Your choice will depend on your screen res-
Text height (pixels)	6 +	olution and the age of your eyes.
Chord/Arc tolerance	0.1 +	
Culling		
Culling size (pix)	4 +	
Corner angle	0°	
Weed tolerance	0 +	Select Set
Section view exagg	10 +	Select Write
Perspective view exagg	1 +	the following panel will appear.
Cut volume sign	negative	
Load Set Wri	te Finish (Hélp)	

Selecting **Current folder** will save ALL these defaults for projects in this working folder only. The defaults set in the **user** or **setups** directories will not be used if you select this option.

Selecting User folder will save your defaults so that all other 12d projects will use this defaults. This is the most common option (unless your network administrator has not given you write access to this area (check **Properties**).

Select Write then Finish

Write Setup File "defaults.4d"			
© Found folder C:\Program Files\12d\12dmodel\7.00\user\defaults,4d			
C:\12djobs\Courses\7.00\Drainage			
© User folder C:\Program Files\12d\12dmodel\7.00\user			
C Other folder Folder C:\12djobs\Courses\7.00\Draina			
Write Properties Finish Help			

COURSE NOTES STORMWATER DESIGN

4.3 Create the drainage strings from the dwg strings

12d will convert the import strings into 12d drainage strings. The default pipe, manhole and tin data will be used to set the levels for the network

From the menu select

Design->Drainage-Sewer->Create drainage from strings

The following panel will appear.

Convert to Drainage	Strings
Source strings to convert Model select Model	Model
Drainage model	drainage netwoi 🗮
Finished surface tin	combined 💋
Outfall manhole number	1 +
Process	Finish

The fields and buttons used in this panel have the following functions:

Field Description	Туре	Defaults	Pop-Up
Data source	choice box	model	view,model,string
data source for strings to	be converted		
Select		input box	
Model containing strings	to be converted		
Drainage model	model box		
The new drainage strings	will be added to th	is model. If it does	not exist it will be created.
Finished surface tin	tin box		
This tin should be the san	ie as your tin defau	lt for the drainage	strings.
Outfall manhole number	real input box		
The network will be numb will be assigned this man	-		oost upstream manhole of the outlet line an be changed if desired.
Process		button	

Coverts the strings to the drainage strings.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Finish

button

Removes the panel from the screen.

Important notes:

The imported strings must be drawn in the direction the water flows.

Manholes are created at all vertices on the strings.

Trunk lines must have a vertex where the branch lines join.

Integer string names can be used to control the order in when the drainage lines are numbered. These names will be transferred to the 12d drainage strings. **Naming the strings is highly encouraged.**

The drainage lines must have string names to use the Set Pit Names feature on the network editor.

Manholes can always be renamed in 12d after the import is complete.

4.4 Drawing the Drainage Network in 12d

The following method of drawing the drainage pipe systems has proved very efficient in the past. However, many people will have their own, "tricks of the trade". Therefore, the rational behind the following procedure will be important for the user to understand when they want to try out their own procedures.

Key Points

- 1. Draw the pipes where they actually are! Do not place the manhole centres at the setout point and have the pipes in the wrong location (pipe cover will be affected). Use setout strings for setout points!
- 2. Draw all drainage lines in the same direction. Either all uphill to downhill (flow in the direction of increasing/ascending chainage) or downhill to uphill (flow in the direction of decreasing/descending chainage). You choose but they all must be the same.

If you choose **descending chainage** then you must select Pipe=>Default Grading then Grade to have the grading applied to the drainage string.

The 12d drainage network editor and the drainage design software packages have sophisticated algorithms to set pipe inverts as well. Consider this grading a preliminary estimate.

3. If you create the trunk lines before the branch lines, you will have to select the **Regrade Network** later to adjust the trunk line levels.

4.5 Manhole Setout Point, setout strings and selecting the location for the manhole centre

The centre of the manhole (x,y and z) need not be the **manhole setout point** used in the setout tables. The setout location can also be set independently of the level. It is recommended that you place the manhole so that the pipes are shown in the desired location and then use the desired option for setout. With the pipe in their proper location the pie cover and service clashes will be calculated correctly. The default settings for the manhole setout location are found on the **network editor-defaults-pits-setout** data.

COURSE NOTES STORMWATER DESIGN

Key Points in Using Setout Strings

- 1. Enter the road models and the strings names (identifies) via the **Network Editor, Global-Util**ity Models tab, Road design file.
- 2. Specify that these strings are to be used. Select **Setout string** for the XY or Z setout modes on the **Defaults->Pits setout** area or **Pits->Setout** tab.
- 3. Select the **Set Pit Details** button.

X,Y Option 1 Manhole Centre

The x,y location will be the centre of the manhole.

X,Y Option 2 Road Centre Line

The road chainage and offset are measured perpendicular to the road centre line out to the manhole centre or setout point.

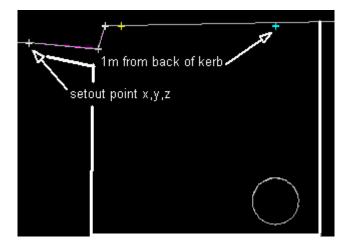
Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

X,Y Option 3 Setout string

The manhole centre is dropped perpendicular onto the set out string to obtain the x and y.

Z Option 1 FS tin


The manhole setout level is obtained from the finished surface tin at the manhole centre.

Z Option 2Setout String

The manhole centre is dropped perpendicular onto the setout string and the level is obtained from the elevation on the string.

Example

In the diagram below the setout point is lip of kerb. The setout x,y location level z will be obtained from the setout string and the pipe will be shown at its proper position.

4.6 Creating the Drainage Strings in 12d

Drainage strings can also be created in 12d. A drainage string is created by selecting

Design =>Drainage-Sewer =>Create

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

🎇 Create Drainage String 💦 📃 🔀				
Name	в +			
Model	ainage network 🧮			
Colour	red			
Flow direction	ascending chain 💌			
Tin (fs)	combined 💋			
Tin (ns)	existing survey			
Many strings 🔽				
Model <drainage network=""> exists</drainage>				
Create Same as Finish Help				

TIP: If you have already created a drainage string, click the **Same as** button and select the drainage string to obtain the panel values from that string. After selecting the string, change the string **Name**.

Each drainage string in the model must have a unique **Name** if you plan on using the **Set Pit Names** option after all of the strings have been drawn. The name of the string should be kept short, for example, as it will be used as the prefix or suffix for the manhole names. Examples of manhole naming schemes available for a string labelled, , are B1, B2, B3 ..., or 1B, 2B,3B... or 1/B,2/B, 3/B... etc.

Sequential numbering all of the manholes (1,2,3 etc.) is also an option. The manholes on the string named **1** will be labelled first and then **2** and so on. If you insert a new string with a name in the middle an existing series (i.e. add a new string 2 when strings 1,2 and 3 already exist) then name the new string 1.1 (for this example) and then use the **Strings=>User=>Set String Name by number** command.

Drainage String Create Panel

🏙 Create Drainage String 💦 📃 🔀				
Name	В +			
Model	ainage network 🧮			
Colour	red 📕			
Flow direction	ascending chain 💌			
Tin (fs)	combined 💋			
Tin (ns)	existing survey 💋			
Many strings 🔽				
Model <drainage network=""> exists</drainage>				
Create Same as	Finish Help			

For auto manhole naming, every drainage string must have a different **name**.

All drainage strings for the one outlet should be in the same **model.** Only drainage strings should be created in this model. If the model does not exist it will be created.

Colour will be the colour used in the drainage longsection drawings.

Flow direction should be ascending chainage if drawing uphill to downhill or descending chainage if drawing downsteam to upstream. All of the strings in the model can have their direction changed later using the Design=>Drainage-Sewer=>More=>Reverse all strings com-

Civil and Surveying Software

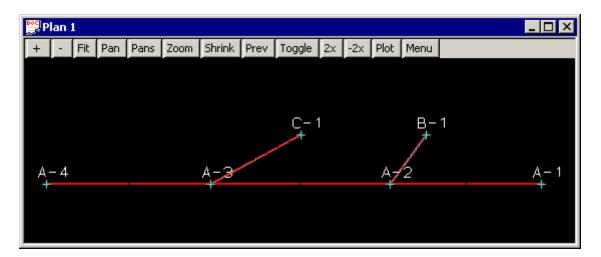
COURSE NOTES STORMWATER DESIGN

mand.To graphically check the flow direction of all strings see Flow in the Wrong Direction.

The **Tin** (**fs**) field will be completed for you with the default value you entered in **Design=>Drain-age-Sewer=>Defaults=>Tin**(**fs**). The finished surface levels on your long section plots will be obtained from this tin.

The **Tin** (**ns**) field is optional. By specifying a natural surface tin, natural surface levels can be shown on your drainage long section profiles.

Selecting Many strings will have the panel re-appear, ready to go again, after creating each string.


Click the **Create** button to begin creating the drainage string. The following panel will appear.

Drainage Edit			
Edits	•		
Manhole			
Pipe			
Controls			
Connections			
Utilities	•		
Z Float			
Info			
Undc / Redo			
Quit			
Finish			

To create your first manhole, select **Edits =>Append**. A + will appear with your pointer.

We are going to place our manholes on the vertices of the layout that we imported. **Toggle the vertices on** (just to help you see where the manholes are going to be placed), turn your **line snap** off and the **point snap** on.

The first line we will create is the branch line on the east (Line B) then the branch line to the west (Line C) and finally the trunk line running from east to west (Line A). The drawing below shows the manhole names. You will not see these as you draw the strings but we will create them later.

Click and accept the point labelled B-1 and then click and accept the point labelled A-2. Since this is the end of the branch line, select **Finish** from the **Drainage Edit** panel. If you have other edits to make to the string do not select **Finish** yet (i.e. set some specific invert levels) **RB** then select **Cancel** from the menu. This will leave the edit menu active for further changes.

The Create Drainage String panel will appear again for you to create additional drainage strings.

Create line C in a similar fashion. When this line is finished, start on line A but only place the first manhole, A-1. manhole A-2 is a junction manhole and requires some special attention.

COURSE NOTES STORMWATER DESIGN

4.7 Exact Methods for Placing Manholes

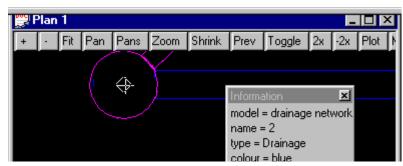
To place your manholes on a kerb line string, turn the **line snap on** and the **point snap off**. Keep the **height snap off**.

For locating manholes at specific x, y coordinates, simply start typing the x coordinate instead of clicking onto a location. An input panel will appear for you to enter the x and y coordinate separated by a space.

Enter X Y Z :	×
Enter X Y Z :	

To place the manholes at a specified distance from a point use the **RB** and select **SNAPS COGO=>Locate=>Offset**. Follow the prompts given in the message area (bottom left corner of the screen). You will need experience with the 12d "directional pick" to use this capability.

4.8 Junction manholes on Trunk Drainage Lines


Key Points

1. The branch line must **Point Snap** onto the centre of a manhole on the trunk line.

2. All strings must be in the same model.

Trunk drainage lines are created the same way as the branch lines except special care must be used when placing the junction manholes. When placing the junction manhole *on top of* the branch line turn the point snap on and the line snap off (the F3 and F4 keys are convenient for this). Zoom into the branch line junction manhole so that you can snap onto the centre of the manhole.

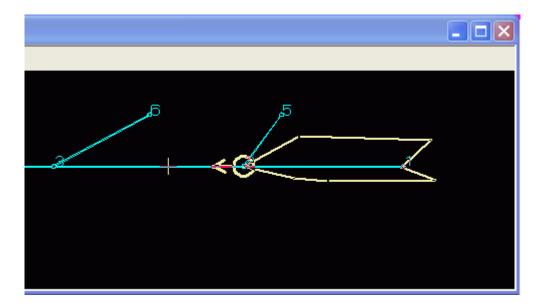
A manhole contains three points; one at each point where the pipes join (invert level points) and the one you want to snap onto at the centre of the manhole (setout level point). In the figure below, the blue line is being placed to join the magenta line. Note that the diamond indicates that there is a point snap and the information panel indicates that we are snapping to line 2. The information panel also indicates the snap was a point snap.

After snapping onto the branch line manhole click **Prev** on the **plan view title area** to return to the previous view and continue appending manholes.

You can tell that you have created a junction manhole correctly when you profile the trunk line

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN


and you can see the branch lines joining at the junction manhole. If the branch lines are not shown then one of three things have gone wrong.

- 1) centre of the manholes did not align, **Use Strings=>Points Edit=>Move** to move the branch string manhole
- 2) the "downstream end" of the branch line must be the junction manhole. With the direction of flow for the string set to "Ascending" the junction manhole must be at the high chainage end of the string. If the direction of flow for the string set to "Descending" the junction manhole must be at the low chainage end of the string. To check the flow direction see **Flow in the Wrong Direction.**
- 3) The branch string and the trunk string have not been created in the same drainage model. From the main menu select Strings->Inquire (F2) and select the strings to check their models. If this is the problem, use Strings=>Edit=>Change and specify the correct drainage model (enter the model BEFORE picking the string) or Strings=>Edit=>Duplicate to duplicate one of the strings into the correct model.

4.9 Flow in the Wrong Direction

The direction of flow is used by 12d to determine where the outlet is on the drainage line.

The direction of flow will be indicated with the arrow when using the **Drainage Network Editor** and you have selected an manhole (all but the outlet).

