
12D SOLUTIONS PTY LTD

 ACN 101 351 991

 PO Box 351 Narrabeen NSW Australia 2101

 Australia Telephone (02) 9970 7117 Fax (02) 9970 7118

 International Telephone 61 2 9970 7117 Fax 61 2 9970 7118

email support@12d.com web page www.12d.com

12d Model Macro Language
Programming Manual

Version 9.0
July 2011

12d Model Macro Manual

2

12d Model Programming Manual V9.00
This book is the programming manual for the software product 12d Model.

Disclaimer
12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are
accepted.

Every effort has been taken to ensure that the advice given in this manual and the program 12d Model is
correct, however, no warranty is expressed or implied by 12d Solutions Pty Ltd.

Copyright
This manual is copyrighted and all rights reserved.

This manual may not, in whole or part, be copied or reproduced without the prior consent in writing from
12D Solutions Pty Ltd.

Copies of 12d Model software must not be released to any party, or used for bureau applications without
the written permission of 12D Solutions Pty Ltd.

Copyright (c) 1989-2011 by 12D Solutions Pty Ltd

Sydney, New South Wales, Australia.

ACN 101 351 991

All rights reserved.
3

12d Model Macro Manual
4

Introduction ... 11
The Mouse.. 11
Compiling and Running a 4DML Macro ... 12

Basic Language Structure... 15
Basic Concepts ... 15
Keywords ... 15
White Space ... 16
Comments .. 16
Variable Types ... 17

Variable Names and Types ... 17
Constants... 35

Operators and Assignments.. 36
Binary Arithmetic Operators .. 36
Binary Arithmetic Operators for Vectors and Matrices.. 36
Relational Operations ... 37
Logical Operators ... 37
Increment and Decrement Operators .. 37
Bitwise Operators ... 38
Assignment Operators... 38

Statements and Blocks ... 39
Flow Control .. 40

If, Else, Else If .. 40
Conditional Expression... 42
Switch ... 42
While Loop ... 44
For Loop ... 45
Do While Loop ... 46
Continue.. 46
Goto and Labels .. 47

Precedence of Operators .. 48
Reprocessing .. 49

Functions .. 51
Functions .. 51
Main Function .. 52
User Defined Functions.. 53

Array Variable .. 54
Return Statement... 54

Function Prototypes ... 55
Automatic Promotions ... 56
Passing by Value or by Reference ... 57
Overloading of Function Names .. 59
Recursion.. 60
Assignments Within Function Arguments ... 61
Blocks and Scopes.. 62

Locks... 65

4DML Library Calls.. 67
Function Argument Promotions... 67

Automatic Promotions .. 67
Function Return Codes... 69
Command Line-Arguments.. 70
Exit ... 71
Angles .. 72

Pi ... 72
Types of Angles .. 72

Text .. 74
Text and Operators.. 74
5

12d Model Reference Manual
General Text ..74
Text Conversions...76

Textstyle Data ...80
Maths ..87
Random Numbers ...88
Vectors and Matrices ..89
Triangles ...108
System...110
Uid’s..115

Uid Functions ..115
Input/Output..120

Files ...121
12d Ascii..124

Menus..125
Dynamic Arrays ..128

Dynamic Element Arrays ..128
Dynamic Text Arrays ..130
Dynamic Real Arrays ..132
Dynamic Integer Arrays ..133

Points ..136
Lines..138
Arcs...140
Spirals and Transitions..143
Segments ...154
Segment Geometry ...158

Length and Area ..158
Parallel ...159
Tangents ..161
Intersections...162
Offset Intersections..163
Angle Intersect...164
Distance ...165
Locate Point...166
Drop Point ...167
Projection...168
Change Of Angles ...169

Colours..170
User Defined Attributes ..172
Folders ..182
12d Model Program and Folders ..184
Project ...188
Models ..197
Views ..211
Tins ...215

Null Triangles ..223
Colour Triangles ..226

Elements..228
Types of Elements ...228
Parts of 12d Elements ..229
Element Header ...229
Element Attributes...237
Element Body ..245
2d Strings...245
3d Strings...248
4d Strings...251
Interface String ..262
Alignment Strings..265
Arc Strings...274
6

Circle Strings .. 279
Text Strings... 280
Pipeline Strings ... 290
Polyline Strings... 291
Drainage Strings ... 295
Pipe Strings ... 341
Face Strings... 345
Plot Frames ... 351
Feature String.. 359

Super String Element ... 362
Super String Dimensions and Flags.. 362
Super String Functions.. 369
Super String Height Functions.. 376
Super String Segment Colour Functions .. 377
Super String Segment Radius Functions .. 378
Super String Pipe/Culvert Functions .. 380
Super String Vertex Symbol Functions .. 387
Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern Functions..................... 391
Super String Hole Functions... 400
Super String Vertex Text Functions ... 402
Super String Vertex Annotation Functions... 411
Super String Segment Text Functions .. 412
Super String Segment Annotation Functions.. 420
Super String Tinability Functions... 421
Super String Point Id Functions.. 426
Super String Segment Geometry Functions.. 427
Super String Extrude Functions .. 429
Super String Vertex Attributes Functions... 430
Super String Segment Attributes Functions.. 440
Super String Uid Functions... 449
Super String Vertex Image Functions... 450
Super String Visibility Functions ... 451

Element Operations .. 456
Selecting.. 456
Drawing .. 457
Open and Close ... 457
Length and Area.. 458
Position and Drop Point .. 459
Parallel .. 460
Self Intersection .. 460
Loop Clean Up.. 461
Locks... 461

Creating Valid Names .. 462
XML... 464
Map File ... 470
Panels ... 473

Widget Controls .. 474
Horizontal Group .. 481
Vertical Group .. 484
Panel Help and Tooltip Calls .. 486
Panel Page... 488
Input Widgets.. 491
Buttons .. 550
GridCtrl_Box .. 555
Tree Box Calls .. 563

General ... 569
Name Matching... 569
Project Functions .. 570
7

12d Model Reference Manual
Null Data ...571
Fence..573
Head to Tail ...574
Convert ..575
Filter ..576
Factor ...577
Helmert Transformation ..578
Affine Transformation...579
Rotate...580
Swap XY ...581
Translate ..582
Triangulate Data ..583
Contour ..584
Drape ...586
Volumes...587
Interface ...589
Templates ..590
Applying Templates ..591
Strings Edits...594
Cuts Through Strings...597
Chains ..598

12d Model Functions ..599
Plot Parameters ...621
Undos ..627

Functions to Create Undos ..628
Functions for a 4DML Undo_List ...630

ODBC Macro Calls...632
Connecting to an external data source...632
Querying against a data source..633
Navigating results with Database_Result ..636
Insert Query ...638
Update Query...639
Delete Query..641
Manual Query ..642
Query Conditions...643
Transactions...646
Parameters ...647

Macro Console..649

Examples ...661
Set Ups.h...663
Example 1 ...669
Example 2 ...670
Example 3 ...671
Example 4 ...672
Example 5 ...673
Example 6 ...677
Example 7 ...680
Example 8 ...682
Example 9 ...688
Example 10 ...694
Example 11 ...697
Example 12 ...701
Example 13 ...710
Example 14 ...721

Appendix - Set_ups.h File..735
Model Mode..736
File Mode..737
8

View Mode... 738
Tin Mode.. 739
Template Mode .. 740
Project Mode .. 741
Directory Mode .. 742
Function Mode ... 743
Linestyle Mode... 744
Symbol Mode ... 745
Snap Mode ... 746
Super String Use Mode .. 747
Select Mode.. 749

Macro Language Course... 5
9

12d Model Reference Manual
10

Chapter 1 Introduction
1 Introduction
The 12D Solutions Macro Language (4DML) is a powerful programming language designed to
run from within 12d Model.

Its main purpose is to allow users to enhance the existing 12d Model package by writing their own
programs (macros).

4DML is based on a subset of the C++ language with special extensions to allow easy
manipulation of 12d Model data. A large number of intrinsic functions are supplied which cover
most aspects of civil modelling.

4DML has been designed to fit in with the ability of 12d Model to "stack" an incomplete operation.

This reference manual does not try to teach programming techniques. Instead this manual sets
out the syntax, restrictions and supplied functions available in 4DML.

Examples of usage are given for many of the 4DML supplied functions.

It is assumed that the reader has an understanding of the basic concepts of programming though
not necessarily using C++.

The Mouse
The mouse is used extensively in 12d Model and also in 12d Model macros.

Most new PC mice have three buttons (left, middle and right) but on older PC's both two and
three button mice exist.

12d Model can be operated with either a two or a three button mouse but a three button mouse is
preferred.

In this manual the buttons will be denoted by

LB = the left button

MB = the middle button

RB = the right-button

LB MB RB

12d Model monitors the mouse being pushed down and when it is subsequently released as separate
events. Unless otherwise specified in the manual, clicking a button will mean pressing the button down
and releasing it again. The position of the mouse is normally taken as being when the button is
Page 11The Mouse

12d Model Programming Manual
released.

In screen messages, the effect of pressing each button on the mouse is shown by enclosing the
effect for each button in square brackets ([]) in left-to-right button order. That is

[left button effect] [middle button effect] [right button effect]

Empty brackets, [], indicate that pressing the button has no effect at that time.

Compiling and Running a 4DML Macro
A 12d Model Macro Language program or macro consists of one file containing a starting
function called main, and zero or more user defined functions. The complete definition and
structure of functions will be specified later in this manual.

The filename containing the macro must end in .4dm.

Once typed in, the macro is compiled, from either inside or outside of 12d Model, to produce a
run-time version of the macro.

It is the compiled version of the macro that is run from within 12d Model.

To compile a 4DML macro, use either

(a) inside 12d Model: the compile or compile and run options

 Utilities =>Macros =>Compile

 Utilities =>Macros =>Compile/run

or

(b) outside 12d Model: the compile_4d command.

 For example

 compile_4d macro-file.4dm

The compiler first checks the macro's syntax and reports any errors to the screen. If there are no
errors, a run-time object is created with the same name as the original macro but ending in .4do.

For example, the compile_4d command

 compile_4d macro-file.4dm

will check the macro macro-file.4dm and produce a run-time object called

 macro-file.4do

To run the run-time macro from within 12d Model, walk-right on the menu option

 Utilities =>Macros =>Run

and select the macro from the list of available macros.
Page 12 Compiling and Running a 4DML Macro

Chapter 1 Introduction
Alternatively, if the Utilities =>Macros menu has been pinned up, then clicking on the Run option
(and not walking right) brings up the Run a Macro panel.

click on Run without
walking right to bring up
the Run a Macro panel

A macro is run by entering the name of its compiled object into the Macro object panel field, filling
in the Macro arguments field if there are any command-line argument for the macro, and then
selecting the button Run.

The Run a Macro panel is then removed from the screen and the macro run.
Page 13Compiling and Running a 4DML Macro

12d Model Programming Manual
Page 14 Compiling and Running a 4DML Macro

Chapter 2 Basic Language Structure
2 Basic Language Structure

Basic Concepts
A name denotes an object, a function, an enumerator, a type, or a value.

A name is introduced into a program by a declaration.

All names must be declared before they can be used.

A name can be used only within a region of program text called its scope (discussed later).

A name has a type that determines its use.

Keywords
The following keywords are reserved and cannot be used for user defined names:

Integer Real Text Element Model

Point Line Segment Menu View

Tin Dynamic_Element Dynamic_Text

break case char continue default

do double else float for

goto if int integer long

real return short switch void

while

auto class const delete enum

extern friend inline new operator

private protected public register signed

sizeof static struct template this

throw try typedef union unsigned

virtual volatile

All 4DML variable types and 4DML functions and user defined functions are also considered to
be keywords and cannot be used for user defined names.
Page 15Basic Concepts

12d Model Programming Manual
White Space
Spaces, tabs, newlines (<enter>, <CR>), form feeds, and comments are collectively known as
white space.

White space is ignored except for the purpose of separating names or in text between double
quotes. Hence blank lines are ignored in a macro.

For example,

 goto fred ;

is the same as

 goto fred;

Comments
4DML supports two styles of comments -

A line oriented comment

 all characters after a double slash // and up the end of a line are ignored.

A block comment

 all characters between a starting /* and a terminating */ are ignored.

An example of comments in 4DML is

 void main()
 {
 Real y = 1; // the rest of this line is comment
/* this comment can carry
 over many lines until
 we get to the termination characters */
 }
Page 16 White Space

Chapter 2 Basic Language Structure
Variable Types
Variables and constants are the basic data objects manipulated in a program.

Declarations list the names of the variables to be used, and state what type they have.

Operators specify what is to be done to variables.

Expressions combine variables and operators to produce new values.

The type of an object determines the set of values it can have and what operations can be
performed on it.

Variable Names and Types
In 4DML, variable names must start with an alphabetic character and can consist of upper and/or
lower case alphabetic characters, numbers and underscores (_).

There is no restriction on the length of variable names.

4DML variable names are case sensitive.

In 4DML, all variables must be declared before they are used. A declaration consists of a
variable type and a list of variable names separated by commas and ending the line with a semi-
colon ";".

For example

Integer fred, joe, tom;

where Integer is the variable type and fred, joe and tom are the names of variables of type
Integer.

There are a wide variety of 12d Model variable types supported in the macro language. For example

(a) void

This is a special type which is only used for function which have no return value. All other functions
must return one variable take as the function return value. The user does not define variables of this
type and it is only used in function definitions.

For example:

 void Exit(Integer code)

(b) Mathematical Variable Types

Standard mathematical variables for calculations using the mathematical operations such as addition,
subtraction, multiplication and division.

These variables only exist within the 4DML macro and cease to exist when it finishes.

For example, Integer, Real, Text, Vector2, Vector3, Matrix2, Marix3, Matrix4

For more information on these variables, go to Mathematical Variable Types

(c) Geometric Construction Variable Types

These objects are used within 4DML macros for geometric calculations. They are only temporary
objects and only last for the duration of the macro.

For example, Point, Line, Arc, Spiral, Segment.

For more information on these variables, go to Geometric Construction Variable Types

(d) 12d Database Handles

These variable types act as Handles to access data stored in the 12d Model database. This data is
retrieved from and stored in the 12d Model database and so exists after the macro terminates.

For example, Element, Dynamic_Element, Tin, Model, View, Function, Undo_List
Page 17Variable Types

12d Model Programming Manual
For more information on these variables, go to 12d Model Database Handles

(e) 12d Internal Variable Types

These variables help access data stored in the 12d Model database handles. This data may be
retrieved from and stored in 12d Model database via the handles, and so can exist after the macro
terminates.

For example, Uid, Attributes, SDR_Attributes, Blobs, Textstyle_Data.

For more information on these variables, go to 12d Internal Variable Types

(f) 12d Interface Variable Types

Variables for building interfaces, such as menus and panels, to communicate with the macro user.

For example, Menu, Panel, Widget, Model_Box.

For more information on these variables, go to 12d Model Interface Variable Types

(g) File Interface Variable Types

Variables for accessing files.

For example, File, Map_File, Plot_Parameter_File, XML_Document, XML_Node.

For more information on these variables, go to File Interface Variable Types

(h) ODBC Database Interface Variable Types

Variables for acessing and manipulating ODBC databases.

For example, Connection, Select_Query, Insert_Query, Update_Query, Delete_Query,
Database_Results, Transactions, Parameter_Collection, Query_Condition, Manual_Condition

For more information on these variables, go to ODBC Database Variable Types

(i) Arrays and Dynamic Arrays Types

Arrays are used to allocate a number of storage units that have the same type. Arrays sore a fixed
number of items and Dynamic Arrays store a variable number of items.

For example, Real arrays, Integer, Arrays, Text Arrays, Dynamic_Text.

For more information on these variables, go to Array Types

For a quick summary of all the 4DML variables, go to Summary of 4DML Variable Types

Mathematical Variable Types

Standard mathematical variables for calculations using the mathematical operations such as
addition, subtraction, multiplication and division.

See
Integer
Real
Text
Vector2
Vector3
Vector4
Matrix3
Matrix4

Integer

A 32-bit whole number. It can be positive or negative. For example -1, 0 and 1.

Real

A 64-bit decimal number. It can be positive or negative. For example -1.0, 0.0 and 1.0

Text
Page 18 Variable Types

Chapter 2 Basic Language Structure
A sequence of characters. For example Dog

Vector2

An entity consisting of two Real values. If the two real values of a Vector2 are X and Y, the values
in a Vector2 are often expressed as (X,Y).

Vector3

An entity consisting of three Real values. If the three real values of a Vector3 are X, Y and Z, the
values in a Vector3 are often expressed as (X,Y,Z).

Vector4

An entity consisting of four Real values. If the four real values of a Vector3 are X, Y, Z and W, the
values in a Vector4 are often expressed as (X,Y,Z,W).

Matrix3

An entity consisting of nine Real values. The values in the Matrix3 matrix are expressed as
three rows and three columns and indexed as matrix(row, column) and

 matrix (1,1) = a matrix(1,2) = b matrix(1,3) = c

 matrix (2,1) = d matrix(2,2) = e matrix(2,3) = f

 matrix (3,1) = g matrix(3,2) = h matrix(3,3) = i

where a, b, c, d, e, f, g, h and i are the nine Real values of matrix.

where a, b, c and d are the four Real values of matrix.

Matrix4

An entity consisting of sixteen Real values. The values in the Matrix4 matrix are expressed as
four rows and four columns and indexed as matrix(row,column) and

 matrix (1,1) = a matrix(1,2) = b matrix(1,3) = c matrix(1,4) = d

 matrix (2,1) = e matrix(2,2) = f matrix(2,3) = g matrix(2,4) = h

 matrix (3,1) = i matrix(3,2) = j matrix(3,3) = k matrix(3,4) = l

 matrix (4,1) = m matrix(4,2) = n matrix(4,3) = o matrix(4,4) = p

where a, b, c, d, e, f, g, h, i, j, k, l, m, n, o and p are the sixteen Real values of matrix.

Geometric Construction Variable Types

Construction variables are used within 4DML macros for geometric calculations but they are
temporary objects and only last for the duration of the macro.

See
Point
Line
Arc
Spiral (Transition)
Parabola
Segment

Point

A Point is a three dimensional point consisting of x, y and z co-ordinates (x,y,z).

A Point is a construction entity and is not stored in 12d Model models.

Line

A Line is three dimensional line joining two Points.
Page 19Variable Types

12d Model Programming Manual
A Line is a construction entity and is not stored in 12d Model models.

Arc

An Arc is a helix which projects onto a circle in the (x,y) plane.

That is, in a plan projection, an Arc is a circle. But in three dimensions, the Arc has a z value
(height) at the start of the Arc and another (possibly different) z value at the end of the Arc. The z
value varies linearly between the start and end point of the Arc. So an Arc is NOT a circle in a
plane in 3d space, except when it is in a plane parallel to the (x,y) plane.

In the 12d Model macro language, an Arc is a construction entity and is not stored in 12d Model
models.

Spiral (Transition)

An spiral is a mathematically defined transition which when projected on to the (x,y) plane, has a
continuously varying radius going between a between a line (infinite radius) and an arc for a full
spiral, or an arc to another arc for a partial spiral.

Note that in 12d Model, the Spiral covers the traditional clothoid spirals and also other transitions
(such as a cubic parabola) which are not spirals in the true mathematical sense.

For more information on Spirals and Transitions, go to Spirals and Transitions in the chapter
4DML Library Calls

In the 12d Model macro language, a Spiral is a construction entity and is not stored in 12d Model
models.

Parabola

An Arc is a helix which projects onto a circle in the (x,y) plane.

That is, in a plan projection, an Arc is a circle. But in three dimensions, the Arc has a z value
(height) at the start of the Arc and another (possibly different) z value at the end of the Arc. The z
value varies linearly between the start and end point of the Arc.

In the 12d Model macro language, a Parabola is a construction entity and is not stored in
12d Model models.

Segment

A Segment is either a Point, Line, Arc, Parabola or a Spiral.

A Segment has a unique type which specifies whether it is a Point, Line, Arc, Parabola or Spiral.

A Segment is a construction entity and is not stored in 12d Model models.

See Segments
Page 20 Variable Types

Chapter 2 Basic Language Structure
12d Model Database Handles

Unlike construction entities, the 12d Model database handle variables are used for data from the
12d Model project database.

The handles don't contain the database information but merely point to the appropriate database
records.

Hence data created with handle variables can be stored in the 12d Model database and will exist
after the 4DML macro terminates.

Since the handle merely points to the Project data, the handle can be changed so that it points to
a different record without affecting the data it originally pointed to.

Sometimes it is appropriate to set a handle so that it doesn't point to any data. This process is
referred to as setting the handle to null.

Note that when setting a handle to null ("nulling" it), no 12d Model data is changed - the handle
simply points to nothing.

See
Element
View
Macro_Function or Function
Undo_List

Element

The variable type Element is used to refer to the standard 12d Model strings and tin entities. That
is, Elements are handles to data that can be stored in 12d Model models.

Elements act as "handles" to the data in the 12d Model database so that the data can be easily
referred to and manipulated within a macro.

The different types of Elements are

2d string with (x,y) at each pt but constant z. See 2d Strings

3d string with (x,y,z) at each point. See 3d Strings

4d string with (x,y,z,text) at each point. See 4d Strings

Alignment string with separate horizontal and vertical geometry defined only by using

 the intersection point methods. See Interface String

Arc an arc in the (x,y) plane with linear interpolated z values (i.e. a helix).

 See Arc Strings

Circle a circle in the (x,y) plane with a constant z value. See Circle Strings

Feature a circle with a z-value at the centre but only null values on the

 circumference. See Feature String

Drainage string for drainage or sewer elements. See Drainage Strings

Interface string with (x,y,z,cut/fill flag) at each point. See Interface String

Pipe string width (x,y,z) at each point and a diameter. See Pipe Strings

Plot Frame element used for production of plan plots. See Plot Frames

Polyline string with (x,y,z,radius) at each point. See Pipeline Strings

Pipeline an Alignment string with a diameter. See Pipeline Strings

Super general string with at least (x,y,z,radius) at each point.
Page 21Variable Types

12d Model Programming Manual
 See Super String Dimensions and Flags

Text string with text at a point. See Text Strings

Tin triangulated irregular network - a triangulation See Tins

SuperTin a list of Tins that acts as one Tin

Super Alignment a string with separate horizontal geometry defined by using the

 intersection point methods and other construction methods such
 as fixed and floating.

The Element type is given by the Get_type(Element elt,Text text) function.

Model

The variable type Model is used as a handle to refer to 12d Model models within macros. See
Models

View

The variable type View is used as a handle to refer to 12d Model views within macros. See Views

Macro_Function or Function

The variable type Macro_Function or Function is used as a handle to refer to a 12d Model
function within macros. User defined Macro_Functions/Functions can be created from a macro.
See 12d Model Functions

12d Internal Variable Types

These variables help access data stored in the 12d Model database handles. This data may be
retrieved from and stored in 12d Model database via the handles, and so can exist after the
macro terminates.

See
Uid
Attributes
SDR_Attribute
Blob
Screen_text
Textstyle_Data
Equality_Label
Undo

Uid

A unique number for entities in a 12d Model database. See Uid’s

Attributes

The variable type Attributes is used as a handle to refer to an 12d Model attribute structure within
macros.

Attributes are user defined and can be attached to Projects, Models, Elements and
Macro_Functions/Functions.See User Defined Attributes

SDR_Attribute

SDR_Attribute are special attributes used with the 12d Survey Data Reduction process.
Page 22 Variable Types

Chapter 2 Basic Language Structure
Blob

A binary object.