Also, the **Drainage=>Plot=>Plan annotation** option can be used to label the network with the direction of flow.

COURSE NOTES STORMWATER DESIGN

💻 Drainage Plan Plot I	PF Editor		Select the drainage
Plot parameter file	Plot parameter file	Read Write	model. Enter a model
. ⊕ · Drainage Plan Plot	– Load design details from Model	irains demo size 🐋	for the plan annotations.
	- Save plot annotations to Model	drainage annotz 🐋	Select Plot on the bottom of the panel and
	Clean plot model beforehand Set colours as string names	smart clean	then add the model to a new plan
	11		view.

If one of the arrows in the plan annotations is going in the wrong direction then the direction of flow flag must be changed. From the main menu select

Strings=>Properties=>String

and change the **Flow direction** to the other value (there are only 2 options). You may replot the annotations if you want to confirm the change.

4.10 Drainage Section Views and Plots in the Wrong Direction

If the section views and the profile plots are running downhill in the wrong direction, the **reverse** function may be used to change the direction.

To reverse only one string, from the main menu select

Strings =>Strings Edit =>Reverse

and pick the drainage strings to reverse. This will also change the drainage flow direction attribute from **ascending chainage** to **descending chainage**.

To reverse all of the strings in a model select the Strings Reverse option,

```
Design =>Drainage-Sewer =>More=>Reverse all strings
```

To confirm the direction of flow see Flow in the Wrong Direction

4.11 Moving, Adding and Deleting Manholes

The best way to edit the plan layout of the drainage is via the **Strings->Points Edit** commands.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Points Edit Append Between Delete Extend Extend Ht Height Insert Move Add 3pt curve Del 3pt curve Vertex User The Append, Between, Delete, Insert and

Move commands are the most common.

The **Move** command has an extra option for moving junction pits. Selecting **All points with the same coordinate** will move all points on the view that are at the same x,y coordinate. The point selected will move first and the others will follow **after** the new location has been accepted.

🔲 Move Po	oint (
All points wit	th same coo	ordinate 🕅
Move	Finish	Help

COURSE NOTES STORMWATER DESIGN

5.0 Drainage Network Editor

The drainage network editor is used to automatically or manually change the attributes of your drainage network. These abilities include:

General

- s Changing the vertical alignment of the network
- s Setting manhole names
- s Service Clash Checking

Hydrology

- s Catchment Areas
- s Checking the Automatic Catchment Linking
- s Global and Defaults Tab for C values and Tc calcs
- s **Drainage Templates**
- s Bypass flow routes

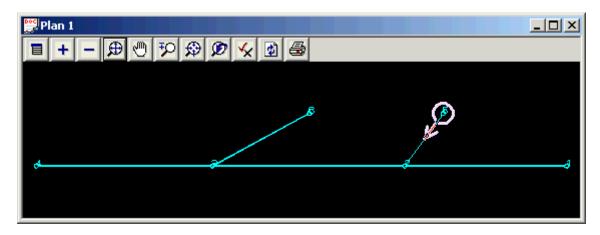
Hydraulics

s **Outlet and Tailwater Conditions**

The drainage network editor is accessed through the main menu by selecting

Design=>Drainage-Sewer=>Network Editor.

The bottom section of the network editor panel is shown below.


Model String	Pit		
Auto-apply 🔽	Auto-redraw 🔽		
Set Pit Names Set ⊆atchments Regrade Pipes Plot	Set Pit Details Import/Export Storm Analysis		
Pick Edit Apply <			

To begin select a 12d drainage manhole that is in your drainage model. In plan, you must pick ind accept the manhole and not the pipe! Pipes may be selected only in the section views.

The manhole that was selected is highlighted with a circle and an arrow shows the direction of flow (see image below).

Civil and Surveying Software

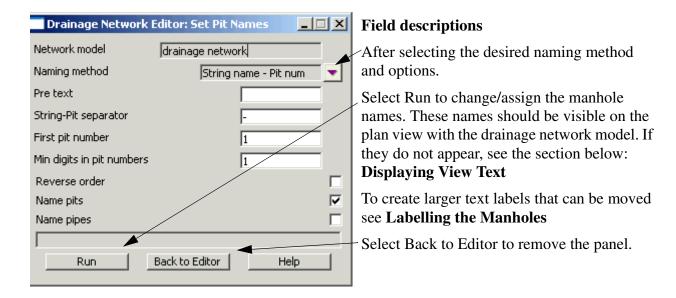
COURSE NOTES STORMWATER DESIGN

The option buttons on the drainage editor now become active.

5.1 Setting manholes names (and pipes)

If your network was created from 2d strings the manholes will be named incrementally using integer numbers. Use the drainage **network editor** to manually change explicit ones or quickly change all the names using a different naming method.

The manhole names are based on the string names so make sure the string names are set. To view string names on the plan view, go to the Plan View tool bar and select **Toggle=>Names**. If they do not appear see Displaying View Text.


Model drainage network String A Pit 2
Drainage model loaded
Auto-apply 🔽 Auto-redraw 🔽
Set Pit Names Set Catchments Set Pit Details
Regrade Pipes Plot Import/Export Storm Analysis
Pick Edit Apply ≤< ≥> Finish Help

The string names may be changed **String** field.

Select **Set Pit Names** and the following panel will appear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

5.1.1 Displaying View Text

After you have named the manholes in your network, the names should appear beside each manhole in the plan views. If they do not appear check the following.

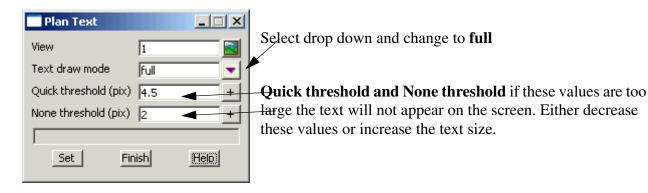
After you have named the pits in your network, the names should appear beside each pit in plan. You can change the text size for each string by selecting **Strings->Editor** and then pick-accept the drainage string. The text size is set from the selection **Utilities->Size**.

The offset from the pit is set by selecting **Strings->Properties->Strings**, picking the drainage string and setting the values for **Delta x**, and **Delta y**.

Note: Auto pit names are **NOT** shown in the section view.

Trouble shooting auto pit names not being displayed

Problem:	Plan text is toggled off
Solution:	select Toggle on the plan view title area


Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

	ek that the Text is toggles on. If it is on then walk right and ensure the is turned on or n/a for your drainage network.
Problem:	Small text is turned off
Solution:	select the Menu button on the plan view title area and select Settings

=>Text => Text

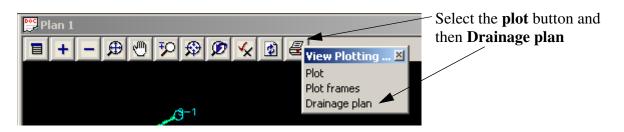
- if these values are too large the text will not appear on the screen. Either decrease these values or increase the text size.

Problem:

string text size is 0

Solution:

Each drainage line can have its own size of the text. To change it, select **Strings=>Editor** then pick-accept the drainage string. The text size is set from the selection **Utilities=>Size**. If this is set to zero the labels are not drawn.


5.2 Labelling the Manholes and Pipes

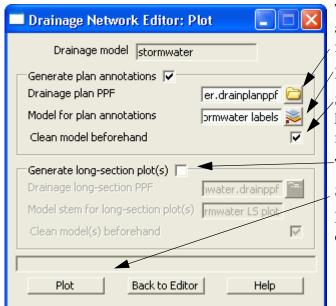
To label the manholes and the pipes use Drainage Plan Annotations. This may be accessed from one of three locations.

Location 1: From the plan toolbar

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Note (The following panel has been reduced in size).


Plot parameter file Read Write	Select your drainage model
Drainage Plan Plot Load design details from Model drainage networ Save plot annotations to Model drainage labels Clean plot model beforehand Set colours as string names	Enter a model name for the new labels Select Plot Now add the drainage labels model
Plot Find Finish Help	onto the plan view.

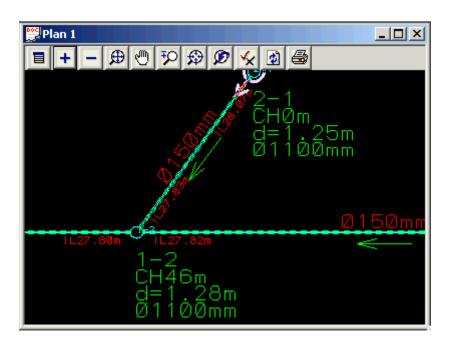
Location 2: The Plot Button on the Drainage Network Editor

The following panel will be displayed.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

This option can plot both the long section and plan at the same time. Select a ppf file from the library.

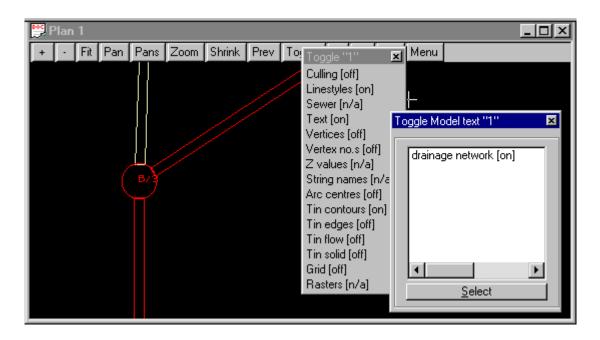

Enter a model for the plan annotations.

Select **Clean model beforehand** if you have not manually moved any of your manhole labels.

Turn off the long section plot for now.

Select Plot.

Now add the **Model for plan annotations** onto the plan view.

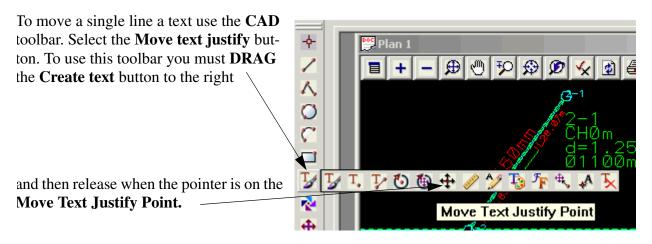


The text properties can all be customised using the plot parameter file but this will be discussed later in the plotting section. These labels are **not** automatically updated when you change the names or pipe diameters. You must rerun the labelling routine to update the labels.

5.2.1 Turn off View Text Manhole Labels

To turn off the automatic view text manhole labels for this view select Toggle=>Text and then walk right to select the drainage model. Do not click on **Text**, rather walk right. If you click **Text** you will toggle on/off all of your text on the view. Not just the drainage model.

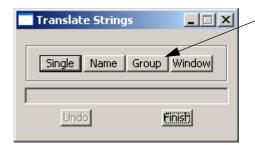
COURSE NOTES STORMWATER DESIGN



5.2.2 Moving Text

The labels created may be manually moved using the **CAD toolbar** but if the model is relabelled the text will return to its original location! Text moved via the **Drafting->Multi string translate** will remain in the moved position when **Smart Clean** is selected in the Plan Annotation panel.

Before selecting text turn on your teXt snap.



To move a pre-defined **Group** of text select

Drafting->Multi string translate

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Select **Group** and then pick and accept one of the text items in the group. Move it to its new location and accept.

Note: To move another group you must select the **Group** button again.

5.3 Catchment Areas

Key Points

- 1. Start near the manhole for auto linking.
- 2. Manual linking available via Network Editor->Catchments->Pick button.
- 3. Close the string for SAG pits.
- 4. You may fill the strings using "Utilities->Super strings->Fills"
- 5. You can disable the auto selection of a string via Right mouse on the pick button then select **Clear**.

Catchment areas for your hydrological model may be defined using a Super, 2d, 3d or polyline string to set the catchment boundaries. Other ways to set the areas are: manual entry in the **network editor**, via a spread sheet program, the **Top 10 Attribute Editor** or the **ILSAX pipe editor**.

Note that if a catchment string is created to define the area for a manhole then all other data entry types will be ignored and the area from the string will be used.

There are 3 sets of catchments and it is up to the user to decide how they are to be used. Often set 1 will be all the impervious areas and set 2 the pervious and set 3 for special areas. Each set has its own percent impervious. The 3 catchment sets are drawn in three different models.

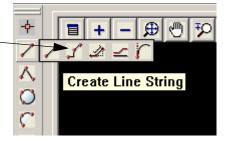
If exporting to external drainage design programs they may note accept all three sets so check the interface notes before defining the catchments.

In each set/model, 12d will automatically link the catchment string to the manhole that is closest to the first point on your catchment string. This is the preferred method. If this is not possible, then a manhole may be manually linked to a catchment string using the **Catchment manual link**.

Also see Checking the Automatic Catchment Linking

Drawing Catchment Strings in 12d

Before creating the catchment string set the CAD control bar data.


Type the name of a model for the catchment strings

COURSE NOTES STORMWATER DESIGN

Now to create the catchment string use the **Create line string** button on the CAD toolbar.

DRAG the **Create line** button and release at he **Create Line String** button.

The first point should always be placed near the manhole. 12d will assume that the catchment will drain to the manhole closest to this first point.

There is no need to go "overboard" with the accuracy of the catchment strings (except maybe with SAG pit catchments near the low points). From experience, it is more important to spend time verifying catchments in the field than spending a lot of time getting them "exactly" placed on the catchment plan. If you want to use the drawing as a catchment plan submission then the extra care in creating the strings may be warranted. Continue selecting and accepting the points on the catchment string and the press **ESC** to finish creating this string. You are now ready to create the next catchment string.