Screen_text

See Screen_Text .

Textstyle_Data

TextStyle_Data holds information about the text such as colour, textstyle, justifcation, height. See
Textstyle Data .

Equality_Label

Equality_Label holds information for labelling text as an Equality

Undo

A variable to hold information that is placed on the 12d Model Undo system.See Undos

Undo_List

The variable type Undo_List is a handle to a list of Undo’s. See Undos

12d Model Interface Variable Types

The objects for building interfaces, such as menus and panels, to communicate with the macro
user.

All these items are derived from a Widget and so can be used in any argument that is of type
Widget.

See
Widget

See
Menu
Panel
Overlay_Widget

Objects for Formatting Widgets in a Panel

See
Vertical_Group
Horizontal_Group
Widget_Pages

Control Objects for Placing in Horizontal/Vertical Groups and Panels

See
Button
Select_Button
Angle_Box
Attributes_Box
Attributes_Box
Billboard_Box
Bitmap_Fill_Box
Bitmap_List_Box
Chainage_Box
Choice_Box
Colour_Box
Page 23Variable Types

12d Model Programming Manual
Colour_Message_Box
Date_Time_Box
Directory_Box
Draw_Box
File_Box
Function_Box
Graph_Box
GridCtrl_Box
HyperLink_Box
Input_Box
Integer_Box
Justify_Box
Linestyle_Box
List_Box
ListCtrl_Box
Map_File_Box
Message_Box
Model_Box
Name_Box
Named_Tick_Box
New_Select_Box
New_XYZ_Box
Plotter_Box
Polygon_Box
Real_Box
Report_Box
Select_Box
Select_Boxes
Sheet_Size_Box
Source_Box
Symbol_Box
Tab_Box
Target_Box
Template_Box
Text_Edit_Box
Text_Style_Box
Texture_Box
Tree_Box
Tree_Page ??
Tick_Box
Tin_Box
View_Box
XYZ_Box

Widget

The objects for building interfaces, such as menus and panels, to communicate with the macro
user. All these items are derived from a Widget and so can be used in any argument that is of
type Widget. For the Widget macro calls, see Panels

Menu

An object that holds the data for a user defined 12d Model menu.

Panel

An object that holds the data for a user defined 12d Model panel. See Panels .

Objects for Formatting Widgets in a Panel
Page 24 Variable Types

Chapter 2 Basic Language Structure
Overlay_Widget

Sheet_Panel

Vertical_Group

Used for formatting a panel.

A Vertical_Group holds Widgets that will be placed horizontally in a Panel. See Widget Controls

Horizontal_Group

Used for formatting a panel.

A Horizontal_Group holds Widgets that will be placed horizontally in a Panel. See Widget
Controls

Widget_Pages

A panel can have different pages. See Panel Page

Control Objects for Placing in Horizontal/Vertical Groups and Panels

Button

A button on a Panel. See Buttons

Select_Button

A button on a Panel for selecting strings . See Select_Button

Angle_Box

A box on a Panel for inputting angle information. See Angle_Box .

Attributes_Box

See Attributes_Box .

Billboard_Box

A box on a Panel for selecting a billboard name from the pop-up list of project billboards. See
Texture_Box .

Bitmap_Fill_Box

See Bitmap_Fill_Box .

Bitmap_List_Box

Chainage_Box

See Chainage_Box .

Choice_Box

See Choice_Box .

Colour_Box

A box on a Panel for selecting a colour from the pop-up list of project coloours. See Colour_Box .

Colour_Message_Box

A box on a Panel for writing messages to. Different bbackground colours for the display area can
also be set. See Colour_Message_Box .
Page 25Variable Types

12d Model Programming Manual
Date_Time_Box

See Date_Time_Box .

Directory_Box

See Directory_Box .

Draw_Box

See Draw_Box .

File_Box

See File_Box .

Function_Box

See Function_Box .

Graph_Box

See Function_Box .

GridCtrl_Box

See GridCtrl_Box .

HyperLink_Box

See HyperLink_Box .

Input_Box

See Input_Box .

Integer_Box

See Integer_Box .

Justify_Box

See Justify_Box .

Linestyle_Box

A box on a Panel for selecting a linestyle from the pop-up list of project linestyles. See
Linestyle_Box .

List_Box

See List_Box .

ListCtrl_Box

Map_File_Box

See Map_File_Box .

Message_Box

A box on a Panel for writing messages to. See Message_Box . Also see Colour_Message_Box

Model_Box

A box on a Panel for creating a new model, or selecting a model from the pop-up list of project
models. See Model_Box .
Page 26 Variable Types

Chapter 2 Basic Language Structure
Name_Box

See Name_Box .

Named_Tick_Box

See Name_Tick_Box .

New_Select_Box

See New_Select_Box .

New_XYZ_Box

See New_XYZ_Box .

Plotter_Box

See Plotter_Box .

Polygon_Box

See Polygon_Box .

Real_Box

See Real_Box .

Report_Box

See Report_Box .

Select_Box

See Select_Box .

Also see New_Select_Box

Select_Boxes

See Select_Boxes .

Sheet_Size_Box

See Sheet_Size_Box .

Source_Box

See Source_Box .

Symbol_Box

See Symbol_Box .

Tab_Box

See Select_Boxes .

Target_Box

See Target_Box .

Template_Box

See Template_Box .

Text_Edit_Box
Page 27Variable Types

12d Model Programming Manual
See Text_Edit_Box .

Text_Style_Box

See Text_Style_Box .

Texture_Box

See Texture_Box .

Tree_Box

See Tree Box Calls .

Tree_Page ??

Tick_Box

See Tick_Box .

Tin_Box

See Tin_Box .

View_Box

A box on a Panel for selecting a view from the pop-up list of project views. See View_Box .

XYZ_Box

Also see New_XYZ_Box

File Interface Variable Types

Variables for accessing files.

See
 File
 Map_File
 Plot_Parameter_File
 XML_Document
 XML_Node

File

A file unit. See Files .

Map_File

A file used for mapping element properties. See Map File .

Plot_Parameter_File

A file unit. See Map File .

XML_Document

The file contents are structured as an XML document. See XML .

XML_Node

ODBC Database Variable Types

The variables are used when accessing and querying a ODBC database.
Page 28 Variable Types

Chapter 2 Basic Language Structure
See
 Connection
 Select_Query
 Insert_Query
 Update_Query
 Delete_Query
 Database_Results
 Transactions
 Parameter_Collection
 Query_Condition
 Manual_Condition

Connection

The connection to the database.

Select_Query

Used to retrieve data from the database.

Insert_Query

Used to add data to the database.

Update_Query

Used to update data in the database.

Delete_Query

Used to delete data in the database.

Database_Results

Database results.

Transactions

Database transactions.

Parameter_Collection

Query the database parameters.

Query_Condition

Query conditions

Manual_Condition

Manual condition
Page 29Variable Types

12d Model Programming Manual
Array Types

Arrays are used to allocate a number of storage units that have the same name.

In 12d Model, there are two types of arrays - fixed and dynamic.

Fixed arrays must have their lengths defined when the array is declared. This can either be at
compile time when a number is used (e.g. 10) or when a variable which has been given a specific
value before the array declaration (e.g. N).

The length of dynamic arrays can vary at any time whilst the macro is running.

See
 Fixed Arrays
 Dynamic Arrays

Fixed Arrays

A fixed array is defined by giving the size of the array (the number of storage units being set
aside) enclosed in the square brackets [and] immediately after the variable name.

The size can either be a fixed number or a variable that has been assigned a value before the
array is defined.

For example, a Real array of size 100 is defined by

Real real_array[100];

and a Real array of size N, where N is an Integer variable, is defined by

 Real real_array[N];

Note that once the array is defined, the size is fixed by the value of N at the time when the array is
defined - it does not change if N is subsequently modified.

In a macro, the individual items of an array are accessed by specifying an array subscript
enclosed in square brackets.

For example, the tenth item of real_array is accessed by real_array[10].

Warning to C++ Programmers

This is not the same as C++ where array subscripts start at zero

Dynamic Arrays

For many 4DML operations, an array of items is required but the size of the array is not known in
advance or will vary as the macro runs.

For example, an array may be needed to hold Elements being selected by the user running the
macro. The number of Elements selected would not be known in advance and could overflow
any fixed array. Hence a fixed array is inconvenient or impossible to use.

To cover these situations, 4DML has defined dynamic arrays that can hold an arbitrary number of
items. At any time, the number of items in a dynamic array is known but extra items can be
added at any time.

Like fixed arrays, the items in dynamic arrays are accessed by their unique position number. It is
equivalent to an array subscript for a fixed array.

But unlike fixed arrays, the items of a dynamic array can only be accessed through function calls
rather than array subscripts enclosed in square brackets.
Page 30 Variable Types

Chapter 2 Basic Language Structure
As for an array, the dynamic array positions go from one to the number of items in the dynamic
array.

The dynamic arrays currently supported in 4DML are

Dynamic_Element - a dynamic array of Elements

Dynamic_Integer - a dynamic array of Integers.

Dynamic_Real - a dynamic array of Reals.

Dynamic_Text - a dynamic array of Texts.
Page 31Variable Types

12d Model Programming Manual
Summary of 4DML Variable Types

The 4DML variable types are:

 void - only used in functions which return no value

Mathematical Variable Types
 Integer - 32 bit integer

 Real - 64 bit IEEE Real precision floating point, 14 significant figures

 Text - one or more characters

 Vector2, Vector3, Vector4 - contain two, three and four Reals respectively

 Matrix3, Matrix4 - nine and sixteen Reals respectively

Geometric Construction Variable Types
 Point - a three dimensional point

 Line - a line between two points

 Arc - a helix

 Spiral - a transition

 Parabola - a parabola

 Segment - a Point, Line, Arc, Parabola or Spiral

12d Model Database Handles
 Element - a handle for the 12d Model strings

 Tin - a handle for 12d Model tins

 Model - a handle for 12d Model models

 View - a handle for 12d Model views

 Functions, Macro_Function - a handle for 12d Model functions

 Undo_List - a list to combine Undo’s

12d Internal Variable Types
 Uid - unique number for entities in a 12d Model database

 Attributes - used as a handle to refer to a 12d Model attribute structure

 SDR_Attribute - special attributes used with the 12d Survey Data Reduction process

 Blob - a binary object

 Screen_Text -

 Textstyle_Data - holds information about a text such as colour, textstyle, justication

 Equality_Label - holds information for labelling text as an Equality

12d Model Interface Variable Types
 Menu -holds the data for a user defined 12d Model menu
 Panel - holds the data for a user defined 12d Model panel
 Widget -
 Vertical_Group - holds Widgets that will be placed horizontally in a Panel
 Horizontal_Group - - holds Widgets that will be placed vertically in a Panel
 Widget_Pages -
 Overlay_Widget -
 Sheet_Panel -
 Button - a button on a Panel.
 Select_Button -
 Angle_Box -
Page 32 Variable Types

Chapter 2 Basic Language Structure
 Attributes_Box -
 Billboard_Box -
 Bitmap_Fill_Box -
 Bitmap_List_Box -
 Chainage_Box -
 Choice_Box -
 Colour_Box -
 Colour_Message_Box -
 Date_Time_Box -
 Directory_Box -
 Draw_Box -
 File_Box -
 Function_Box -
 Graph_Box -
 GridCtrl_Box -
 HyperLink_Box -
 Input_Box -
 Integer_Box -
 Justify_Box -
 Linestyle_Box -
 List_Box -
 ListCtrl_Box -
 Map_File_Box -
 Message_Box -
 Model_Box -
 Name_Box -
 Named_Tick_Box -
 New_Select_Box -
 New_XYZ_Box -
 Plotter_Box -
 Polygon_Box -
 Real_Box -
 Report_Box -
 Select_Box - see also New_Select_Box -
 Select_Box es -
 Sheet_Size_Box -
 Source_Box -
 Symbol_Box -
 Tab_Box -
 Target_Box - // not yet implimented
 Template_Box -
 Text_Edit_Box -
 Text_Style_Box -
 Texture_Box -
 Tree_Box -
 Tree_Page - ??
 Tick_Box -
 Tin_Box -
 View_Box -
 XYZ_Box - see also New_XYZ_Box

File Interface Variable Types
 File -
 Map_File -
 Plot_Parameter_File -
 XML_Document -
 XML_Node -
Page 33Variable Types

12d Model Programming Manual
ODBC Database Variable Types
 Connection - the connection to the database.
 Select_Query - used to retrieve data from the database.
 Insert_Query -used to add data to the database.
 Update_Query -used to update data in the database.
 Delete_Query - used to delete data in the database.
 Database_Results - database results.
 Transactions - database transactions.
 Parameter_Collection - query the database parameters.
 Query_Condition - query conditions
 Manual_Condition - manual condition

Array Types
 Real Array - Real[num] - a fixed array of Reals
 Integer Array - Integer[num] - a fixed array of Integers
 Text Array - Text[num]- a fixed array of Texts
 Dynamic_Element - a dynamic array of Elements
 Dynamic_Text - a dynamic array of Texts
 Dynamic_Integer - a dynamic array of Integers
 Dynamic_Real - a dynamic array of Reals
Page 34 Variable Types

Chapter 2 Basic Language Structure
Constants
There are three kinds of constants (or literals)

 Integer Constants
 Real Constants
 Text Constants

Integer Constants

An integer constant consists of any number of digits.