★ / < O C □ ½ </p>

SAG inlet catchments: DO NOT START AT THE INLET, just start nearer to this inlet than any other! If you start at the inlet then move out to the crest of the catchment, the catchment overflow level cannot be determined from the catchment string.

For the last point on your catchment line select **Close** from the **CAD** toolbar. This function places the last point on the string over the first point on the string forming a closed polygon.

Once the catchments are drawn they become linked to the drainage network in the **Drainage network editor.** We will label the catchment with the manhole name and area at the same time.

Start the **Drainage network editor** and move to the **Global** Tab and then the **Utility Models** sub tab.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Catchment File Edit. Catchment file my catchments. Read Write Catchment file my catchments. Read Write Catchment polygons Paths Model Model 1 dwg d catchments dr tc imperv 2 Select 3 Select	Drainage Network Editor Catchment Pit Pipe DEFAULTS Global drainage data Main Utility Models Catchments Catchment file Catchment labels model Label textstyle Auto-rename catchment polygons	FIXGC filenam for the catch- ment models Select More	catch- ment models. Select More info but- top
Catchment file my catchments. Read Write to sell the model the model 1 dwg d catchments dr tc imperv dr tc perv 2 Eelect used the Catchment and the model the catchment and the catchmen		Edit.	Edit.
Finish Help [User Lib] bar	Catchment Impervious Pervious Polygons Paths Paths Model Model Model 1 dwg d catchments dr tc imperv dr tc perv 2 3 Impervious ERROR Model Impervious ERROR Model dr tc perv > does not exist [Lib] User Lib Ensish Help Browse [Edit]	to select the model of the catch- ments used in the CA control bar above.	Read Write to select the model of the catch- ments used in the CAD control bar above.

Every manhole can have 3 catchments, row 1 is catchment set 1, row2 for catchment set 2 and row 3 for catchment set 3.

The **Auto-rename catchment polygons** will set the name of the catchment string to the pit name that it is linked to. If it is not linked to any manhole it will be named **"not used"**. The model can be checked for **not used** strings by selecting **Models->String Info Table**.

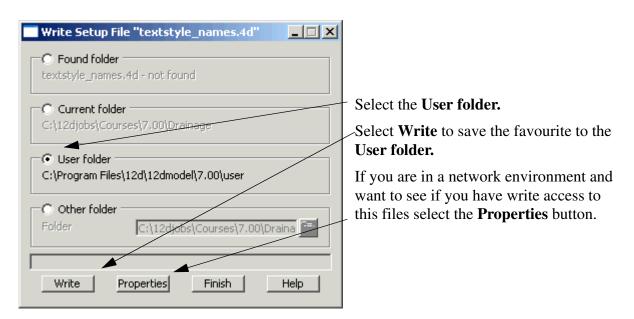
To label the catchment areas with the names of the manholes they are linked to we need a catchment labels model and a textstyle favourite. We need to create a label textstyle favourite if you do not have any favourites defined.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Catchment labels model	labels 💦			
Label textstyle	catch labels 🖉 🛃	v		
Impervious paths model		Label to	extstyle	
Pervious paths model		Favorites	no favorites	Select Choice
		Text style	1	
Overland flow Bypass flow model		Colour	cyan /	
-,,	__	Text units	world	
Road design		Height (u)	10	
Road design file	<u>_</u>	Offset (u)	0	19
Service clashes		Raise (u)	0	19 I I
Service clash file		Justify	bottom-left	
		Angle	0°/	Select
		Slant	ø	
/	/	X factor	1	= [Edit]
		text style	ok	
ent network	drainage network	Set	Sameas	Clear Finish
ent pit	1-4		Jamody	
		/		

Select the **textstyle** button and then the drop down for **Favourites**. Now select **Edit**.

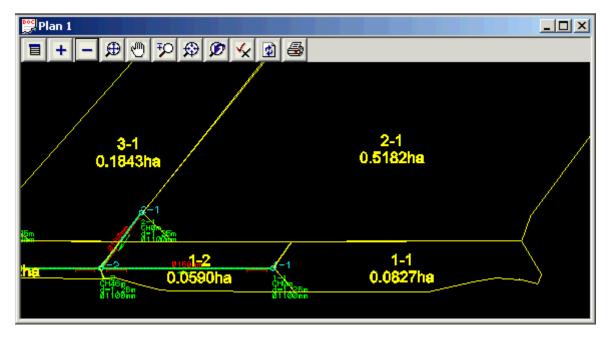

Enter the data as show. Some data you will have to type on the keyboard (**type**) and other you may use the right mouse button (**RB**) and then select browse.

Туре	RB	RBTyp	eRBType RB
textstyle_names.4d	Create/Edit		
Favorites Data			
Name Textsl	tyle Type Size Colour Angle World 3 yellow 0	Offset Raise Slant	X Factor Justify C 1 bottom-right
Set	Write	Finish	Help

Select **Set** to store the textstyle favourite for this session only. To permanently save this textstyle favourite and have access to it in all of your projects select **Write** and the following

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN


Label Catchments

Model drainage network String	A Pit 2
Drainage model loaded	
Auto-apply 🔽	Auto-redraw 🔽
Set Pit Names Set Catchments	Set Pit <u>D</u> etails
Regrade Pipes Plot	Import/Export Storm Analysis
Pick Edit Apply <	> Finish Help

Finally select **Set catchments**. This will link the catchments to the manholes and label the catchments. Now add the model **labels** onto the plan view.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

There are some cases where linking the closest manhole to vertex 1 is not feasible. In these cases you may manually link the manhole to a catchment.

Catchment manual link

The manual links are used when the first point on the catchment string is closest to the wring manhole. Note that the following restrictions still apply.

- 1. The string selected for catchment 1 must be in the model for set 1. To check if you have selected a valid string select the **Set Catchments** button.
- 2. If the catchment string has already been linked to another manhole (automatic or manual) then the new link will be created and the old link erased.
- 3. If you change the catchment model for one of the sets on the **Network Editor->Global->Utility Models->catchments** than all of the manual links in that set will be erased.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor
Catchment Pit Pipe DEFAULTS GLOBAL
Catchments flowing to current pit
#1 #2 #3
Catchment polygon
Catchment area 0.0598
Tc method
Length 56.087 Length
Slope (%) 2,2969 Slope (%)
Retardance Retardance
Tc (minor) 5 Tc (minor) 10
Tc (major) Tc (major)
⊂ (minor)
⊂ (najor)
//
Current drainage model prains Current pit A4
Drainage model loaded
Auto-apply 🔽 Auto-redraw 🔽
Set Pit Names Set Catchments Set Pit Details
Regrade Network Storm Analysis Import/Export
Pick Edit Apply << >> Finish Help

First change to the **Catchment** tab.Now either use the **Pick Edit** button to select the manhole or use the >> (next) or << (prev) buttons to move to the desired manhole. The manhole will be circled in the plan view and its name shown in the **Current Pit** field.

Now select the **Catchment polygon** button and pick the desired catchment string.

NOTE! If you decide to enter a value and NOT use the selected string **RB** on the button and select **Clear.**

If the **Auto apply** tick box is not selected then you will have to select the **Apply** button for the manual link to become active.

After the **Set Catchment** button is selected the measured catchment area will be shown in the **Catchment area** field using the units specified in the **Global-Utility models-Units** field.

Checking the Automatic Catchment Linking

The automatic manhole-catchment linking is easily checked by specifying a **Catchment labels model** with **Labels textstyle** on the **Global->Utility models** tab and selecting the **Set Catchments** button on the network editor. Also once the **Set Catchments** has been selected, the catchment is indicated when the manhole is selected using the network editor. Since there may be three catchments per manhole the catchment data last viewed in the editor is the catchment that is highlighted.

The catchment strings may be drawn in a CAD package and then imported into 12d or drawn inside 12d. The strings may be easily drawn in 12d with the tin contours and/or flow arrows displayed in the plan view.

COURSE NOTES STORMWATER DESIGN

5.4 Network Editor - Global, Default Settings and Explicit Settings

Design values for the hydrology and hydraulics calculations are set either globally (one value for the entire network) or via Defaults for the manholes or pipes. Defaults values may be overridden by explicit settings found on the **catchment, pits** or **pipes** tab. Explicit manhole/pipe settings need only be specified if the default value is not desired.

5.5 Drainage Templates

The default and global settings may be saved as a template for other projects/networks. After setting the defaults for a network follow these steps.

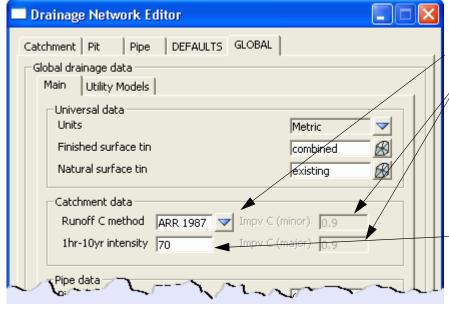
- 1. Save the project. We are going to do a clean where there is no undo.
- 2. Clean the drainage model so that all of the strings are deleted but the model attributes will remain. DO NOT SAVE YOUR PROJECT.
- 3. Export the model using File IO->Data output->12da/4da data.
- 4. Restart 12d, **Project->Restart** and DO NOT SAVE because you have cleaned your drainage network.

The 12d ascii file may now be imported to another project via **File IO->Data input->12da/4da data.** Since the global and default values are stored as model attributes, they will be imported with the network.

5.6 Network Editor - Hydrology

The **network editor** edits both the network and catchment data and it has already been introduced in the previous sections. This section will discuss the Hydrology **Global**, **Defaults** and **explicit setting** for the hydrology parameters. The parameters described on the **defaults** tab will also be found on the **Catchment** or **Pit** tabs.

5.6.1 Catchment Areas


The catchment areas have already been discussed in the previous section. There is no default catchment area to apply to all catchments (as would be expected).

Note! If a catchment string is linked to the manhole and the Set catchments button is selected, this string area will override any manual value that you type into the drainage area field. To ensure manual entry is maintained, RB select the string selection button and select Clear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

5.6.2 Coefficients of Runoff Global Settings

Runoff C methods include **Direct** and **ARR 1987.** For the **ARR 1987.**

Direct: There is a global impervious C value for both the minor and major storms.

ARR 1987: The composite C value is calculated using the 1hr-10yr intensity, the percent impervious, ARR frequency factors and the return period specified when hydrology runs are made. No C values are entered if this method is used!

Default Settings

🗏 Drainage Netw	ork Editor			
Catchment Pit Default data for b Catchments p Percent impervis	its Pipes	ILTS GLOBAL	90	
Tc method Length Slope (%) Retardance Tc (minor) Tc (major)	Direct	Pervious Tc method Length Slope (%) Retardance Tc (minor) Tc (major) C (minor) C (major)	Direct	- - - -

The **Direct** method has both **defaults** and **explicit settings** on **Catchment** tabs (see below).

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Implicit Settings

Drainage Network Editor	
Catchment Pit Pipe DEFAU	LTS GLOBAL
Catchments flowing to current pit —	
#1 #2 #3	
Catchment polygon	atchment name
Catchment area	0.064752161
Percent impervious	
Impervious	Pervious
Tc method 🔽 🗸	Tc method
Length	Length
Slope (%)	Slope (%)
Retardance	Retardance
Tc (minor)	Tc (minor)
Tc (major)	Tc (major)
	⊂(minor) 0.6
	⊂ (major) 0.7
- Com Comercia	The and the

5.6.3 Percent Impervious

The default percent impervious for the network is set on the **Defaults->Catchment Defaults** tab and the **explicit settings** are on the **Catchment** tab (see above). The percent impervious is used to determine the area for the impervious and pervious components and the composite C value if using the **ARR 1987** method for calculating runoff coefficients.

5.6.4 Times of Concentration

There are several methods for entering times of concentration for the catchment areas (see list below). Default and explicit settings (catchment tabs) are entered/calculated for both the methods and values for the pervious and impervious areas. Since each catchment may use a different tc method all of the tc parameter fields on the defaults tab are active. They must be filled in even if you do not plan on using that value.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor		
Catchment Pit Pipe DEFAULT Default data for blank fields Catchments Pits Pipes	rs global	
Percent impervious		90
Impervious Tc method Direct 💙	Pervious Tc method	Direct
Length 50	Length	100 Select Choice
Slope (%) 2.5	Slope (%)	2.5 🛃 Friend Equation
Retardance 0.013	Retardance	8 0.15 Kinematic Wave Bransby Williams Equation
Tc (minor) 5	Tc (minor)	10 QUDM Velocity Table
Tc (major) 5	Tc (major)	10
	⊂ (minor)	0.75
	C (preigr)	0.75

- 1. Direct method requires minor and major tc values.
- 2. Friend, Kinematic Wave, Bransby Williams and QDUM methods require the retardance, length and slope of the catchments to be entered. Default values must be entered but the optional **explicit settings** for slope and length can be entered on the catchment tabs or a catchment characteristic strings may be drawn (see **Catchment Tc path strings**). The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method.
- 3. Data for the remaining methods is entered in a similar fashion.

5.7 Tc Path Strings

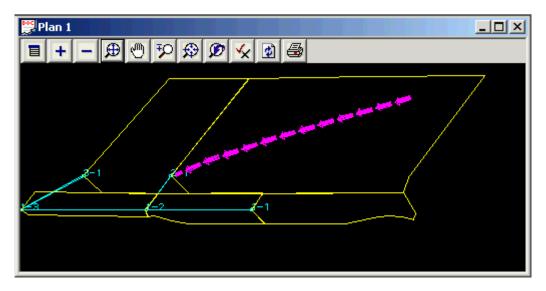
These strings are used to calculate the time of concentration for the impervious and pervious areas. They are drawn in two models; one for the impervious paths and one for pervious paths. The models are specified using the **Catchment file** field on the **network editor** (Global->Utility model tab). The 3 rows in the **catchment file** correspond to the 3 catchments available for each manhole. Therefore it is possible to have a maximum of 6 Tc paths models!

Key Points

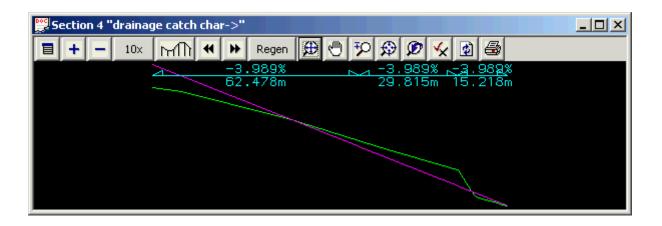
- 1. Each Catchment set may have 2 Tc paths models. Pervious and impervious paths are kept in separate models.
- 2. End the Tc path string at the manhole that it is to be linked to.
- 3. Enter the paths models via **Catchment file** field on the **network editor** (Global->Utility model tab)
- 4. You must select a Tc method (explicit or implicit) via the **Defaults->Catchments tab** or the **Catchments Tabs**. Just specifying the models is NOT enough!

COURSE NOTES STORMWATER DESIGN

The tc strings can be drawn in the same way as the catchment strings but make sure that you change the model name first! The tc string model is then entered in either the impervious or pervious paths model columns (You could have up to 6 tc string models!).


Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GLOBAL	PLXGC
Global drainage data	
Main Utility Models	
Catchments Catchment file my catchments.	
Catchment labels model drainge cat labe	
Label textstyle Arial 2 centre	
Auto-rename catchment polygons	
Catchment File	older *.catchments 🛛 🗙
	my catchments.catchments
Catchment file my catchments, 🚞 Read Write	iny catchinonesicate interior
Catchment Impervious Pervious	
Polygons Paths Paths Model Model T	
1 dwg d catchments dr tc imperv dr tc perv	
2	<
3	Select
	ib] 🕨
	Jser Lib] • irowse]
	idit] idit file]
	olete file]

5.7.1 Catchment slope (equal area)


The length of this string is used for the length parameter and the design tin is used with the string to calculate the slope using the equal area method. These strings are drawn from upstream to downstream, finishing nearest to the manhole they are to be linked to. The line style for these strings must be the **flow line** style found under **Drainage 12d** in the linestyle drop down list.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

The equal area slope is calculated at export time. After the export the slope string, it may be profiled to see the slope (see below).

5.8 Network Editor - Hydraulics

This section will discuss the hydraulic **Global**, **Defaults** and **explicit settings** for the hydraulic parameters. The **explicit settings** for the parameters described on the **defaults** tab will also be found on the **Pit** or **Pipe** tabs.

5.8.1 Setout to Grate Offset

The grate level is used by 12d when determining the freeboard and when calculating depth of flooding at SAG pits. The grate level is often exported to other design packages. The grate level is calculated as

Grate Level = Setout z + Setout to grate offset

The setout to grate offset is generally zero or negative and implicitly set on Network Editor->Defaults->Pits->Setout to grate offset or explicitly on Pits->Main->Setout to grate offset.

COURSE NOTES

STORMWATER DESIGN

5.8.2 Pit Losses Ku, and Direct Flow

Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GLOBAL	
Default data for blank fields	
Catchments Pits Pipes	
_ Inlet data	
Setout to grate offset -0.15	F
Pit group	_
Direct flow	-
Pit loss Ku	-
	\sim
a Revenue of the former	

If the setout point was on top of the kerb, enter the **Setout to grate offset** so that the overflow level of the manhole can be determined.

The **Direct flow** (cms/cfs) is water flowing into the manhole. It is not added to the approach flow and therefore is not affected by manhole inlet capacity.

The **Pit loss Ku** is used to model the energy losses through the manholes.

5.8.3 Pipe Friction Method

method for the pipe roughness method is set
here (Colebrook or Man
ning). The default pipe
friction values are set on
the Defaults->Pipes tab.
The ranges for pipe peak velocities are used for
checking purposes only. I
the velocities are outside
this range, warning mes- sages will be given in the
output window.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

5.8.4 Pipe Friction Values and Freeboard Limit

atchment Pit Pipe	DEFAULTS	5 GLOBAL
Global drainage data —		
Main Utility Models	;]	
Universal data		
Units Metric		FS tin combined 🔗
		NS tin existing
Catchment data —		
Runoff C method	Direct	▼ Impv ⊂ (minor) 0,9
1hr-10yr intensity	70	Impv ⊂ (major) 0,9
Pipe data		
Pipe roughness typ	e	Manning 🔽
Kinematic viscosity		0.0000011
Allowable norma	depth velocity	ranges
Part-full flow:	0.7	to 7
Full flow:	0.6	to 6

The global **pipe friction method** on the **Global** tab determines which fields are active, **Colebrook k** or **Mannings**. The default roughness values are entered on the following **Defaults-Pipe** tab.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

tchment Pit Pipe DEFAULTS GLOBAL	.]
efault data for blank fields Catchments Pits Pipes	
Pipe properties Mannings n roughness	0.01
Colebrook k roughness (mm)	0.3
Direct pipe flow	0
Invert design	
Alignment mode	Minimum Drop 🔽
Alignment drop	0.02
Pipe cover limit	0.65
Pipe cover mode	Minimum Depth 🔽
Minimum grade (%)	1
Pipe size design	
Design mode Pressurised Pip	e: Freeboard Design 🔽
Freeboard limit at US pit	0.15
Flow-depth limit at pipe entrance (%)	100

The **Design mode** has 4 options.

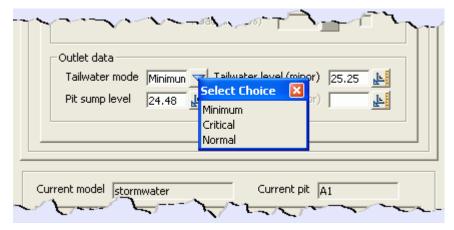
Pressurised Pipe: Free-board Design does not use partial depths in the pipes and pipe sizes selected by checking the pit freeboard.

Part-full Pipe: Free-board Design is similar to option 1 except gradual varied flow and hydraulic jumps are calculated in the pipes. Critical depth is the minimum depth at the upstream end of the pipe.

Part-full Pipe: Flow-depth Design is the similar to option 2 except the pipe sizes are selected by checking the normal depth in the pipe against this value. Freeboard is also checked in this mode and if required the pipe will increase in size.

Open Channel: Freeboard Design is similar to option 2 except depths at the upstream end of the pipe may be less than critical depth for steep pipes (supercritical flow at the entrance).

The **Freeboard limit** is used for all **Design modes**. The freeboard is measured down from the grate level (**setout level** minus **setout to grate offset**).


The **Flow-depth limit at pipe entrance** (%) is used in **Design mode** 3. If the normal depth in the pipe is greater than this value the pipe size is increased.

5.8.5 Outlet and Tailwater Conditions

The most downstream manhole on each network requires tailwater conditions. Often the invert level on the downstream end of the last pipe also needs to have the level locked to either discharge into a waterway or join into an existing drainage system. When the most downstream manhole is selected the following fields will become active on the **Network Editor - Pit - Main** tab. If these field are not active and you think you are at the outlet see **Flow in the Wrong Direction**.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Minimum will use the least of the Critical or Normal depths. If a fixed level is available for the minor and/or major storms, these value may be entered here. The Pit sump level is used to enter the sump level of the network that is being connected to (Optional).

5.9 Pipe Design Parameters - Sizes, Invert alignment, Min Cover, Max Height The invert levels during design are controlled by the **pipe sizes**, **max pipe height**, min pipe cover and **invert alignment** mode.

5.9.1 Invert Alignment Modes

🗖 Drainage Network Edi	itor							
Catchment Pit Pipe	DEFAULTS GLOBA	L]						
Default data for blank field Catchments Pits Pi	s							
Pipe roughness Mannings n								
Colebrook k (mm)		0.2						
Invert design								
Alignment mode	Select Choice 🛛 🛚 🛛	Obvert Drop						
Alignment drop	Minimum Drop	0	F					
Pipe cover limit	Invert Drop Obvert Drop	0.8	F					
Pipe cover mode	Select Choice 🛛 🛛	Minimum Depth	▼					
Minimum grade (%)	Minimum Depth	1	F					
Pipe size design Freeboard limit	Minimum Grade	0.15	F					

12d has 3 design modes for setting the pipe inverts upstream and downstream of the manholes. These work together with the 2 pipe cover modes as follows.

The tin specified in the **Global-Main Finished Surface Tin** field is used for these calculations. The description below assumes that none of the inverts have been manually locked.

NOTE! Invert design parameters are set on the **Pipe-Design** tab not the **Pit** tab. The **Alignment mode refers to the DOWNSTREAM INVERT ONLY.**

1. The initial pipe grade is set as the Minimum grade (Minimum Grade mode) or the grade

COURSE NOTES

STORMWATER DESIGN

between the ground levels at the manholes (**Minimum Depth** mode). Even in the **Minimum depth** mode the minimum grade constraint is checked.

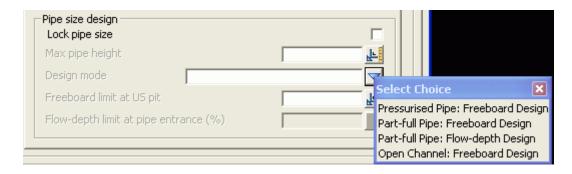
- 2. 12d shifts the pipe down so that there is at least the **Pipe cover limit** along the pipe. The **Pipe cover limit** should include an amount for the pipe thickness.
- 3. Inverts are moved down if required according to the setting in **Alignment mode.** Obverts are aligned using **Obvert Drop** with a zero **Alignment drop** and similarly the inverts are aligned with the **Invert drop** mode. **Minimum drop** ensure that the inverts drop a minimum of the specified drop but the drop may well be more than the **Alignment drop** specified. As the inverts are moved down the minimum pipe grade is maintained.

NOTE! If **Obvert Drop** is selected and the downstream pipe is a smaller pipe then the inverts will be aligned!

5.9.2 Pipe sizes, Max pipe height and Multiple Pipes and Box Culverts

The 12d design engine will select pipe sizes from the file specified on the **Drainage Network Design** panel, **Preferred pipes file** field list. See **selecting pipe sizes**. However, the maximum pipe height allowed before multiple pipes are used and the selection of box culverts is set on the **pipe->main** and **pipe >design** tabs respectively.

📃 Drainage Netwo	rk Editor]
Catchment Pit	Pipe DEFAUL	TS GLOBAL	.]		y r
Pipe downstream Pipe connections	of current pit	3-1 to 1-3			ı ۱
Main Design]				
US Invert			26.7161	+	
DS Invert			26.403	- Æ	
Pipe size			/		
Diameter/Hei	ight		0.35	<u>+</u>	
Width			1.0	+	
Number of pi	pes		1		
· · · · · · ·	A		~ 1		


To specify a box culvert in your network, select the pipe segment and enter a width for the pipe.

For box culverts, the design engine increases the widths and maintains the height through the available sizes. Once the maximum height has been reached, the next culvert height and minimum width is checked.

5.9.3 Pipe Size Design

On the **Pipe->Design** tab the **Lock Pipe size** prevents the 12d design engine from resizing the pipe. **Max pipe height** can be set for each pipe segment (there is no default for this value). If the 12d design engine requires a larger pipe, then multiple pipes will be selected.

COURSE NOTES STORMWATER DESIGN

The figure above shows the 12d pipe design modes.

Pressurized Pipe: Freeboard Design

When solving the gradually-varied-flow equations in the upstream direction of a pipe, if the HGL is ever below the obvert, the US-pipe HGL is set to the obvert. This is the simple and conservative method in the example shown in the ARR 1987. The pipe-size design/analysis is based only on the resulting Freeboard in the US-pit.

Part-full Pipe: Freeboard Design

When solving the gradually-varied-flow equations in the upstream direction of a pipe, if a hydraulic jump occurs the US-pipe HGL is set to critical depth. This method is good where part-full pipe analysis is allowed, but pressurized pipes are also acceptable. The pipe-size design/analysis is based only on the resulting Freeboard in the US-pit.

Part-full Pipe: Flow-depth Design

Same as above but pressurized pipes are NOT acceptable. The pipe-size design/analysis is based BOTH on the resulting percentage depth of flow in the pipe entrance, and the resulting Freeboard in the US-pit.

Open Channels: Freeboard Design

When solving the gradually-varied-flow equations in the upstream direction of a pipe or open channel, if a hydraulic jump occurs the US-pipe HGL is set to normal depth. This method is good for open channels or pipes where the "pit" directly upstream is a dummy pit with minimal losses. The pipe-size/channel size design/analysis is based only on the resulting Freeboard in the US-pit.

5.10 Road Design File for Pit Setout - x,y, level, road chainage and setout offset

The road design file is used to automatically link the manhole to a road setout string and a road centre line string. Explicit picking of these strings may be found on Pits->Setout->String selection. These strings may be used calculate road grades and crossfalls (bypass model required) and/or construction setout data.