All integer constants are assumed to be in decimal notation.

Examples of valid integer constants are

 1 76875

Real Constants

A Real constant consists of any number of digits ending in a mandatory decimal point, followed
by an optional fractional part and an optional exponent part. The exponent part consists of an e
or E, and an optionally signed integer exponent.

There can be no spaces between each part of the Real constant.

Valid floating constants are

6. 1.0 1.0e 1.0e+1 1.0e-1 .1e+2

Note that 1e1 is not a valid floating constant.

Text Constants

A Text constant is a sequence of characters surrounded by double quotes.

Valid Text constants are

"1 ""1234 ""!@#$%^&"

A Text constant can also contain escape characters. For example, if you wish to have the "
character in a Text constant, you place a \ character in front of it.

 "A silly \" symbol" translates to

 A silly " symbol

The following escape characters are supported in Text variables:

 new-line NL(LF) \n
 double quote " \"
 backslash \ \\
Page 35Variable Types

12d Model Programming Manual
Operators and Assignments
See

 Binary Arithmetic Operators and Binary Arithmetic Operators for Vectors and Matrices
 Relational Operations
 Logical Operators
 Logical Operators
 Increment and Decrement Operators
 Bitwise Operators
 Assignment Operators

Binary Arithmetic Operators
The binary arithmetic operators are

+ addition

- subtraction

* multiplication

/ division - note that integer division truncates any fractional part

% modulus: x%y where x and y are integers, produces the integer remainder when x is
divided by y

Binary Arithmetic Operators for Vectors and Matrices
The binary arithmetic operators for vectors and matrices are

+ addition

- subtraction

* multiplication

^ dot product of two vectors

where the following combinations are allowed

Vector2 + Vector2 = Vector2 Vector2 - Vector2 = Vector2
Vector3 + Vector3 = Vector3 Vector3 - Vector3 = Vector3
Vector4 + Vector4 = Vector4 Vector4 - Vector4 = Vector4

Real * Vector2 = Vector2 Vector2 * Real = Vector2 Vector2 / Real= Vector2
Real * Vector3 = Vector3 Vector3 * Real = Vector3 Vector3 / Real= Vector2
Real * Vector4 = Vector4 Vector4 * Real = Vector4 Vector4 / Real= Vector4

Vector2 * Vector2 = Real * is the dot product between the two vectors
Vector3 * Vector3 = Real * is the dot product between the two vectors
Vector4 * Vector4 = Real * is the dot product between the two vectors

Vector3 ^ Vector2 = Vector3 ^ is the cross product between the two vectors
 Note: to form this cross product, the Vector2’s are turned in
Vector3’s
 by adding the third dimension with value 0.
Vector3 ^ Vector3 = Vector3 ^ is the cross product between the two vectors

Matrix3 + Matrix3 = Matrix3 Matrix3 - Matrix3 = Matrix3 Matrix3 * Matrix3 = Matrix3
Matrix4 + Matrix4 = Matrix4 Matrix4 - Matrix4 = Matrix4 Matrix4 * Matrix4 = Matrix4
Page 36 Operators and Assignments

Chapter 2 Basic Language Structure
Real * Matrix3 = Matrix3 Matrix3 * Real = Matrix3 Matrix3 / Real= Matrix3
Real * Matrix4 = Matrix4 Matrix4 * Real = Matrix4 Matrix4 / Real= Matrix4

Vector3 * Matrix3 = Vector3 Note that the Vector3 is treated as a row vector.
Matrix3 * Vector3 = Vector3 Note that the Vector3 is treated as a column vector.

Vector4 * Matrix4 = Vector4 Note that the Vector4 is treated as a row vector.
Matrix4 * Vector4 = Vector4 Note that the Vector4 is treated as a column vector.

A vector of dimension 2, 3 or 4 can be cast to a vector of a higher or a lower dimension.
If casting to a dimension of one higher, the new component is set by default to 1.0.
For example a Vector2 represented by (x,y) is cast to a Vector3 (x,y,1).

When casting to a dimension of one lower, the vector is homogenized and the last component
(which has the value 1) is dropped.
For example, a Vector4 represented by (x,y,z,w) is cast to a Vector3 as (x/w,y/w,z/w).

So for example
Vector2 * Matrix3 = Vector3 requires Vector2 say (x,y) to be cast to a Vector3 so that this
 make sense and the operation is defined as
 (x,y,1)*Matrix3

Relational Operations
The relational operators are

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Logical Operators
The logical operators are

== equal to

!= not equal to

|| inclusive or

&& and

! not

Increment and Decrement Operators
The increment and decrement operators are

++ post and pre-increment

-- post and pre-decrement
Page 37Operators and Assignments

12d Model Programming Manual
Bitwise Operators

The bitwise operators are

& bitwise and

| bitwise inclusive or

^ bitwise exclusive or

~ one's complement (unary)

Assignment Operators
assignment

= assignment e.g. x = y

assignment operator

For some operators op, the assignment operator op= is supported where for expressions expr1
and expr2:

expr1 op= expr2

means

expr1 = (expr1) op (expr2)

where the supported assignment operators for op= are

 += -= *= /= %=

For example

x += 2 is shorthand for x = x + 2

x *= 2 is shorthand for x = x * 2
Page 38 Operators and Assignments

Chapter 2 Basic Language Structure
Statements and Blocks
An expression such as x = 0 or i++ becomes a statement when it is followed by a semi-colon.

Curly brackets { and } (braces) are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a single statement.
There is no semi-colon after the right brace that ends a block.

Blocks can be nested but cannot overlap.

Examples of statements are

x = 0;

i++;

fred = 2 * joe + 9.0;

An example of a compound statement or block is

{

 x = 0;

 i++;

 fred = 2 * joe + 9.0;

}

Page 39Statements and Blocks

12d Model Programming Manual
Flow Control
The flow control statements of a language specify the order in which computations are
performed.

Many of the flow control statements include expressions that must be logically evaluated. That is,
the flow control statements use expressions that must be evaluated as being either true or false.

For example,

a is equal to b a == b

a is less than b a < b

Following C++, 4DML extends the expressions that have a truth value to any expression that can
be evaluated arithmetically by the simple rule:

an expression is considered to be true if its value is non-zero, otherwise it is considered to be false.

Hence the truth value of an arithmetic expression is equivalent to:

 "value of the expression" is not equal to zero

For example, the expression

a + b

is true when the sum a+b is non-zero.

Any expression that can be evaluated logically (that is, as either true or false) will be called a
logical expression.

If, Else, Else If
4DML supports the standard C++ if, else and else if structures.

if

if (logical_expression)

statement

is interpreted as:

If logical_expression is true then execute the statement.

If logical_expression is false then skip the statement.

For example

if (x == 5) {

 x = x + 1;

 y = x * y;

}

Notice that in this example the statement consists of the block

{ x = x + 1;

 y = x * y;

}

The expressions in the block are only executed if x is equal to 5.

else

else if
Page 40 Flow Control

Chapter 2 Basic Language Structure
Else

if (logical_expression)

statement1

else

statement2

is interpreted as

If logical_expression is true then execute statement1.

If logical_expression is false then execute statement2.

else if

Else If

if (logical_expression1)

statement1

else if (logical_expression2)

statement2

else

statement3

is interpreted as

If logical_expression1 is true then execute statement1.

If logical_expression1 is false then

(if logical_expression2 is true then execute statement2 otherwise execute statement3)
Page 41Flow Control

12d Model Programming Manual
Conditional Expression
4DML supports the standard C++ conditional expression:

logical_expression ? expression : expression2

is interpreted as

if (logical_expression) then

expression1

else

expression2

For example,

y = (x >= 0) ? x : -x;

means that y is set to x if x is greater than or equal to zero, otherwise it is set to -x. Hence y is set
to the absolute value of x.

Switch
4DML supports a switch statement.

The switch statement is a multi-way decision that tests a value against a set of constants and
branches accordingly.

In its general form, the switch structure is:

switch (expression) {

case constant_expression : { statements }

case constant_expression : { statements }

default : { statements }

}

Each case is labelled by one of more constants.

When expression is evaluated, control passes to the case that matches the expression value.

The case labelled default is executed if the expression matches none of the cases. A default is
optional; if it isn't there and none of the cases match, no action takes place.

Once the code for one case is executed, execution falls through to the next case unless explicit
action is taken to escape using break, return or goto statements.

A break statement transfers control to the end of the switch statement.

 Note

Switch Note

Note

Unlike C++, the statements after the case constant_expression: must be enclosed in curly brackets
({}).

An example of a switch statement is:

switch (a) {

case 1 : {

 x = y;
Page 42 Flow Control

Chapter 2 Basic Language Structure
 break;

}

case 2: {

 x = y + 1;

 z = x * y;

}

case 3: case 4: {

 x = z + 1;

 break;

}

default : {

 y = z + 2;

 break;

}

}

Notes

(a) More that one statement can follow the case statement without the statements being enclosed in
braces.

(b) If control goes to case 2, it will execute the two statements after the case 2 label and then continue
onto the statements following the case 3 label.

Restrictions

1. Currently the switch statement only supports an Integer, Real or Text expression. All other expression
types are not supported.

2. Statements after the case constant_expression: must be enclosed in curly brackets ({}).
Page 43Flow Control

12d Model Programming Manual
While Loop
4DML supports the standard C++ while statement.

while (logical_expression)

 statement

is interpreted as:

If logical_expression is true, execute statement and then test the logical_expression again.

This cycle continues until the logical_expression is false.

For example, in

x = 10.0;

product = 1.0;

while (x > 0) {

 product = product * x;

 x = x - 1;

}

the block

{ product = product * x;

 x = x - 1;

}

will be repeated until x is not greater than zero (i.e. until x is less than or to equal zero).
Page 44 Flow Control

Chapter 2 Basic Language Structure
For Loop
4DML supports the standard C++ for statement.

for (expression1;logical_expression;expression2)

 statement

is interpreted as:

expression1;

while (logical_expression) {

 statement;

 expression2;

}

In long hand, this means:

(a) first execute expression1.

(b) if logical_expression is true, execute statement and expression2 and then test logical_expression
again.

(c) repeat (b) until the logical_expression is false.

For example

j = 0;

for (i = 1; i <= 10; i++)

j = j + i;

would sum the numbers 1 through to 10.

Notes

1. Any of the three parts expression1, logical_expression and expression2 can be omitted from the for
statement but the semi-colons must remain.

2. If expression1 or expression2 is omitted, it is simply dropped from the expansion.

3. If the test, logical_expression is missing, it is taken as permanently true.

Restrictions

1. At this stage for(;;) is not allowed

2. At this stage, please avoid having more than one statement for expression2.

For example, avoid

for(expression1;logical_expression;i++,j++)

because j++ will not be evaluated correctly.
Page 45Flow Control

12d Model Programming Manual
Do While Loop
4DML supports the standard C++ do while statement:

do

statement

while (logical_expressions);

is interpreted as:

Execute statement and then evaluate logical_expression.

If logical_expression is true, execute statement and then test logical_expression again.

This cycle continues until logical_expression is false.

For example

i = 0;

do {

 x = x + 1;

 i++;

} while (i < 10);

Continue
The continue statement causes the next iteration of the enclosing for, while or do loop to begin.

In the while and do, this means that the test part is executed immediately; in the for, control
passes to the evaluation of expression2, normally an increment step.

Note

The continue statement applies only to loops. A continue inside a switch inside a loop causes the
next loop iteration.
Page 46 Flow Control

Chapter 2 Basic Language Structure
Goto and Labels
4DML supports the standard C++ goto and labels.

A label has the same form as a variable name and is followed by a colon. It can be attached to
any statement in a function. A label name must be unique within the function.

A goto is always followed by a label and then a semi-colon.

When a goto is executed in a macro, control is immediately transferred to the statement with the
appropriate label attached to it. There may be many gotos with the same label in the function.

An example of a label and a goto is:

for (...) {

 ...

 goto error;

 ...

}

..

error:

statements

When the goto is executed, control is transferred to the label error.

Note

A goto cannot be used to jump over any variables defined at the same nested level as the goto.
Extra curly bracket ({}) may need to be placed around the offending code to increase its level of
nesting.
Page 47Flow Control

12d Model Programming Manual
Precedence of Operators
4DML has the same precedence and associativity rules as C++. For convenience, the order is
summarized in the table below.

In the table,

 operators on the same line have the same precedence;

 rows are in order of decreasing precedence.

For example, *, / and % all have the same precedence which is higher than that of binary + and -.

The "operator" () refers to function call.

Operators Associativity

() [] left to right

! ~ ++ -- + - * & right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

? right to left

= += -= *= /= %= &= ^= |= right to left

Unary + and - have higher precedence than the binary forms.
Page 48 Precedence of Operators

Chapter 2 Basic Language Structure
Reprocessing
You can include other files by the command

#include "filename"

The example below shows how to include file "a.h" into "b.4dm.

// file a.h

Point Coord(Real x,Real y,Real z)

{

 Point p; Set_point(p,x) Set_point(p,y); Set_point(p,z);

 return(p);

}

// file b.4dm

#include "a.h"

void main()

{

 Point p = Coord(10.0,20.0,2.34); // create a point

}

The above example is equivalent to the following one file:

Point Coord(Real x,Real y,Real z)

{

 Point p; Set_point(p,x); Set_point(p,y); Set_point(p,z);

 return(p);

}

void main()

{

 Point p = Coord(10.0,20.0,2.34); // create a point

}

Page 49Reprocessing

12d Model Programming Manual
Page 50 Reprocessing

Chapter 3 Functions
3 Functions

Functions
Functions can be used to break large computing tasks into smaller ones and allow users to build
on software that already exists.

Basically a macro is just a set of definitions of variables and functions. Communication between
the functions is by function arguments, by values returned by the functions, and through global
variables (see the section on Blocks and Scope).

The 4DML macro file must contain a starting function called main as well as zero or more user
defined functions. These functions can occur in any order in the macro file. The syntax for the
functions will be described in the following sections.

A large number of functions are supplied with 4DML to make tasks easier for the macro writer.
These 4DML supplied functions are predefined and nothing special is needed to use them. The
4DML supplied functions will all be specified later in the manual.

In 4DML, function names must start with an alphabetic character and can consist of upper and/or
lower case alphabetic characters, numbers and underscores (_).

There is no restriction on the length of function names. Function names cannot be the same as
any of the 4DML keywords or variable names in the macro.

4DML function names are case sensitive.

Note

All 4DML supplied functions begin with a capital letter to help avoid clashes with any user
variable names.
Page 51Functions

12d Model Programming Manual
Main Function
A 4DML macro must contain a special function called main. This function is the designated start
of the macro.

The main function is simply a header void main () followed by the actual program code enclosed
between a start brace { and an end brace }.

Hence the function called main is a header followed by a block of code:

 void main ()

 {

 declarations and statements

 ie program code

 }

When a macro is run, the entry point to the macro file is at the beginning of the function called
main.

Hence every macro file must have one and only one function called main.

The function main is terminated when either

(a) the last line of code in the function is run

or

(b) a return statement
 return;
is executed in the function main.

The function main is usually referred to as the main function.
Page 52 Main Function

Chapter 3 Functions
User Defined Functions
As well as the main function, a macro file can also contain user defined functions.

Like the main function, user defined functions consist of a header followed by the program code
enclosed in braces.

However the header for a user defined function must include a return type for the function and
the order and variable types for each of the parameters of the functions.

Hence each function definition has the form

 return-type function-name(argument declarations)

 {
 declarations and statements
 }

For example, a function called "user_function" which has a return type of Integer and parameters
of type Integer, Real and Element could be:

 Integer user_function (Integer fred, Real joe, Element tom)

 {
 program code
 }
Page 53User Defined Functions

12d Model Programming Manual
Array Variable
The declaration of an array variable as a function argument consists of the array variable type
followed by the array name and an empty set of square brackets ([]).

For example, the function

 Integer user_function (Integer fred, Real joe[])

 {
 program code
 }

has a Real array as the second argument.

Return Statement
The return statement in a function is the mechanism for returning a value from the called function
to its caller using the return-type of the function.

The general definition of the return statement is:

 return expression;

For a function with a void return-type (a void function), the expression must be empty. That is, for
a void return-type you can only have return and no expression since no value can be returned.

Thus for a void function the return statement is

 return;

Also for a void function, the function will implicitly return if it reaches the end of the function
without executing a return statement.

For a function with a non-void return-type (a non-void function), the expression after the return
must be of the same type as the return type of the function. Hence any function with a non-void
return-type must have a return statement with the correct expression type.

The calling function is free to ignore the returned value.

Restrictions

Unlike C++, the last statement for a function with a non-void return type must be a return
statement.
Page 54 User Defined Functions

Chapter 3 Functions
Function Prototypes
Since all functions and variables must be defined before they are used, then for any user defined
functions either

(a) the function must appear in the file before it is called by another function

or

(b) a prototype of the function must be declared before the function is called.

A function prototype is simply a declaration of a function which specifies the function name, the
function return type and the order and type of all the function parameters.

A function prototype looks like the function header. Note that it is terminated by a semi-colon
instead of being followed by braces and the function code. Also, the variable names need not be
included in the function prototype.

For example, two prototypes for the function user_function are

 Integer user_function (Integer fred, Real joe, Element tom);

 Integer user_function (Integer, Real, Element);

Thus prototypes are simply a method for defining the type and arguments of a function so that a
function can be used in a macro before the code for the function has been found in the file.

Notes

(a) The function main and any 4DML supplied functions do not have to be defined or prototyped by the
user.

(b) A function prototype can occur more than once in a file.

(c) The main function and all the user defined functions must exist in either the one file or be included
from other files using the #include statement.
Page 55Function Prototypes

12d Model Programming Manual
Automatic Promotions
If needed, the following promotions are automatically made in the language:

 From To

 Integer Real

 Real Integer

 Model Dynamic_Element

 Element Dynamic_Element

 Tin Element, Dynamic_Element

 Point Segment

 Line Segment

 Arc Segment

 Vector2 Vector3

 Vector3 Vector4

 Vector3 Vector2

 Vector4 Vector3

These automatic promotions can occur

(a) when looking for functions with matching argument types

or

(b) for converting expressions in a return statement to the correct return-

type required for the function.

Hence in the following example, the variable x is automatically promoted to a Real for use by the
function silly.

 Real silly(Real x) { return(x+1); }
 void main()
 {
 Integer x = 10;
 Real y = silly(x);
 }
Page 56 Automatic Promotions

Chapter 3 Functions
Passing by Value or by Reference
4DML follows C++ in that function arguments can be passed "by value" or "by reference".

In "pass by value", the called function is passed the values of its arguments in temporary
variables which are not connected with the original variables in the calling routine.

Hence, if an argument is passed by value to a function, any modifications of the variable inside
the function will not affect the original argument in the calling routine.

In 4DML, the default for non-array arguments is "pass by value".

However it is also possible to pass down the actual variables from the calling function to the
called function. This is termed "pass by reference".

If an argument is passed by reference then any modification made to the passed variable within
the called function will be modifying the original argument in the calling function.

To denote that a variable is to be "passed by reference", an ampersand (&) is placed after the
type of the argument in the function definition and any function prototypes.

For example, in the function user_function1, the variables fred and tom are to be passed by
value and the variable joe is to be passed by reference. The function code is:

 Integer user_function1 (Integer fred, Real &joe, Element tom)
 {
 program code
 }

Matching prototypes for user_function1:

 Integer user_function1 (Integer fred, Real& joe, Element tom);

 Integer user_function1 (Integer fred, Real &joe, Element tom);

 Integer user_function1 (Integer fred, Real & joe, Element tom);

 Integer user_function1 (Integer, Real&, Element);

 Integer user_function1 (Integer, Real &, Element);

If a called function is to return a value to the calling function via one of its arguments, then the
argument must be passed by reference.

To clarify the difference between "pass by value" and "pass by reference", consider the following
examples :

void bad_square(Integer x) { x = x*x;}// x is passed by value

void main()

{

 Integer x = 10;

 bad_square(x);

 // pass by value

 // x still equals 10

}

void square(Integer &x) { x = x*x;} // x is passed by reference

 void main ()

 {

 Integer x = 10;

 square(x);

 // pass by reference
Page 57Passing by Value or by Reference

12d Model Programming Manual
 // x now equals 100

 }

Notes

(a) Fixed arrays are always passed by reference.

(b) In Fortran and Basic, all arguments are "pass by reference"

(c) In C++ and Pascal, arguments can be passed by value or by reference
Page 58 Passing by Value or by Reference

Chapter 3 Functions
Overloading of Function Names
In 4DML, if you have a number of functions that perform the same operation but with different
argument types, there is no need to give each function a different name.

As long as the argument types differ in some way, 4DML will determine the correct function to
call.

For example, three functions called swap have been defined but they are all different because
they have differing argument types.

 void swap(Integer &x,Integer &y) { Integer z = x; x = y; y = z;}
 void swap(Real &x,Real &y) { Real z = x; x = y; y = z;}
 void swap(Text &x,Text &y) { Text z = x; x = y; y = z;}
 void main()
 {
 Integer ix = 1 , iy = 2;
 Real rx = 1.0 , ry = 2; // automatic promotion of 2 to 2.0
 Text tx = "1" , ty = "2";
 swap(ix,iy);
 swap(rx,ry);
 swap(tx,ty);
 }

Note however that in some cases there may be more than one function that can be used. This is
especially true when promotions are required to match the function.

If more than one match is found, the compiler will issue an error and display the functions that
match. If no match is found, the compiler will display all functions which overload the specified
function name.

 void swap(Integer &x,Integer &y) { Integer z = x; x = y;}
 void swap(Real &x,Real &y) { Real z = x; x = y;}
 void swap(Text &x,Text &y) { Text z = x; x = y;}
 void main()
 {
 Integer ix = 1 , iy = 2;
 Real rx = 1 , ry = 2;
 Text tx = "1" , ty = "2";
 swap(ix,ry); // 2 matches
 // swap(Integer &,Integer &)
 // swap(Real &,Real &)
 swap(tx,ry); // no match
 }

WARNING FOR C++ PROGRAMMERS

Since there is no explicit cast operator, the only way to cast is to introduce a temporary variable
and use an assignment. For example, to fix the error in the above example where two matches
occur, assign ry to an intermediate variable.