The construction setout point defines the location on the manhole to be printed in the **manhole** schedules, plotted on the **plan annotations** or listed on the **drainage long sections**. The setout point and level can be set to the centre of the manhole or it can be linked to a road design string. The setout level plus the **Setout to grate offset** determines the grate level for surcharging calculations.

COURSE NOTES STORMWATER DESIGN

The centre of the manhole or setout point can also be dropped perpendicular onto the road centre line to obtain the road chainage and offset distance.

Drainage Network Editor		
Catchment Pit Pipe DEFAULTS GLOBAL Default data for blank fields Catchments Pits Pipes Inlet data Setout to grate offset	-0.15	🗖 Select Choice 🛛 🔀
Pit group Direct flow Pit loss Ku		Pit Centre Setout String Manual
Setout data Setout xy mode Setout z mode	Setout String	Select Choice X FS Tin Setout String Manual
Road chainage mode Setout adjustment		Select Choice X No Road Centre String Manual

Pit centre is the centre point of the manhole (the intersection of the joining pipes). Often the setout point for a manhole or catch basin is not the centre of the manhole but rather a point on the kerb or back on the foot path. The **setout string** option will drop the centre point of the manhole onto the closest string in the **Road design** model list specified on the **Global->Utility models** tab. The manhole cover level will be set to **level on this string**.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor		
Catchment Pit Pipe DEFAULTS GLOBAL Global drainage data Main Utility Models Catchments Catchment file Catchment labels model Label textstyle Auto-rename catchment polygons Bypass flow	stormwater.catc	Type a file name, select the folder icon and then select Edit from the drop down.
Bypass flow model Road design	bypass flow	NOT Edit file. The following editor will appear.
Lervice d- Lan	stormwater.roa	

Road Design File								
Road Strings Model	Setout String ID	Setout Search Distance	Centre String ID	Centre Search Distance	Grade Offset	Xfall Offset	Slope Measurement Distance	
2 road strings 1	lok 🚽	3	d002	20	1	1	0.1	
3 road strings	lok*	3	d003	20	1	1	0.1	

RB select this box and choose the models containing the setout strings. In the **Setout string ID** box enter the string name prefix (wild card * allowed) to limit the selection for setout string. If no **ID** is entered then this model will NOT be searched!

The **Centre string ID** is used in the same way to find the centre line string. If needed, this string is used for road chainage and to determine which direction to measure the crossfall (between the setout string and the centre string).

The distances and searches are optional. The **setout** and **centre search distances** are the maximum distance that the routine will look when trying to locate the setout and centre line strings respectively.

The **grade offset** it the distance upstream from the setout point that the road grade measurement will start and the **Xfall offset** is the distance from the setout point to the start of the crossfall measurement. The measurements will be taken over a distance of **slope measurement distance** with the actual levels taken from the finished surface tin specified on the Global-Main tab.

Repeat this for each road string model used in the design. Remember to select Write when fin-

COURSE NOTES STORMWATER DESIGN

ished!

Select the Set Pit Details button on the bottom of the panel the calculate these values.

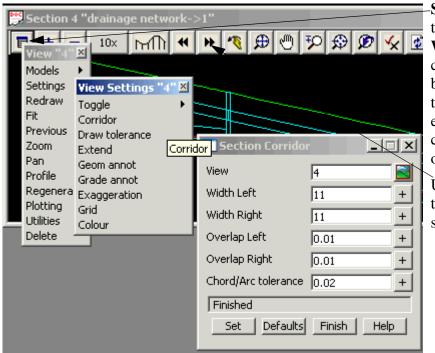
Explicit settings for the setout strings and the auto calculated values are found on the **Pit-Setout** tab. If the **manual** mode is selected the Easting and Northing locations may be picked in plan view or typed into the input boxes.

The setout level defines the level on the manhole to be printed in the manhole setout tables and in the drainage longsection plots. The **FS Tin** selection obtains the level from the FS tin, specified on the **Global-Main** tab, at the centre point of the manhole. The **Setout String** location obtains the z level from the setout string as described in the section above. **Explicit settings** and the auto calculated value are found on the **Pit-Setout** tab.

If **Road chainage mode** is set to **Centre string**, then the **Centre String ID** in the **Road design file** (shown above) is used to select the road string to measure the chainage and offset from. The values and **explicit settings** for the road chainage and offset are found on the **Pit->Setout** tab.

5.11 Calculate Bypass flow routes

This option is required for manhole inlet capacity calculations and is covered in the advanced drainage training.


As an introduction, the overland flow parameter routine determines the road grade, crossfall, manhole inlet capacity and downstream bypass manhole for each manhole. To achieve accurate measurements for the road grade and crossfall, the manhole is linked to a setout string (see below).

COURSE NOTES STORMWATER DESIGN

6.0 Service and Utility Clashes

WARNING!

12d service clash routines notify the user of crossing services but not parallel services that are close to each other. To view parallel services, add the services model onto a section view, profile a drainage string and then set the corridor value for the section view.

Settings->Corridor and then set the Width left and Width Right to the desired clearance. If the service can be seen then it is within the tolerance. 11 is used in this example only so that you can see the service on the other side of the road.

Use the **Next** and **Prev** button to switch drainage strings.

🖉 Sectio	n DES LS "Drains->A"
84	<u>- 5× 谷 ゆ み 夜 観 く 炎 '</u>
.731% 2. <mark>28</mark> 8m	2.069% 43.275m
28	
27	
26 0	

To obtain a report of all strings inside or crossing the drainage string profiled, select the **View menu** button then **Utilities->Report**

The service clash model list is entered on the Global-Utilities Model field.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

C	5	ervice Cl	ash File		L	<u> </u>
	s	ervice clas	sh file servi	ces.clash	🔁 Read	Write
		Service Model	Minimum Clearance			
	1	services	.5			
	file	saved				
		Fir	nish		Help	//

To create a list enter a list name, select the folder icon and then select edit.

In the **Service model** column **RB** to select the model. Enter **Minimum Clearance** for the services in this model. If different clearances are required for different services then place the services in different model. Warnings will be issued at design time. Cover levels or fixed inverts can be used to avoid the services.

Service clashes are listed in the output when the **Set pipe inverts** is selected on the **Drainage Network Editor**. If the output window is not visible then from the main menu select

Window->Output Window

and make sure it is selected.

Output Window		_0
PROBLEM: Clash at line "2", ch=6.003 PROBLEM: Clash at line "3", ch=10.19	-	
		ŀ
Messages /		

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network	
Catchment Pit Pipe	DEFAULTS GLOBAL
 Pipe downstream of curl Pipe connections 	A4 to A5
Main Design	
– Invert design Lock US Invert	
Lock DS Invert	
Alignment mode	
Alignment drop	
Pipe cover limit	
Pipe cover mode	
Minimum grade (%	
Pipe size design Lock pipe size	
Freeboard limit	
Max pipe height	

The most common method to avoid the clash is to increase the **Pipe cover limit** for this pipe segment so that the pipe is pushed down. If the clash problem is above the pipe then the **Max pipe height** may be used and multiple pipes are selected.

This method is preferred over locking the inverts as this leaves more flexibility for aligning the inverts.

Once the invert levels have been reset by selecting **Regrade pipes**, the output window will indicate the final clearance.

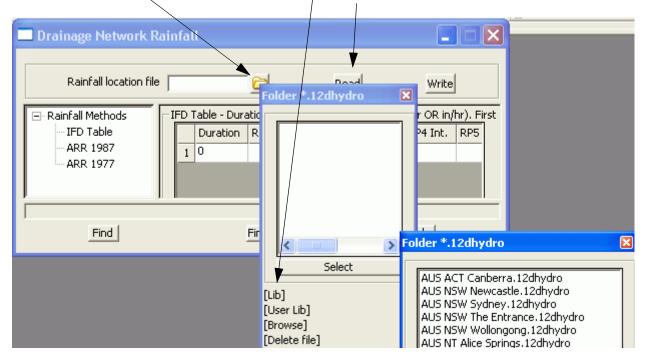
Output Window						
INFO: Line ''2'', INFO: Line ''3'',						
INFO: Line "3",	cn=10.191, cro	ssing servic	2 DN 300 YY	ATER" - Clear	rance UK: U.:	00 2 0.50
	ages /					

After a pipe design run in **Storm Analysis**, details of the service clash data will again be listed in the output window.

COURSE NOTES STORMWATER DESIGN

7.0 Drainage Design in 12d Drainage Design

12d has a sophisticated rational method hydrology and hydraulic grade line pipe design engine. In addition it has the capability to export this data to several other popular drainage packages. Regardless of the design method selected the drainage network in 12d is updated from the design so that drainage plans, long sections and manhole schedules can be quickly produced.


7.1 12d Rational Method Hydrology - Drainage Rainfall Editor

The **Drainage Rainfall Editor** is used to input rainfall IFD data using several methods. The data is stored in Meteorology files (each file is for a specific location) that can be shared between 12d projects. The data is edited using an editor similar to those used for the plot parameter files (ppf). Seven methods for entering/calculating the rainfall intensities are shown in the panel below. From the main menu select,

Design->Drainage-Sewer->Rainfall Editor

Data is entered using one (or more if desired) input methods and then saved by entering a **Meteorology file** name and selecting **Write.** The standard 12d system file search paths are used (project folder, user library folder and then library folder).

Select the folder icon and then walk right on the Lib item to display a list of sample files. Select a file the select **Read. YOU MUST SELECT THE READ BUTTON!**

7.1.1 IFD Tables

IFD tables are often available from meteorological services. The table input format follows. The first row is used to define up to 9 return periods and the following rows list the rainfall intensities

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

for the duration entered in the first column.

Hint: to increase the size of the grid control select another method, ARR 1987 for example, and then select IFD table again.

Drainage Network	c Rain	fall							
Rainfall location file erra.12dhydro									
Rainfall Methods FD Table - Durations (minutes) & Intensities (mm/hr OR in/hr). First row defines Return Pe									
IFD Table		Duration	RP1 Int.	RP2 Int.	RP3 Int.	RP4 Int.	RP5 Int.	RP6 Int.	RP7 Int
ARR 1987	1	0	1	2	5	10	20	50	100
ARR 1977	2	5	55	72.65	98.28	115.06	137.16	168.12	193.23
	3	6	51.49	67.95	91.71	107.23	127.7	156.33	179.53
	4	7	48.56	64.03	86.25	100.74	119.85	146.57	168.19
	5	8	46.06	60.69	81.61	95.22	113.19	138.29	158.58
	6	9	43.89	57.8	77.59	90.45	107.43	131.13	150.29
	7	10	41.98	55.25	74.06	86.26	102.39	124.87	143.03
	8	11	40.29	52.99	70.92	82.55	97.91	119.32	136.61
	9	12	38.76	50.96	68.12	79.22	93.91	114.37	130.87
Find				Finish			He	atp)	

7.1.2 Australian Rainfall and Runoff 1987 Method

The rainfall intensities and other factors from Volume 2 of ARR 1987 are entered in this table.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Networ	k Rainfall	
Rainfall location	file erra.12dhydro 🔂 🦷	ead Write
 ■ Rainfall Methods ■ IFD Table ■ ARR 1987 ■ ARR 1977 	ARR 1987 Intensities (mm/hr) 2yr - 1hr [Map 1] 2yr - 12hr [Map 2] 2yr - 72hr [Map 3] 50yr - 1hr [Map 4] 50yr - 12hr [Map 5] 50yr - 72hr [Map 5] 50yr - 72hr [Map 6] Other factors Skewness G [Map 7] Geographical factor F2 [Map 8] Geographical factor F50 [Map 9] Lat of location (deg 5) Long of location (deg E)	22
Find	Finish	Help

7.1.3 Australian Rainfall and Runoff 1977 Method

The seven coefficients for each return period from ARR 1977 are entered in this table.

COURSE NOTES STORMWATER DESIGN

Drainage Networl	< Rai	nfall							
Rainfall loca	ition fi	e erra.	12dhydro			Read	ł	Writ	e
⊡-Rainfall Methods	ARR	1977 - Po	lynomial	coefficient	s for pre-d	lefined Reti	urn Periods -		
- IFD Table - ARR 1987		Return Period	A	В	С	D	E	F	G
ARR 1977	1	1	2.8386	-0.653	-0.0475	0.02647	0.00124	-0.002107	0.0002041
	2	2	3.0966	-0.6689	-0.0541	0.02994	0.001906	-0.002457	0.000239
	3	5	3.3669	-0.7178	-0.0741	0.0451	0.003726	-0.0041352	0.0004227
	4	10	3.4971	-0.73	-0.0853	0.04462	0.005528	-0.0039794	0.0003366
	5	20	3.6511	-0.7471	-0.0928	0.04868	0.006337	-0.0044	0.0003738
	6	50	3.8104	-0.7659	-0.1036	0.05263	0.007596	-0.0048175	0.0003939
	7	100	3.9186	-0.7775	-0.1095	0.05478	0.008397	-0.0049816	0.0003921
,									
Find				Fi	inish			Help	

7.2 Drainage Network Design

The **Storm Analysis** button on the **Network Editor** executes the 12d drainage design, plots the drainage long section and plan annotation and prepares the hydrology and hydraulic design tables.