 Integer iry = ry;

 swap(ix,iry); // ok, it uses swap(Integer &,Integer &)

 Real rix = ix;

 swap(rix,ry); // ok, it uses swap(Real &,Real &)
Page 59Overloading of Function Names

12d Model Programming Manual
Recursion
Recursion for functions is supported.

For example,

 int fib(int n)
 {
 return n < 2 ? 1 : fib(n - 1) + fib(n - 2);
 }
Page 60 Recursion

Chapter 3 Functions
Assignments Within Function Arguments
In 4DML, assignments are not allowed within function arguments.

For example, in the following code fragment, y = 10.0 does not assign 10.0 to y.

 Real silly(Real x) { return(x); }
 void main()
 {
 Real y;
 Real z = silly(y=10.0);
 }

To actually assign 10.0 to y, enclose the statement in round brackets (and). That is

 Real z = silly((y=10.0));

assigns 10.0 to y and z.

Assignment within a call argument is being reserved for future use by 4DML for functions with
named arguments.
Page 61Assignments Within Function Arguments

12d Model Programming Manual
Blocks and Scopes
As noted earlier, a block is a code fragment contained within the characters { and } (braces).

Blocks can be nested. That is, a block may contain one or more sub-blocks. However, blocks
cannot overlap.

Hence a closing brace } is always paired with the closest previous unpaired open brace {.

In the example below, block a is also the function body of main. Blocks b and c are sub-blocks of
block a.

 void main()
 { --*
 Integer a = 1; |
 { --* |
 | |
 Integer x = 10; | block b |
 Print(x+a); Print("\n"); | |
 } --* |
 | block a
 { --* |
 | |
 Real x = 10; | block c |
 Print(x+a); Print("\n"); | |
 } --* |
 } --*

The scope of a name is the region of the macro text within which the name's characteristics are
understood.

In 4DML, there are three kinds of scope: local , function , and global (file).

Local A name declared in a block is local to that block and can be used in the block, and
in any blocks enclosed by the block after the point of declaration of the name.

Function Labels can be used anywhere in the function in which they are declared, Only
labels have function scope.

Global A name declared outside all functions has global (or file) scope and can be used
anywhere after its point of declaration.

In 4DML, variables with global (file) scope must be declared in an enclosing set
of braces.

There can be more than one global section.

Hence, in the following example

 { Integer an_integer;

 Real a_real;

 Element an_element;

 }

 void main()

 { --*

 fred:Integer a = 1; |

 { --* |

 Integer x = 10; | |

 an_integer = 20; | block b |

 Print(x+a+an_integer);> | |
Page 62 Blocks and Scopes

Chapter 3 Functions
 Print("\n"); | |

 } --* |

 | block a

 { --* |

 Real x = 10; | block c |

 Print(x+a); Print("\n"); | |

 } --* |

 goto fred; |

 } --*

the variables an_integer, a_real and an_element have global scope and can be used anywhere
in the file after their definition.

The Integer variable "a" has local scope and because of the position in the block, can be used
inside blocks b and c.

The Integer variable "x" is defined in block b and has local scope. It is not usable outside that
block.

The Real variable "x" is defined in block c and has local scope. It is not usable outside that block.

WARNING

A variable name may be hidden by an explicit declaration of that same name in an enclosed
block.

Because of the potential for confusion, it is best to avoid variable names that are the same as a
variables in an outer block.
Page 63Blocks and Scopes

12d Model Programming Manual
Page 64 Blocks and Scopes

Chapter 4 Locks
4 Locks
Because 12d Model allows operations to be queued, it is possible that an Element may be
selected at the same time by more that one macro or 4d/12d Model operation.

To prevent data corruptions, locks are automatically used within 4d/12d Model.

When an Element is selected, a lock is placed on the element and later removed when the
element is released.

Any locks on an element will prevent the Element from being deleted or modified until the locks
are removed by the other operations which automatically placed the locks.

If a macro tries to delete a locked Element, a macro exception panel is placed on the screen to
alert the user that the operation is currently prevented because of a lock on the Element.

The panel gives the user the chance to

skip jump over the current macro instruction

retry retry the instruction to see if the Element is still locked

abort stop the macro.

The usual scenario is that when an Element is locked and an exception panel appears on the
screen, the user simply completes the other operations that have locked the Element and then
continue with the macro by selecting the retry button.
Page 65

12d Model Programming Manual
Page 66

Chapter 5 4DML Library Calls
5 4DML Library Calls
The 4DML Library Calls section consists of descriptions of all the supplied 4DML functions and a
number of examples.

For each function, the full function prototype is given

 return-type function-name (function-arguments)

followed by a description of the function.

Note that to be able to return a value for a function argument to the calling routine, the argument
must be passed by reference and hence will have an ampersand (&) in the function prototype.

For example,

 Integer test (Integer fred, Real &joe, Element tom)

specifies a function called test with return type Integer, two arguments, fred and tom, that are
passed by value and one argument, joe, that is passed by reference and hence capable of
returning a value from the function.

Function Argument Promotions
Because 4DML has automatic variable type promotions and function overloading, many of the
4DML functions apply to a wider range of cases than the function definition may at first imply.

For example, because Model will promote to a Dynamic_Element, the Triangulate function

Integer Triangulate(Dynamic_Element de,Text tin_name,

 Integer tin_colour,Integer preserve,

 Integer bubbles,Tin &tin)

also covers the case where a Model is used in place of the Dynamic_Element de.

That is, the function definition automatically includes the case

Integer Triangulate(Model model,Text tin_name,

 Integer tin_colour,Integer preserve,

 Integer bubbles,Tin &tin)

Automatic Promotions
The 4DML automatic promotions are

From To

Integer Real

Real Integer

Model Dynamic_Element

Element Dynamic_Element

Tin Element, Dynamic_Element

Point Segment
Page 67Function Argument Promotions

12d Model Programming Manual
Line Segment

Arc Segment
Page 68 Function Argument Promotions

Chapter 5 4DML Library Calls
Function Return Codes
Many of the 4DML functions have an Integer function return code that is used as an error code.

For most functions, the function return code is

 zero if there were no errors when executing the function

and

 non-zero if an error occurs.

This choice is to allow for future reporting of different types of errors for the function.

The only exceptions to this rule are the existence routines:

File_exists, Colour_exists, Model_exists, Element_exists, Tin_exists, View_exists,
Template_exists, Match_name and Is_null.

They return

 a non-zero value if the object exists

and

 a zero value if the object does not exist.

This is to allow the existence functions to be used as logical expressions that are true if the
object exists. For example

 if(File_exists("data.dat")) {

 ...

 }
Page 69Function Return Codes

12d Model Programming Manual
Command Line-Arguments
When a 12d Model macro is invoked, command-line arguments (parameters) can be passed
down and accessed from within the macro.

The command-line information is simply typed into the macro arguments field of the macro run
panel.

The command-line is automatically broken into space separated tokens which can be accessed
from within the macro.

For example, if the macro arguments panel field contained

 three "space separated" tokens

then the three tokens

 "three", "spaced separated" and "tokens"

would be accessible inside the macro.

Get_number_of_command_arguements()

Name

Integer Get_number_of_command_arguments()

Description

Get the number of tokens in the macro command-line.

The number of tokens is returned as the function return value.

Get_command_argument(Integer i,Text &argument)

Name

Integer Get_command_argument(Integer i,Text &argument)

Description

Get the ith token from the command-line.

The token is returned by the Text argument.

A function return value of zero indicates the ith argument was successfully returned.

The arguments start from 1.
Page 70 Command Line-Arguments

Chapter 5 4DML Library Calls
Exit
Macro functions are normally terminated by a return statement or by reaching the closing bracket
of the function with void function return type.

In the case of the main function, the macro simply terminates.

For other user defined functions, control passes back to the calling function which then continues
to execute.

However, 4DML also has special exit routines that will immediately stop the execution of the
macro and write a message to the macro console panel. The exit functions are

Exit(Integer exit_code)

Name

void Exit(Integer exit_code)

Description

Immediately exit the macro and write the message

 macro exited with code exit_code

to the information/error message area of the macro console panel.

Exit(Text msg)

Name

void Exit(Text msg)

Description

Immediately exit the macro and write the message

 macro exited with message msg

to the information/error message area of the macro console panel.

Destroy_on_exit()

Name

void Destroy_on_exit()

Description

Destroy current macro console panel when exit the macro.

Retain_on_exit()

Name

void Retain_on_exit()

Description

Retain current macro console panel on the screen after exit the macro.
Page 71Exit

12d Model Programming Manual
Angles

Pi
The value of pi is commonly used in geometric macros so functions are provided to return the
value of pi, pi/2 and 2*pi.

The functions are

Real Pi() the value of pi

Real Half_pi() the value of half pi

Real Two_pi() the value of 2 * pi

Types of Angles
In 4DML, the following definitions for the measurement of angles are used:

angle angles are measured in an anti-clockwise direction from the horizontal axis.
The units for angles are radians.

sweep angle used for arcs - measured in a clockwise direction from the line joining the centre
to the arc start point. The units for sweep angles are radians.

bearing bearings are measured in a clockwise direction from the vertical axis (north).
The units for bearings are radians.

degrees degrees refers to decimal degrees

dms refers to degrees, minutes and seconds.

hp_degrees refers to degrees, minutes and seconds but using the notation ddd.mmssfff
where

 ddd are the whole degrees

 . separator between degrees and minutes

 mm whole minutes

 ss whole seconds

 fff fractions of seconds (as many as needed)

In 4DML, functions are provided to convert between the different angle types.

The return type for each of the functions is Integer and the return value is an error indicator.

If the return value is zero, the function call was successful.

If the return value is non-zero, an error occurred.

 Integer Radians_to_degrees(Real rad,Real °)

 Integer Degrees_to_radians(Real deg,Real &rad)

 Integer Radians_to_hp_degrees(Real rad,Real &hp_deg)

 Integer Hp_degrees_to_radians(Real hp_deg,Real &rad)

 Integer Degrees_to_hp_degrees(Real deg,Real &hp_deg)

 Integer Hp_degrees_to_degrees(Real hp_deg,Real °)

 Integer Degrees_to_dms(Real deg,Integer &dd,Integer &mm,Real &ss)

 Integer Dms_to_degrees(Integer dd,Integer mm,Real ss,Real °)

 Integer Angle_to_bearing(Real angle,Real &bearing)
Page 72 Angles

Chapter 5 4DML Library Calls
 Integer Bearing_to_angle(Real bearing,Real &angle)
Page 73Angles

12d Model Programming Manual
Text
A Text variable text consists of zero or more characters (spaces or blanks are valid characters).

The length of a Text is the total number of characters including any leading, trailing and
embedded spaces. For example, the length of " fr ed " is seven.

Each character in the Text has a unique position or index which is defined to be the number of
characters plus one that it is from the start of the Text. For example in " fr ed ", the index or
position of "e" is five.

Hence parts of a Text (sub-Texts) can be easily referred to by giving the start and end positions of
the part. For example, the sub-Text from start position three to end position five of " fr ed " is "r e".

4DML provides functions to construct Texts and also work with parts of a Texts (sub-Text).

Text and Operators
The operators + += < > >= <= == != can be used with Text variables.

The + operator for Text variables means that the variables are concatenated. For example, after

 Text new = "fred" + "joe";

the value of new is "fredjoe".

When Text is used in equalities and inequalities such as <, <=, >, >= and ==, the ASCII sorting
sequence value is used for the Text comparisons.

General Text

Text_length(Text text)

Name

Integer Text_length(Text text)

Description

The function return value is the length of the Text text.

Numchr(Text text)

Name

Integer Numchr(Text text)

Description

The function return value is the position of the last non-blank character in the Text text.

If there are no non-blank characters, the return value is zero.

Text_upper(Text text)

Name

Text Text_upper(Text text)

Description

Create a Text from the Text text that has all the alphabetic characters converted to upper

-case.

The function return value is the upper case Text.
Page 74 Text

Chapter 5 4DML Library Calls
Text_lower(Text text)

Name

Text Text_lower(Text text)

Description

Create a Text from the Text text that has all the alphabetic characters converted to lower-

case.

The function return value is the lower case Text.

Text_justify(Text text)

Name

Text Text_justify(Text text)

Description

Create a Text from the Text text that has all the leading and trailing spaces removed.

The function return value is the justified Text.

Find_text(Text text,Text tofind)

Name

Integer Find_text(Text text,Text tofind)

Description

Find the first occurrence of the Text tofind within the Text text.

If tofind exists within text, the start position of tofind is returned as the function return value.

If tofind does not exist within text, a start position of zero is returned as the function return value.

Hence a function return value of zero indicates the Text tofind does not exist within the Text text.

Get_subtext(Text text,Integer start,Integer end)

Name

Text Get_subtext(Text text,Integer start,Integer end)

Description

From the Text text, create a new Text from character position start to character position end
inclusive.

The function return value is the sub-Text.

Set_subtext(Text &text,Integer start,Text sub)

Name

void Set_subtext(Text &text,Integer start,Text sub)

Description

Set the Text text from character position start to be the Text sub. The existing characters of text
are overwritten by sub.

If required, Text text will be automatically extended to fit sub.
Page 75Text

12d Model Programming Manual
If start is greater than the length of text, text will be extended with spaces and sub inserted at
position start.

There is no function return value.

Insert_text(Text &text,Integer start,Text sub)

Name

void Insert_text(Text &text,Integer start,Text sub)

Description

Insert the Text sub into Text text starting at position start. The displaced characters of text are
placed after sub.

The Text text is automatically extended to fit sub and no characters of text are lost.

There is no function return value.

Text Conversions

From_text(Text text, Integer &value)

Name

Integer From_text(Text text, Integer &value)

Description

Convert the Text text to an Integer value. The text should only include digits.

The function return value is zero if the conversion is successful.

From_text(Text text, Integer &value,Text format)

Name

Integer From_text(Text text, Integer &value,Text format)

Description

Convert the Text text to an Integer value using the Text format as a C++ format string.

The function return value is zero if the conversion is successful.

Warning

The user is responsible for ensuring that the format string is sensible.

From_text(Text text, Real &value)

Name

Integer From_text(Text text, Real &value)

Description

Convert the Text text to a Real value.

The function return value is zero if the conversion is successful.

From_text(Text text, Real &value,Text format)
Page 76 Text

Chapter 5 4DML Library Calls
Name

Integer From_text(Text text, Real &value,Text format)

Description

Convert the Text text to a Real value using the Text format as a C++ format string.

The function return value is zero if the conversion is successful.

Warning

The user is responsible for ensuring that the format string is sensible.

From_text(Text text,Text &value,Text format)

Name

Integer From_text(Text text,Text &value,Text format)

Description

Convert the Text text to a Text value using the Text format as a C++ format.

The function return value is zero if the conversion is successful.

Warning

The user is responsible for ensuring that the format string is sensible.

From_text(Text text,Dynamic_Text &dtext)

Name

Integer From_text(Text text,Dynamic_Text &dtext)

Description

Break the Text text into separate words (tokens) and add the individual words to the
Dynamic_Text dtext.

Free format is used to break text up individual words. That is, except for characters between
matching double quotes ", spaces are the separators between individual words.

Any characters (including blanks) between matching double quotes are considered to be one
word.

For example, in

This is "an example"

there are three words - "this", "is", and "an example".

The function return value is zero if the break up is successful.

To_text(Integer value)

Name

Text To_text(Integer value)

Description

Convert the Integer value to text.

The function return value is the converted value.

To_text(Integer value,Text format)
Page 77Text

12d Model Programming Manual
Name

Text To_text(Integer value,Text format)

Description

Convert the Integer value to text using the Text format as a C++ format string.

The function return value is the converted value.

Warning

The user is responsible for ensuring that the format string is sensible.

To_text(Real value,Integer no_dec)

Name

Text To_text(Real value,Integer no_dec)

Description

Convert the Real value to text with no_dec decimal places.

If the Integer argument no_dec is missing, the number of decimal places defaults to zero.

The function return value is the converted value.

To_text(Real value,Text format)

Name

Text To_text(Real value,Text format)

Description

Convert the Real value to text using the Text format as a C++ format string.

The function return value is the converted value.

Warning

The user is responsible for ensuring that the format string is sensible.

To_text(Text text,Text format)

Name

Text To_text(Text text,Text format)

Description

Convert the Text text to text using the Text format as a C++ format string.

The function return value is the converted value.

Warning

The user is responsible for ensuring that the format string is sensible.

Get_char(Text t,Integer pos,Integer &c)

Name

Integer Get_char(Text t,Integer pos,Integer &c)

Description

Get a character from Text t. The position of the character is pos.
Page 78 Text

Chapter 5 4DML Library Calls
The character is returned in the Integer c.

The function return value of zero indicates the character returned successfully.

Set_char(Text &t,Integer n,Integer c)

Name

Integer Set_char(Text &t,Integer n,Integer c)

Description

Set the nth position (where position starts at 1 for the first character) in the Text t to the character
given by integer c. Note that ’c’ can be used to specify the number corresponding to the letter c.

A function return value of zero indicates the Text character is successfully set.
Page 79Text

12d Model Programming Manual
Textstyle Data
Null(Textstyle_Data textdata)

Name

Integer Null(Textstyle_Data textdata)

Description

Set the Textstyle_Data textdata to null.

A function return value of zero indicates the textdata was successfully nulled.

Get_textstyle(Textstyle_Data textdata,Text &style)

Name

Integer Get_textstyle(Textstyle_Data textdata,Text &style)

Description

From the Textstyle_Data textdata, get the style and return it in style.

A function return value of zero indicates the style was successfully returned.

Get_colour(Textstyle_Data textdata,Integer &colour_num)

Name

Integer Get_colour(Textstyle_Data textdata,Integer &colour_num)

Description

From the Textstyle_Data textdata, get the colour number and return it in colour_num.

A function return value of zero indicates the colour number was successfully returned.

Get_size(Textstyle_Data textdata,Real &height)

Name

Integer Get_size(Textstyle_Data textdata,Real &height)

Description

From the Textstyle_Data textdata, get the height and return it in height.

A function return value of zero indicates the height was successfully returned.

Get_offset(Textstyle_Data textdata,Real &offset)

Name

Integer Get_offset(Textstyle_Data textdata,Real &offset)

Description

From the Textstyle_Data textdata, get the offset and return it in offset.

A function return value of zero indicates the offset was successfully returned.

Get_raise(Textstyle_Data textdata,Real &raise)

Name
Page 80 Textstyle Data

Chapter 5 4DML Library Calls
Integer Get_raise(Textstyle_Data textdata,Real &raise)

Description

From the Textstyle_Data textdata, get the raise and return it in raise.

A function return value of zero indicates the raise was successfully returned.

Get_justify(Textstyle_Data textdata,Integer &justify)

Name

Integer Get_justify(Textstyle_Data textdata,Integer &justify)

Description

From the Textstyle_Data textdata, get the justification number and return it in justify.

A function return value of zero indicates the justification number was successfully returned.

Get_angle(Textstyle_Data textdata,Real &angle)

Name

Integer Get_angle(Textstyle_Data textdata,Real &angle)

Description

From the Textstyle_Data textdata, get the angle and return it in angle.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the angle was successfully returned.

Get_slant(Textstyle_Data textdata,Real &slant)

Name

Integer Get_slant(Textstyle_Data textdata,Real &slant)

Description

From the Textstyle_Data textdata, get the slant of the textstyle and return it in slant.

A function return value of zero indicates the textstyle was successfully returned.

Get_x_factor(Textstyle_Data textdata,Real &xfactor)

Name

Integer Get_x_factor(Textstyle_Data textdata,Real &xfactor)

Description

From the Textstyle_Data textdata, get the xfactor and return it in xfactor.

A function return value of zero indicates the xfactor was successfully returned.

Get_name(Textstyle_Data textdata,Text &name)

Name

Integer Get_name(Textstyle_Data textdata,Text &name)

Description

From the Textstyle_Data textdata, get the name of the Textstyle_Data and return it in name.
Page 81Textstyle Data

12d Model Programming Manual
A function return value of zero indicates the name was successfully returned.

Get_data(Textstyle_Data textstyle,Text &text_data)

Name

Integer Get_data(Textstyle_Data textstyle,Text &text_data)

Description

Get the data of type Text from the Textstyle_Data textstyle and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_textstyle(Textstyle_Data textdata,Text style)

Name

Integer Set_textstyle(Textstyle_Data textdata,Text style)

Description

For the Textstyle_Data textdata, set the textstyle to br style.

A function return value of zero indicates the textstyle was successfully set.

Set_colour(Textstyle_Data textdata,Integer colour_num)

Name

Integer Set_colour(Textstyle_Data textdata,Integer colour_num)

Description

For the Textstyle_Data textdata, set the colour number to be colour_num.

A function return value of zero indicates the colour number was successfully set.

Set_text_type(Textstyle_Data textdata,Integer type)

Name

Integer Set_text_type(Textstyle_Data textdata,Integer type)

Description

For the Textstyle_Data textdata, set the type be type.

LJG? what is type

A function return value of zero indicates the type was successfully set.

Set_size(Textstyle_Data textdata,Real height)

Name

Integer Set_size(Textstyle_Data textdata,Real height)

Description

For the Textstyle_Data textdata, set the height to be height.

A function return value of zero indicates the height was successfully set.

Set_offset(Textstyle_Data textdata,Real offset)
Page 82 Textstyle Data

Chapter 5 4DML Library Calls
Name

Integer Set_offset(Textstyle_Data textdata,Real offset)

Description

For the Textstyle_Data textdata, set the offset to be offset.

A function return value of zero indicates the offset was successfully set.

Set_raise(Textstyle_Data textdata,Real raise)

Name

Integer Set_raise(Textstyle_Data textdata,Real raise)

Description

For the Textstyle_Data textdata, set the raise to be raise.

A function return value of zero indicates the raise was successfully set.

Set_justify(Textstyle_Data textdata,Integer justify)

Name

Integer Set_justify(Textstyle_Data textdata,Integer justify)

Description

For the Textstyle_Data textdata, set the justification number to be justify.

A function return value of zero indicates the justification number was successfully set.

Set_angle(Textstyle_Data textdata,Real angle)

Name

Integer Set_angle(Textstyle_Data textdata,Real angle)

Description

For the Textstyle_Data textdata, set the angle to be angle.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the angle was successfully set.

Set_slant(Textstyle_Data textdata,Real slant)

Name

Integer Set_slant(Textstyle_Data textdata,Real slant)

Description

For the Textstyle_Data textdata, set the slant to be slant.

A function return value of zero indicates the slant was successfully set.

Set_x_factor(Textstyle_Data textdata,Real xfactor)

Name

Integer Set_x_factor(Textstyle_Data textdata,Real xfactor)

Description
Page 83Textstyle Data

12d Model Programming Manual
For the Textstyle_Data textdata, set the xfactor to be xfactor.

A function return value of zero indicates the xfactor was successfully set.

Set_name(Textstyle_Data textdata,Text name)

Name

Integer Set_name(Textstyle_Data textdata,Text name)

Description

For the Textstyle_Data textdata, set the name to be name.

A function return value of zero indicates the name was successfully set.

 Set_data(Textstyle_Data textdata,Text text_data)

Name

Integer Set_data(Textstyle_Data textdata,Text text_data)

Description

Set the data of type Text for the Textstyle_Data text to text_data.

A function return value of zero indicates the data was successfully set.