Model drainage network String A Pit 2 Auto-apply ✓ Auto-redraw ✓ Set Pit Names Set Catchments Set Pit Details Regrade Pipes Plot Import/Export Storm Analysis Pick Edit Apply ≤ ≥> Finish Help	<u> ~~~~~~~~</u>	and
Set Pit Names Set Catchments Set Pit Details Regrade Pipes Plot Import/Export Storm Analysis	Model drainage network St	ring A Pit 2
Set Pit Names Set Catchments Set Pit Details Regrade Pipes Plot Import/Export Storm Analysis	Auto-apply M	Auto-rodraw 🖂
Regrade Pipes Plot Import/Export Storm Analysis	Auto-apply I	Auto-reuraw JV
	Set Pit <u>N</u> ames Set <u>C</u> atchme	ents Set Pit Details
Pick Edit Apply << >> Finish Help	Regrade Pipes Plot	Import/Export Storm Analysis
	Pick Edit Apply <	E Einish Help

From the **Drainage Network Editor** select **Storm Analysis.** The folløwing design panel will appear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor: Storm Analysis	
Drainage model my drainag	e
Analyse network Storm factors Rainfall location file dney.12dhydro Rainfall method IFD Table Return period (years) 5 Event type Minor Partial area effects	Network design factors Allow part-full pipe flows Design pipe inverts Design pipe sizes Preferred pipes file metric.pip
Generate results in plan Image Drainage plan PPF Image.drainplanppf Model for plan results Image.drainplanppf Clean model beforehand Image.drainplanppf	Generate hydrology report 🔽 Report type Formatted 💙 Hydrology report file hydrology.rpt 🗀 Overwrite existing report file 🔽
Generate results in long-section Image Drainage long-section PPF ainage.drainppf Model stem for long-section results Image Clean model(s) beforehand Image	Generate hydraulic report 🔽 Report type Formatted 💙 Hydraulic report file hydraulic.rpt 🗀 Overwrite existing report file 🔽
	or Help

In general the **Analyse network** is always selected. If you only want to plot or create the reports then remove the tick.

Storm Factors

Select the folder icon on the **Rainfall location file** and then walk right on the **Lib** line to select one of the rainfall files in the 12d library. If the file has only one type of rainfall definition then the **Rainfall method** field will be completed. Otherwise select the **Rainfall method** desired. The valid **Return period** will depend of the method selected but you cannot extrapolate beyond your data.

Event type determines which set of design values (**minor or major**) will be used for this run. Enable the 12d rational method engine partial area calculations by selecting the **Partial area effects** box.

Network Design Factors

Selecting Pipe Sizes

These values control the values to be designed in the run. If **Design pipe sizes** is selected then a files containing the available pipe sizes must be supplied. The pipe sizes in this file are in the

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Units specified in the drainage network editor. To create a new file, enter the file name and then select the folder icon followed by the **Edit** line. The following panel will appear.

C	P	referre	d Pipes Fil	e	_ 🗆 🗙
	Pi	ipe file	Class 2.pip	2	Read Write
		Use	Diameter or Height	Width	_
	1		.350		
	2		.375		
	3		.450		
	4	 Image: A start of the start of	.525		_
	ok				
		Fir	nish		Help //

The diameters/heights are required and the width is optional to specify a box culvert.

YOU MUST SELECT THE WRITE BUT-TON!

The **Upsize only** selection will stop pipes in the system from being reduced in the design. Regardless of this selection, the 12d design engine will not allow a smaller pipe to be selected in the downstream direction.

Generate Results in Plan

This selection automatically runs the drainage plot annotation function. A **Drainage plan ppf** must be entered and samples are supplied in the 12d library. A **Model for plan results** is required if this option is selected. The **Clean model before hand** tick box forces the model to be cleaned before the labels are created. When not selected a "Smart clean" is performed.

Generate Results in Long Section

This selection automatically runs the drainage long section plotter. A **Drainage long section ppf** is required and examples are found in the 12d library. A **Model stem for long section results** is required if this option is selected. In almost all cases the **Clean model before hand** tick box should be selected.

Generate hydrology report

Generate hydrology rep	oort 🔽	
Report type	Formatted	Select Choi 🗵
Hydrology report file	hydrology.rpt	Formatted
Overwrite existing repo	ort file	Comma-delimited Tab-delimited
Generate hydraulic rep Report type	ort 🔽 Formatted	

The hydrology report may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases Overwrite existing report file will be selected.

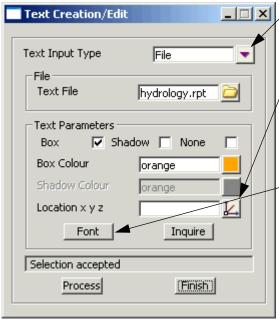
COURSE NOTES STORMWATER DESIGN

7.3 The Run Button and HGL data on the Section View

When the **Run** button is selected the discharges are calculated, the HGL check is performed and the pipes sizes and inverts are designed (if selected). The plan and long section drawings will also be updated with the new data (if selected).

The HGL values will also be available on the 12d section views when profiling the drainage strings. The colour of the HGL line may be changed via the view's menu button then **Settings->Drainage**.

	"my drainage->1" × ४ ४४ ↔ ↔ ९ • View Settings "1" 🗴	€ ≤	<u>@ @ % </u> <	8	
Redraw Fit Previous Zoom Pan Profile Regenerate Plotting Utilities Delete	Toggle Corridor Draw tolerance Drainage Extend Geom apport	View Show HGL HGL colour	Annotations 1 yellow Finish		


7.4 Importing Text into a 12d model

Formatted text may be inserted into a 12d model by selecting

Drafting->Text and Tables->Create edit paragraph text

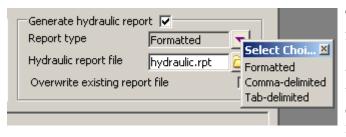
Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Change to **File.**

Select the folder icon and then pick the formatted text file. It will be displayed then select **Set**.

Next select the location in plan for the text.


The font selected must be a fixed space font or the data will not align properly.

Select the **Font** to display the following panel.

🗾 Defa	aults - '	Text 🗕		′]
				7
Text	Model	nage hydrology	2	ę
Text	Colour	cyan		
Text	Size	3	+]
Text	Width	1	+	/
Text	Angle	0°	$\overline{\Delta}$	
Text	Style	ISOEQ	X	
Text	Justify	bottom-left	$\mathbf{}$	/
tex	t style o	ik 🖌		
Del	faults	SetFinish	า	

Enter a **Text Model** for the report. The **Text Style** must be a fixed space font. Select **Set** then **Finish.** Now add the **Text Model** onto the

Generate hydraulic report

The **hydraulic report** may be formatted for inserting into a 12d model/text editor (formatted) or spreadsheet (comma or tab delimited). In almost all cases **Overwrite existing report file** will be selected.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN

If you want both the hydrology and hydraulic report in the same file, enter the same file name in both file fields but turn of the **Overwrite existing report file** for the hydraulic report.

7.4.1 Design Results

Results from the design runs are shown in several forms:

1. Hydrology and hydraulic reports

2. Drainage plan annotations

3. Drainage longsections

- 4. Hydraulic Grade line on the Section view
- 5. Output window data Service/utility clashes

Samples of the hydrology and hydraulics report are shown below.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

File: C:\12djobs\Courses\7.00\Drainage\hyd	s/Course	es//.uu	VDrain	age∖hydı	rology.rpt	22/06/2004,	- 1	12:09:26AM	6AM								
12D MODEL - HYDROLOGICAL Minor 2 Year Storm Event	HYDROLOGICAL : Storm Event		DESIGN SHEET	13													
Project: Drainage Network: Location File: Tc Method: Rainfall Method: Pervious C Method:		Nage NAUS ct 1987	network ACT Can	berra.	12dhydro												
Pit Land ID Type	Time Tc	Intensity I		Runoff C	Tot Area & [%Imp]	Comp	onent Areas	Full CA	Full Sum CA	Full Q-CIA	Partial CA	Partial Sum CA	Partial 0-CIA	4 7		Inlet Type	Inflow Q
(-) (-)	(min)		(mm/hr)	-)	(ha)	0	(ha)	(ha)	(ha)	(r/s)	(ha)	(ha)	(I/3)	(IL/S)	-	(L	$(\Gamma/3)$
1-1 Pervious	10.00		55.25 73 65	0.53	0.0827		0083 0.	0044	0.0714	11.0	0.0022	0.0692	14	.0 14	14.0 N	НМ	14.0
1-2 Pervious Tenaruious	-		55.25 72.65	0.53	0.0590	ide		0031	0.0510	7.8	0.0016	0.0494	г	0.0 10	10.0	СЪ	10.0
1-3 Pervious Tenevious			55.25 72 65	0.53	0.0532		0053 0.	0028	0.0459	7.0	0.0014	0.0445	6	0.	0.0	CONC COVER	0.0
2-1 Pervious Twownious			55.25 72 65	0.53	0.5182			0275	0.4472	68.6	0.0137	0.4335	87	<u>ب</u>	87.5 1	НМ	87.5
3-1 Pervious Impervious	10.00		55.25 72.65	0.53	0.1843 [90]		1659 0.	0098	0.1591	24.4	0.1493	0.1542	31	.1 31	-	HM	31.1
File: C:\12djobs\Courses\7.00\Drainags\hydraulto.rpt	s\7.00\Drai	tnage/hydr	caulte.rpt	22/06/20	04, 12:09:26AM	N											
120 MODEL - HYDRAULIC DESICA SHEET Minor 2 Year Storm Event	ESICN SHEET	н															
Projact: Drainaga Matwork: Mannings n Boughnass: Pipa Covar Limit: Simulation Tima:	l drainaga matworf 0.01 1.1 m 24 minutas	ne two rft s															
Pipa Pipa I ID Typa Lai	Pipa Pipa Langth Siza	US-Pit Inflow	Pipe Flow	Capacity P	Pipe Capacity Vol Val	US-Pit Nu	US-Pit 1 Cover PL	us-pipe	03-Pipe 11 0	DS-Dit U Covar PL	US-Pit US-Pipe HGL HCL	1po DS-P1po HCL HCL	DS-Pit HGL	Pipe HGL Grade Grade		Cowar Dapth F'l Min US	F' board US
(-)	(unu) (u)	$\langle L/\sigma \rangle$	$\langle L/\sigma \rangle$	(T/2) (II	{m/a} {m/a}	÷	ij	Ē	Ê	Ê	Ê	(II)	Ê	ŝ	(e)	(a) (4)	Ē
L-1 to L-2 BCPAY X 4 L-2 to L-3 BCPAY X 5 L-3 to L-4 PWC 4 2-1 to L-2 BCPAY X 11 2-1 to L-3 BCPAY X 3 3-1 to L-3 BCPAY X 3	45.93 350 54.65 350 49.91 350 18.44 350 31.31 350	11.9 8.5 7.7 74.8 26.6	11.9 95.2 129.5 74.8 26.6	189.6 189.6 189.6 189.6 189.6 189.6 1	1.01 1.97 1.65 1.97 1.73 1.97 1.86 4.24 1.97 1.19	00000	30.09 29.08 29.32 28.49	28.10 26.99 25.84 27.86 26.78	27.64 26.44 25.34 27.01 26.46	29,08 27,88 26,78 29,08 27,88	28.17 28.17 27.21 27.21 26.14 26.14 27.97 27.97 26.88 26.88	.17 27.70 .21 26.62 .14 25.56 .97 27.21 .88 26.55	27.21 26.14 25.56 27.21 26.14	11100 11100 11100 11100 11100	1.01 1.09 1.16 1.16 1.16 1.16	1.10 19 1.10 64 1.10 84 1.14 31 1.10 31	1.60 1.60 1.60

COURSE NOTES STORMWATER DESIGN

8.0 Drainage Data Input and Output to Spreadsheets

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as "user definable attributes". These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the "arrows" data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but manholes cannot be added to existing strings.

See also

12d to spreadsheet transfers Spreadsheet to 12d update and create Spreadsheet options

8.1 12d to spreadsheet transfers

This interface is accessed the Import/Export button on the Drainage Network Editor.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor: Imp	ort/Export 🛛 🗖 🔀		Select Export
Drainage model I/O action I/O format	stormwater Export Spreadsheet clipboard		Select Spreadsheet clipboard
I/O file name Export options Export catchment details Export bypass flow details Export pipe inverts and sizes	clipboard.txt		These options are not used for spreadsheet export.
Spreadsheet options Export all junction pits Preset output List file name	All data		Usually leave this off! Select to export the junction pit at the end of all drainage lines (very rarely needed).
Import options Hold obverts on import Generate results in plan Drainage plan PPF Model for plan results Clean model beforehand	Jer, drainplanppf		You may also select to limit the output if desired. If you like using spreadsheets for data entry, the PCdrain data and ILSAX data formats are useful for adding data for the first time for either program.
Generate results in long-section Drainage long-section PPF Model stem for long-section results Clean model(s) beforehand	nwater.drainppf	-	Select Run to place the data on the clipboard.
Run Back to Edit	or Help		

8.2 Spreadsheet to 12d transfers

This item is accessed from the **Import/Export** button on the **Drainage Network Editor**. The following panel will appear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Drainage Network Editor: Impo	ort/Export 📃 🗖 🔀	
Drainage model	stormwater	_ Select Import
I/O action	İmport 🗹	Select the Spreadsheet clipboard
I/O format	Spreadsheet clipboard	format.
I/O file name	clipboard.txt 🔂	└ The file field is ignored.
Export options Export catchment details Export bypass flow details Export pipe inverts and sizes Spreadsheet options	য য য	
Export all junction pits		
Preset output List file name	All data	
Import options Hold obverts on import Generate results in plan 🔽 Drainage plan PPF Model for plan results Clean model beforehand	er.drainplanppf	This is ignored on spreadsheet imports.
Generate results in long-section Drainage long-section PPF Model stem for long-section results Clean model(s) beforehand Run Back to Edito	Inwater.drainppf	model.

Tab delimited, "12d drainage spreadsheet" format or "from to" format data must be on the clipboard in order to update a 12d drainage model or create a new model. These format are described below.

8.2.1 Updating an Existing Model

The data usually is generated by 12d using the **Export** option, pasted into a spreadsheet and then copied back to the clipboard so that 12d can be updated.

When 12d exports the drainage model to a spreadsheet it includes a column for the unique string identifier and a unique manhole identifier (unique to the drainage model not the 12d project). The names of the strings and manholes may be changed via the spreadsheet if these columns are present at import time.

If the manhole id column is not present, 12d will search the drainage model for a matching man-

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

hole name. When the manhole is a junction between drainage lines, only the trunk line will be the data updated.

8.2.2 Creating a New Model

It is possible to create a new string or an entire drainage network using this format. However, manholes cannot be added to an existing string. The entire drainage string must be created at once. Two formats are available, the "from-to manhole" format and the "12d drainage spreadsheet" format.

At present the network editor must select a drainage string to become active. Therefore, if you are not adding strings to a network, you will have to great a drainage network with one "dummy" manhole. Select this one "dummy" manhole to activate the editor. After importing the data and the new drainage lines are created the "dummy" manhole may be deleted.

12d drainage spreadsheet Format

The top left cell in the clipboard data must be the text "12d" to specify this format. The minimum amount of data required to create a new string is the string name, manhole name, x and y coordinates. You can add as much additional data as you have available. This would include pipe diameters inverts etc. The manholes must be listed from upstream to downstream order. If the string is to join a trunk line, the junction manhole must be included for both the tributary and the trunk line.

An example file exists called **new_network.txt** is supplied in the library. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Set the **I/O Action** to **Import** and select **Run**. The new drainage lines will exist in the model currently being edited.

From-to Manhole Format

The top left cell in the clipboard data must be the text "from to" to specify this format. The minimum amount of data required to create a new string is the upstream pit name "*pit name), the downstream pit name (*ds pit name) and the x(x location) and y(y location) coordinates of the upstream pit. If the string is to join a trunk line, the junction manhole must be included for both the tributary and the trunk line.

An optional column for the manhole cover elev (cover elev) may be specified. Once the network has been created additional pipe and manhole data may be added using the "12d drainage spreadsheet" format described above.

An example file exists called **new_from_to_network.txt** is supplied in the library. It is shown below. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Enter a new model name in the **Drainage model** field and select paste. The new drainage model will now exist.

COURSE NOTES STORMWATER DESIGN

from to	pit	pit	pit	pit
*pit name	*ds pit name	x location	y location	cover elev
text	text	real	real	real
E/1	A/3	5309.458	7336.935993	29.2173
D/1	A/4	5277.189	7336.935989	28.5071
C/1	B/3	5251.238738	7423.99485	31.5257
A/1	A/2	5354.629222	7336.935998	30.2115
A/2	A/3	5340.019987	7322.035996	29.89
A/3	A/4	5293.458002	7322.035991	28.8652
A/4	A/5	5250.182625	7322.035986	27.9127
A/5	A/6	5217.194202	7322.035983	27.1867
A/6	A/7	5183.458002	7322.035979	26.4442
A/7		5152.698693	7322.035975	25.7672
B/1	B/2	5289.42875	7422.289079	32.7197
B/2	B/3	5264.638564	7393.947083	30.7948
B/3	B/4	5249.738564	7384.207593	30.4187
B/4	B/5	5249.738564	7351.201545	29.1444
B/5	A/5	5233.426685	7336.935984	27.544

8.3 "12d drainage spreadsheet" Format

Each column of data is used for a 12d drainage variable or a user defined attribute. Each row represents a manhole and the downstream pipe (controlled by the direction of flow variable) within the drainage network. A sample is shown below.

COURSE NOTES STORMWATER DESIGN

12d	pit	pit	pit	pit	pit	pit
*string Name	*pit name	pit type	pit low ch invert	pit high ch invert	pit id	string id
text	text	text	real	real	integer	integer
E	E/1	SA2	28.108	28.108	1	67389
E	A/3	SA2	27.7559	27.7559	2	67389
D	D/1	SA2	27.3961	27.3961	3	68100
D	A/4	SA2	26.8018	26.8018	4	68100
С	C/1	SA2	30.67	30.67	5	72072
С	B/3	SA2	29.563	29.563	6	72072
A	A/1	SA2	29.1026	29.1026	7	82469
A	A/2	SA2	28.7811	28.7311	8	82469
A	A/3	SA2	27.7652	27.7059	9	82469
A	A/4	SA2	26.8127	26.7518	10	82469
A	A/5	SA2	26.0867	26.0244	11	82469
A	A/6	SA2	25.3442	25.2942	12	82469
A	A/7	SA2	24.6672	24.6672	13	82469
В	B/1	SA2	31.2759	31.2759	14	192068
В	B/2	SA2	29.351	29.301	15	192068
В	B/3	SA2	29.123	29.073	16	192068
В	B/4	SA2	28.0444	27.8951	17	192068
В	B/5	SA2	26.3447	26.2947	18	192068
В	A/5	SA2	26.0744	26.0744	19	19206

Duplicate Definitions

Strings Variables such as "direction" are may be defined for numerous manholes on the same string. Searching in a top down direction through the file, the last definition found for the string will be set.

Invert levels may be set via pipe data or pit data or combined. It is recommended that the user only use one method and not combine them. Both are exported so delete the ones you are not going to use. The variables are processed from left to right, so if duplicate definitions of an invert level or found the right most data will be set.

The format definition

- 1. Row1, column 1 must contain either "12d", or "from to". Therefore, the first column must be a 12d drainage variable (cannot be a user defined attribute).
- 2. Row 1. The text <pit> at the top of the column indicates the column contains a user defined pit attribute and similarly <pipe> indicates a user defined pipe attribute.
- 3. Row 2. This row contains the names of the 12d drainage variable names and the pit/pipe attributes. All names are case sensitive so be careful where you use capital letters. A list of 12d drainage variables is found below.

Names beginning with an asterix (*) will not be processed (except pit/string names when unique identifiers are present in the data). 12d drainage variables names beginning with an asterix indicate that this data was calculated at export time and cannot be read back into 12d (for example, pipe length, pipe grade and deflection angle).

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

Prefixing an user defined attribute name with "DELETE" (no quotes, note the space after the DELETE) will cause the attribute to be deleted from all pits/pipes within the model.

4. Row 3. The text in this row define the type of attribute to be stored within 12d. The only valid choices are;

integer real text

If you want to change an attribute type you must delete the attribute and create it again. If you simply change the attribute type in the third row then that attribute will not be updated.

- 5. Blank lines may be inserted as desired.
- 6. You are not required to fill in all of the cells in the spreadsheets. Blank cells are ignored (you must use a space to remove all data from text attributes (the space will not be stored).
- 7. Pipe names are included in the data so that they can be changed but they are <u>not</u> used to identify the pipe. Pipe data will always be assigned to the pipe following the pit in the direction of <u>ascending</u> chainage. If flow directions is ascending then the pipe data will be for the downstream pipe. If the flow direction is descending then the pipe data will apply to the upstream pipe.

Manhole Variables	Pipe Variables	String Variables
*string Name	pipe name	direction
*pit name	pipe type	fs tin
pit type	low ch invert	ns tin
pit diameter	high ch invert	string id
pit low ch invert	diameter	
pit high ch invert	*length	
pit road chainage	*grade	
pit road name	low hgl	
*pit angle	high hgl	
*pit drop	pit hgl	
*pit depth	flow	
*pit chainage	velocity	
x location		
y location		
cover elev		
*fs elev		
*ns elev		
pit id		

8.4 12d Drainage Variable Names

COURSE NOTES STORMWATER DESIGN

9.0 Reviewing, Changing and Creating User Defined Attributes

The catchment data is stored within 12d as user defined attributes. These attributes are automatically created by 12d when required but you are free to change them or add more as desired. The attributes may be exported to a spreadsheet and edited and then imported back into 12d. To work with the user defined attributes within 12d select

📲 Top 10 Attribute Edi	tor 💶 🗵 🗙	First Select Pick to select the string
Pick string	drainage network->	that contains the user attributes (the drainage string). The strings will be highlighted in white when they are selected.
1 area	Real ▼ 0.169800 +	All catchment data is store with the
2 catchment model i	beger ▼ 94749 +	manholes in drainage strings. To
3 patchment string id	r jeger 🖌 95899 +	access the manhole attributes, select the drop down icon and then select
4	Real 🔻 not found +	manhole. A circle will be drawn
5	Text 🔻 not found +	around the manhole selected. Next
6	Text 💌 not found	and Prev will now move you from
7	Text 💌 not found +	manhole to manhole.
8	Text 💌 not found +	Select the drop down icon and then
9	Text 💌 not found +	select the Attribute Name from the
10	Text Text Inot found +	list of existing user defined attributes. These attributes include all of the
First pit selected		attributes in the model that the string
Process	Finish	exists in.

Design=>Drainage-Sewer=>More=>Top 10 Attribute Editor.

They may not be defined for the manhole you are editing. **Not found** will be displayed in the **Data** field if the manhole does not have that attribute defined.

To change the value for the attribute enter the new value in the **data** field. If the attribute does not exist, deleting the **not found** text and adding data will create it. The message on the right will be displayed whenever you are creating a new attribute.

B Pit Attribute Creator	_ 🗆 🗙
Create new attribute	
Abort	
You are about to create the pit attribute <inspection dates<="" td=""><td>type Te</td></inspection>	type Te
Procest	

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

10.0 Manhole/Pit Schedules

Manhole/pit schedules or construction tables are generated in tab or space delimited formats.

This panel is accessed from the menu selection

Design => Drainage => More Drainage => Pit schedule

📲 Pit Schedule	
Drainage model name	drainage network Drains 🧮
Pit Schedule file name	Pit_report.txt
Report format	Easting Northing
Data delimiter	Tab 🔽
Repeat header for each lin	ne 🔽
Calculate road chainage/o	ffset 🗖
Easting-Northing Location	pit centre
Cover elevation location	pit centre
choice ok	
Process	Finish

The fields and buttons used in this panel have the following functions.

Field Description	Туре	Defaults	Pop-Up
Drainage model name model containing the drain	input box age strings	drainage network	
Pit schedule file name file to be created	input box	pit report	
Report Format file format	choice box	Road chainge.,Easti	ng
Data delimiter tab delimiters are best for s	choice box preadsheets and space	Tab, Space se for some text editor	rs
Repeat header for each line when selected, the column		selected ted each drainage line	2
Calculate road chainage/offse	e ts tick box	selected	

only used for road chainage-offset format. When selected, the road chainages and offset calculation panel will be displayed so that the this data can be updated before the report is generated. (see below)

Easting Northing Location choice box

pit centre, road design string

COURSE NOTES STORMWATER DESIGN

easting northing data can be from the manhole centre or the x,y location on the road design string that the manhole has been linked to

Cover elevation location choice box pit centre, road design string

the cover level elevation can be from the manhole centre or the elevation on the road design string that the manhole has been linked to (if a link has been made then these values should be the same). Note that the road design string data is **NOT** calculated at this time. These are the values calculated from the Drainage Misc Utilities or the last drainage data export.

Process button

Create the pit report

Finish button

remove the panel from the screen

Notes:

The columns of data may be separated by spaces or a tab. (tab is used for spreadsheet transfers). The internal width and length data are retrieved from the **drainage.4d** file for the pit type specified. If you want a longer description for the pit then the type used inside 12d this can also be entered in the drainage.4d file. The remarks for each pit are entered as user defined pit attribute named **remarks** and may be set using the attribute editor (on the drainage menu) or via a spreadsheet.

Easting Northing Sample

.PIT SCHEDULE

Pit **INTERNAL INLET** OUTLET PIT No TYPE EASTING NORTHING WD LEN DIA INVLEV DIA INVLEV FINRL DEPTH REMARKS B1 SA2 5302.458 7336.936 450.000 900.000 375 28.210 29.387 1.177 A2 SA2 5264.3727322.036 450.000 900.000 375 27.470 28.646 1.226 C1 SA2 5224.155 7336.936 450.000 900.000 375 26.690 27.863 1.173 A3 SA2 5187.9107322.036 450.000 900.000 375 25.930 27.158 3.628 A1 SA2 5309.4587321.100 450.000 900.000 225 28.550 29.577 1.027 A2 SA2 5264.3727322.036 450.000 900.000 225 27.470 375 27.420 28.646 1.226 A3 SA2 5187.9107322.036 450.000 900.000 375 25.930 375 23.530 27.158 3.628 A4 SA2 5157.411 7321.332 450.000 900.000 375 23.090 26.714 3.624 outlet to existing system NOTE:

1. ALL SETOUT POINTS QUOTED TO CENTRE OF PIT

Road Chainage Offset Example

DRAINAGE LINE APITPIT LOCATIONLOCATION OFFSETSNo.EASTINGNORTHINGSTATION CTRLOFFSTYPEREMARKS

COURSE NOTES STORMWATER DESIGN

A/1	5354.629	7336.936	231.171	d002	-7.450
A/2	5340.691	7320.911	217.233	d002	8.575
A/3	5293.458	7320.886	170.000	d002	8.600
A/4	5250.131	7320.886	126.673	d002	8.600
A/5	5217.194	7322.036	93.736	d002	7.450
A/6	5183.458	7322.036	60.000	d002	7.450
A/7	5152.699	7322.036	29.241	d002	7.450

Notes

The Set pit details must be run at least once to before printing the report. If the pits are moved or the designed strings changed then this option must re rerun.

The Road Chainage and Offset Pit Schedules use two user defined attributes for each pit. The first is **ctrl string** which identifies the string that the pit will be offset from and the second is **ctrl model** which contains the model name for the control string. These may be manually created/modified using a spreadsheet or the attribute editor.

The easting northing data obtained for the **road design string** option is obtained by dropping the manhole centre perpendicular onto the selected road design string. This data is stored as pit attributes **setout x** and **setout y**. It is calculated when the manhole cover levels are recalculated (drainage misc utilities and during drainage export (recalc level option must not be turned off)).

The cover elevation data obtained for the **road design string** option is obtained by dropping the manhole centre perpendicular onto the selected road design string and obtaining the elevation at this point. This data is stored as pit attribute **level z**. It is calculated when the manhole cover levels are recalculated (drainage misc utilities and during drainage export (recalc level option must not be turned off)).

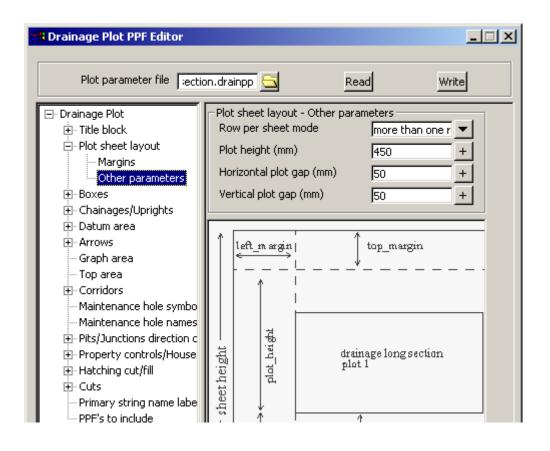
COURSE NOTES STORMWATER DESIGN

11.0 Long Section Plotting

Detailed description of the 12d drainage long section plotting may be found in the 12d Reference manual. The long section plots are customised using the drainage plot parameter files (drainppf). Title blocks, user defined text may be added and then plotted directly or to various file formats (dwg, dgn etc.). From the main menu

Design=>Drainage-Sewer=>Plots=>Longsections

See Also


manhole Schedules to set road chainage and name data

 Arrows Graph area Top area Corridors Maintenance hole Pits/Junctions dire Property controls, Hatching cut/fill Cuts Primary string nar PPF's to include Plotter type Plotter type Imodel Plot file stem plot Gas corridor This will save the setting we are about to make should you want to replot this long section. This section view determines the additional models (such as services) to show plot These are referred to as corridor models. The vertical exaggeration is also 		⊡ · Drainage Plot . Title block . Plot sheet layout	View to load details fro	Read	Write	To access the drainppf files sup- plied select the icon and then walk right on Lib to select this drainppf file.
		 Chainages/Uprigh Datum area Arrows Graph area Top area Corridors Maintenance hole Maintenance hole Pits/Junctions dire Property controls, Hatching cut/fill Cuts Primary string nar 	Text style Plot symbols Section parameters Network model Horizontal scale Vertical exageration Sheet size setup Sheet size wd ht (mm) Plotter parameters Plotter type	a network north 1000 + 5 A1 model		Enter a new name for this drawing and select Write . This will save the setting we are about to make should you want to replot this long section. This section view determines the additional mod- els (such as serv- ices) to show plot. These are referred to as corridor models. The ver- tical exaggera- tion is also obtained from this
	Ì	·	Find	Finish	Help	

COURSE NOTES STORMWATER DESIGN

The **network model** field will be completed with the model of the string being profiled. If this is not your drainage network model then select it now.

When **Plotter Type** is set to model then **plot file stem** is the model name prefix for plots that will be created. The first sheet of plots will be in model **plot1**, the second in **plot2** etc.

The **plot height** determines how much room is left vertically for the actual plot. This specifies the total height of the plot. 12d then constructs the box area and arrow area on the bottom and then arrow area on the top. The amount left over is used for the long section itself.

To stop datum breaks from occurring increase this height, increase your plot scale or decrease your vertical exaggeration. If there is too much white space in the graph area then reduce this value.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

📽 Drainage Plot PPF Editor		
Plot parameter file Fiection	n.drainpp 🔄 Read	Write
 Drainage Plot Title block User title info Plot sheet layout Margins Other parameters Boxes Chainages/Uprights Datum area Arrows Graph area Top area Corridors Maintenance hole symbo Maintenance hole names Pits/Junctions direction c 	User title block parameters Title file Value 1 Main Title 1 My Design 2 Main Title 2 3 Main Title 3 4 Sub title 1 5 Sub title 2 6 Job Number 7 Issue 8 Drawn 9 Designed 10 Modelled	j_section_a1.tf ⊡
Property controls/House Hatching cut/fill Primary string name labe PPF's to include	Time format Start page number Start drawing number Drawing number prefix Drawing number postfix	
Plot	Find Finish	Help

The **+Drainage plot+title block+User title info** allow you to enter the text for the title block. The list displayed is retrieve from the **title file** selected above. Enter the data for the plot and then select **Write** to save the changed to the local drainppf file you entered earlier.

Select **Plot** and the plots will be send to the **plot file stem** entered. These models may be added (one at a time) to a plan view to inspect them before plotting to paper or exporting to other drawing packages.

If changes are to be made and then plotted again you must delete the drawings in the model. These models may be cleaned out using

Models->Clean

12d Solutions Pty Ltd_____

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

🍀 Clean Model 📃 🔲 🗙						
plot*						
Finish	Help					
	plot*					

The asterisk may follow the plot file stem to clean all of the models at once. You will be shown the model list before they are cleaned.

COURSE NOTES STORMWATER DESIGN

12.0 Working with Kerb/Lip Strings

The reference point for kerb inlet manholes is usually on the kerb lip string or a fixed distance off the string. The rest of the strings only complicate the picture so we will take copies of the kerb strings to be placed in another model. Isolating the kerb strings into a separate model and joining them together is the recommended way to work with them. This may take a few minutes but sometimes you have even less time than that. So first lets look at how to pick kerb strings quickly.

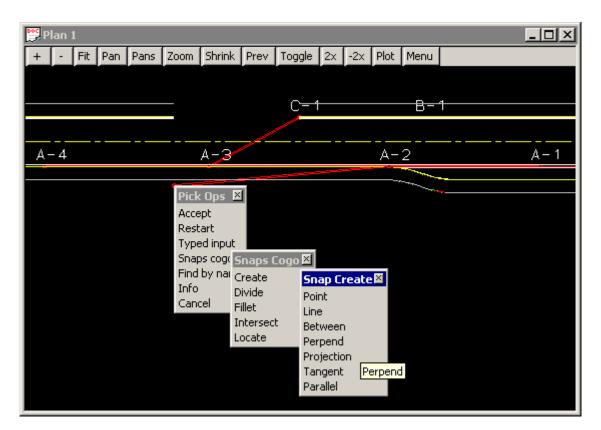
12.1 Picking kerb strings - name snap

Strings generated by 12d have specific names attached to them. The lip string is often called "lok". Therefore, if we could restrict our string selection to those strings named "lok" it would make placing the manholes very efficient. We are going to do this with the **Name snap**.

There are 3 types off snap tool bars available. Standard, vertical and horizontal. To obtain the standard snaps toolbar select, **Utilities=>Snaps** and the following snap toolbar will appear.

Snaps ⊠ Point ☑ / Select	t Name and the following panel will appear.
Line 🔽 / Enter	lok and select Set. Now only strings with this name will be
Text \Box / select	
Grid	
Cursor 🔽	
Height 🔽	🗱 Snar Name 📃 🗖 🔀
Tin ""	
Tin 🗖	Name lok +
Segment	
Name ""	Set Finish Help
Model ""	<u>Set</u> Finish Help
Tolerance 50	
Pt tolerance 10	
Info 🔽	
Data tip 🔽	
Fast pick 🔽	

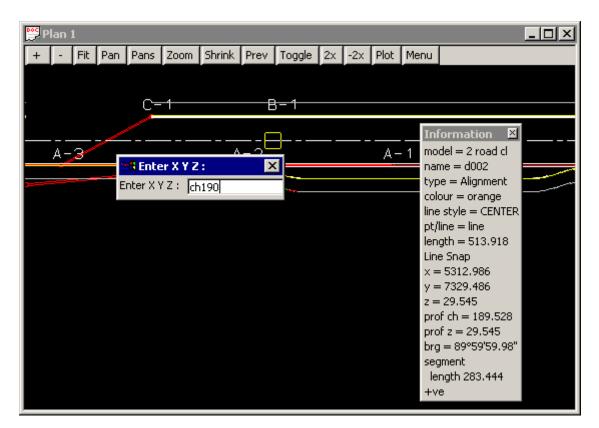
Leave the panel up to remind your erase the lok entry and select **Set** again so that you will once again be able to pick any string.


12.1.1 Placing a manhole at a Specific Control String Chainage

When appending or moving drainage manholes, the following steps will place the manhole at a specific chainage along the control string.

1. **RB** and then select **Snaps cogo=>Create=>Perpend** from the menu. Messages indicating what to be done next are given in the bottom left corner of the 12d window.

Civil and Surveying Software


COURSE NOTES STORMWATER DESIGN

- 2. **LB** select but **do not** accept the road centre line (control string).
- 3. To place the manhole across from chainage 2100 Type ch2100 then press enter.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

- 4. **MB** accept the inserted point. This identifies the point on the control string. Next
- 5. LB select the lip line then MB accept. The construction point will be displayed on the lip line

	🚆 Plan 1													
+	-	Fit	Pan	Pans	Zoom	Shrink	Prev	Toggle	2x	-2x	Plot	Menu		
-	- C -1 B-1													
	name lok													
—								2 road strings						
	A-3 A-2 A-1 × 5355.008													
_	y 7336.486													
							30.26							
	prof z 30.26						30.26							

6. **MB** accept the construction point to place the manhole.

12.1.2 Placing a manhole at a Specific Distance/Offset along the kerb string

When appending drainage manholes, the following steps will place the manhole at a specified distance along a string and if desired an offset.

1. RB and then select Snaps cogo=>Locate=>Offset from the menu. Messages indicating what to

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN

be done next are given in the bottom left corner of the 12d window.

- 2. When you select the string to measure the distance along, do not click but rather drag in the direction you want to offset. Next MB accept
- 3. LB select then MB accept the control point to measure the distance from. (If this point is not on the string selected in step 2 the point will be dropped perpendicularly onto that string).
- 4. Type the distance along the string then press Enter (a negative value would go in the opposite direction to the drag in step 2).
- 5. Type the offset distance from the string then press Enter (positive is defined using a right hand rule method from the direction in step 2).
- 6. MB accept the construction point to place the manhole.

12.2 Locating Crests and Sag Points

This step will place tick marks at the crest and sag points of your kerb strings. It is an optional step but it will help ensure that a drainage manhole is always placed at SAG manhole locations.

If your road designer has given you kerb inverts strings split into numerous sections, use the "head to tail" feature described in section 4.2 above before using this section. The crests and sag locations along the design string can be identified using the selection

Strings =>Label => Chainages

Civil and Surveying Software

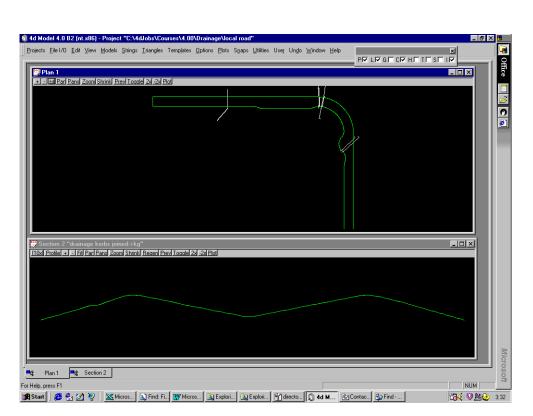
COURSE NOTES STORMWATER DESIGN

Data to label	ing	Enter the model name for the kerb strings.
Label mode n/a n/a Start chainage End chainage Special chainages	crests/sags	–Select crests/sags from drop down list.
Chord/Arc tolerance Labels Marks Model for labels Stem for labels Textstyle info # dec pl for labels Chainages Null Heights Choice ok Points Label	0.1 +	Enter a model to contain the text labels. A ,1 after the model name, requests that the model be added to view 1. This saves you adding the model to the view later to see the labels. Select icon to define the text style. Optionally select heights and not chainage. Select the Marks property sheet
Labels Marks Model for marks Mode for marks Size for marks (w) Colour for marks Colour for marks	crests and sags ticks centered 5 red	 Type the same model name as above for the tick marks. LB to select ticks centred from the drop down list. 5m white marks stand out well on the screen. Select Label to create the labels. Select Finish to remove the panel.

To get a clear picture of what the kerbs look like in profile lets create a section view and profile the kerb string.

To obtain more working area, hide the **Output Window** (Window=>Output window).

From the main menu select,


Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

View=>New=>Section View

Now Select Profile on the **section view title area** and then pick the kerb string in the plan view. Your screen should now look like the following.

Х

Place your pointer in the section view and notice how the cross in the plan view indicates your position in plan.

12d Solutions Pty Ltd_____

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN

THE END