Get_ttf_underline(Textstyle_Data textdata,Integer &underline)

Name

Integer Get_ttf_underline(Textstyle_Data textdata,Integer &underline)

Description

For the Textstyle_Data textdata, get the underline state and return it in underline.

If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.

A function return value of zero indicates underlined was successfully returned.

Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)

Name

Integer Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)

Description

For the Textstyle_Data textdata, get the strikeout state and return it in strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A function return value of zero indicates strikeout was successfully returned.

Get_ttf_italic(Textstyle_Data textdata,Integer &italic)

Name

Integer Get_ttf_italic(Textstyle_Data textdata,Integer &italic)

Description
Page 84 Textstyle Data

Chapter 5 4DML Library Calls
For the Textstyle_Data textdata, get the italic state and return it in italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A function return value of zero indicates italic was successfully returned.

Get_ttf_weight(Textstyle_Data textdata,Integer &weight)

Name

Integer Get_ttf_weight(Textstyle_Data textdata,Integer &weight)

Description

For the Textstyle_Data textdata, get the font weight and return it in weight.

For the list of allowable weights, go to Allowable Weights

A function return value of zero indicates weight was successfully returned.

Set_ttf_underline(Textstyle_Data textdata,Integer underline)

Name

Integer Set_ttf_underline(Textstyle_Data textdata,Integer underline)

Description

For the Textstyle_Data textdata, set the underline state to underline.

If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.

A function return value of zero indicates underline was successfully set.

Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)

Name

Integer Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)

Description

For the Textstyle_Data textdata, set the strikeout state to strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A function return value of zero indicates strikeout was successfully set.

Set_ttf_italic(Textstyle_Data textdata,Integer italic)

Name

Integer Set_ttf_italic(Textstyle_Data textdata,Integer italic)

Description

For the Textstyle_Data textdata, set the italic state to italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A function return value of zero indicates italic was successfully set.
Page 85Textstyle Data

12d Model Programming Manual
Set_ttf_weight(Textstyle_Data textdata,Integer weight)

Name

Integer Set_ttf_weight(Textstyle_Data textdata,Integer weight)

Description

For the Textstyle_Data textdata, set the font weight to weight.

For the list of allowable weights, go to Allowable Weights

A function return value of zero indicates weight was successfully set.
Page 86 Textstyle Data

Chapter 5 4DML Library Calls
Maths
Most of the standard C++ mathematical functions are supported in 4DML.

The angles for the trigonometric functions are expressed in radians

Real Sin(Real x) sine of x

Real Cos(Real x) cosine of x

Real Tan(Real x) tangent of x

Real Asin(Real x) arcsine(x) in range [-pi/2,pi/2], -1<= x <= 1

Real Acos(Real x) arccosine(x) in range [-pi/2,pi/2], -1<= value <= 1

Real Atan(Real x) arctan(x) in range [-pi/2,pi/2]

Real Atan2(Real y, Real x) Arctan(y/x) in range [-pi,pi]

Real Sinh(Real x) hyperbolic sine of x

Real Cosh(Real x) hyperbolic cosine of x

Real Tanh(Real x) hyperbolic tangent of x

Real Exp(Real x) exponential function

Real Log(Real x) natural logarithm ln(x), x > 0

Real Log10(Real x) base 10 logarithm log(x), x> 0

Real Pow(Real x, Real y) x raised to the power y.A domain error occurs if

 x=0 and y<=0, or if x<0 and y is not an integer.

Real Sqrt(Real x) square root of x, x >= 0

Real Ceil(Real x) smallest integer not less than x, as a Real

Real Floor(Real x) largest integer not greater than x, as a Real

Real Absolute(Real x) absolute value of x

Integer Absolute(Integer i) absolute value of x

Real Ldexp(Real x,Integer n) x*(2 to the power n)

Real Mod(Real x, Real y) Real remainder of x/y with the same sign as x.
 If y is zero, the result is implementation defined
Page 87Maths

12d Model Programming Manual
Random Numbers

Set_random_number(Integer seed,Integer method)

Name

void Set_random_number(Integer seed,Integer method)

Description

Set up the random number generator with the Integer seed, seed (the current time in seconds is a
good seed).

If method is any value other than 1, the standard c library random number generator is used.

If method is 1, then a far more random seed generator than the standard c library one is used.

Once the random number generator is set with a seed, calling Get_Random_number will return a
random number.

There is no function return value.

Get_random_number()

Name

Integer Get_random_number()

Description

Generate the next random number as an Integer and return it as the function return value.

Note: the random number generator is initially set using Set_random_number.

Get_random_number_closed()

Name

Real Get_random_number_closed()

Description

Generate the next random number as a number between 0 and 1 inclusive, and return it as the
function return value.

Note: this function is only applicable is the random number generator is initially set using
Set_random_number with method = 1.

Get_random_number_open()

Name

Real Get_random_number_open()

Description

Generate the next random number as a number between 0 (included) and 1 (not included), and
return it as the function return value.

Note: this function is only applicable is the random number generator is initially set using
Set_random_number with method = 1.
Page 88 Random Numbers

Chapter 5 4DML Library Calls
Vectors and Matrices
Set_vector(Vector2 &vect,Real value)

Name

Integer Set_vector(Vector2 &vect,Real value)

Description

Set the two components of the two dimensional vector vect to the same Real value, value.

A function return value of zero indicates the values were successfully set.

Set_vector(Vector3 &vect,Real value)

Name

Integer Set_vector(Vector3 &vect,Real value)

Description

Set the three components of the three dimensional vector vect to the same Real value, value.

A function return value of zero indicates the values were successfully set.

Set_vector(Vector4 &vect,Real value)

Name

Integer Set_vector(Vector4 &vect,Real value)

Description

Set the four components of the four dimensional vector vect to the same Real value, value.

A function return value of zero indicates the values were successfully set.

Set_vector(Vector2 &vect,Real x,Real y)

Name

Integer Set_vector(Vector2 &vect,Real x,Real y)

Description

Set the first component of the two dimensional vector vect to the value x.

Set the second component of the two dimensional vector vect to the value y.

A function return value of zero indicates the values were successfully set.

Set_vector(Vector3 &vect,Real x,Real y,Real z)

Name

Integer Set_vector(Vector3 &vect,Real x,Real y,Real z)

Description

Set the first component of the three dimensional vector vect to the value x.

Set the second component of the three dimensional vector vect to the value y.

Set the third component of the three dimensional vector vect to the value z.

A function return value of zero indicates the values were successfully set.
Page 89Vectors and Matrices

12d Model Programming Manual
Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)

Name

Integer Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)

Description

Set the first component of the four dimensional vector vect to the value x.

Set the second component of the four dimensional vector vect to the value y.

Set the third component of the four dimensional vector vect to the value z.

Set the fourth component of the four dimensional vector vect to the value w.

A function return value of zero indicates the values were successfully set.

Get_vector(Vector2 &vect,Real &x,Real &y)

Name

Integer Get_vector(Vector2 &vect,Real &x,Real &y)

Description

For the two dimensional vector vect:

 return the first component of vect in x.

 return the second component of vect in y

A function return value of zero indicates the components were successfully returned.

Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)

Name

Integer Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)

Description

For the three dimensional vector vect:
 return the first component of vect in x.

 return the second component of vect in y

 return the third component of vect in z

A function return value of zero indicates the components were successfully returned.

Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)

Name

Integer Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)

Description

For the four dimensional vector vect:
 return the first component of vect in x.

 return the second component of vect in y

 return the third component of vect in z

 return the fourth component of vect in w

A function return value of zero indicates the components were successfully returned.
Page 90 Vectors and Matrices

Chapter 5 4DML Library Calls
Set_vector(Vector2 &vect,Integer index,Real value)

Name

Integer Set_vector(Vector2 &vect,Integer index,Real value)

Description

Set component number index of the two dimensional vector vect to the value value.

A function return value of zero indicates the component was successfully set.

Set_vector(Vector3 &vect,Integer index,Real value)

Name

Integer Set_vector(Vector3 &vect,Integer index,Real value)

Description

Set component number index of the three dimensional vector vect to the value value.

A function return value of zero indicates the component was successfully set.

Set_vector(Vector4 &vect,Integer index,Real value)

Name

Integer Set_vector(Vector4 &vect,Integer index,Real value)

Description

Set component number index of the four dimensional vector vect to the value value.

A function return value of zero indicates the component was successfully set.

Get_vector(Vector2 &vect,Integer index,Real &value)

Name

Integer Get_vector(Vector2 &vect,Integer index,Real &value)

For the two dimensional vector vect return the component number index in value.

A function return value of zero indicates the component was successfully returned.

Description

Get_vector(Vector3 &vect,Integer index,Real &value)

Name

Integer Get_vector(Vector3 &vect,Integer index,Real &value)

Description

For the three dimensional vector vect return the component number index in value.

A function return value of zero indicates the component was successfully returned.

Get_vector(Vector4 &vect,Integer index,Real &value)

Name

Integer Get_vector(Vector4 &vect,Integer index,Real &value)
Page 91Vectors and Matrices

12d Model Programming Manual
Description

For the four dimensional vector vect return the component number index in value.

A function return value of zero indicates the component was successfully returned.

Get_vector(Vector2 &vect,Integer index)

Name

Real Get_vector(Vector2 &vect,Integer index)

Description

For the two dimensional vector vect, return the component number index as the return value of
the function.

Get_vector(Vector3 &vect,Integer index)

Name

Real Get_vector(Vector3 &vect,Integer index)

Description

For the three dimensional vector vect, return the component number index as the return value of
the function.

Get_vector(Vector4 &vect,Integer index)

Name

Real Get_vector(Vector4 &vect,Integer index)

Description

For the four dimensional vector vect, return the component number index as the return value of
the function.

Get_vector_length(Vector2 &vect,Real &value)

Name

Integer Get_vector_length(Vector2 &vect,Real &value)

Description

For the two dimensional vector vect, return the length of the vector in value.

 Note: for V(x,y), length = square root of (x*x + y*y)

A function return value of zero indicates the length was successfully returned.

Get_vector_length(Vector3 &vect,Real &value)

Name

Integer Get_vector_length(Vector3 &vect,Real &value)

Description

For the three dimensional vector vect, return the length of the vector in value.

 Note: for V(x,y,z), length = square root of (x*x + y*y +z*z)

A function return value of zero indicates the length was successfully returned.
Page 92 Vectors and Matrices

Chapter 5 4DML Library Calls
Get_vector_length(Vector4 &vect,Real &value)

Name

Integer Get_vector_length(Vector4 &vect,Real &value)

Description

For the four dimensional vector vect, return the length of the vector in value.

 Note: for V(x,y,z,w), length = square root of (x*x + y*y +z*z + w*w)

A function return value of zero indicates the length was successfully returned.

Get_vector_length(Vector2 &vect)

Name

Real Get_vector_length(Vector2 &vect)

Description

Standard vector length and return it as return value

For the two dimensional vector vect, return the length of the vector as the return value of the
function.

 Note: for V(x,y), length = square root of (x*x + y*y)

Get_vector_length(Vector3 &vect)

Name

Real Get_vector_length(Vector3 &vect)

Description

For the three dimensional vector vect, return the length of the vector as the return value of the
function.

 Note: for V(x,y,z), length = square root of (x*x + y*y +z*z)

Get_vector_length(Vector4 &vect)

Name

Real Get_vector_length(Vector4 &vect)

Description

For the four dimensional vector vect, return the length of the vector as the return value of the
function.

 Note: for V(x,y,z,w), length = square root of (x*x + y*y +z*z + w*w)

Get_vector_length_squared(Vector2 &vect,Real &value)

Name

Integer Get_vector_length_squared(Vector2 &vect,Real &value)

Description

For the two dimensional vector vect, return the square of the length of the vector in value.

 Note: for V(x,y), length squared = x*x + y*y
Page 93Vectors and Matrices

12d Model Programming Manual
A function return value of zero indicates the length squared was successfully returned.

Get_vector_length_squared(Vector3 &vect,Real &value)

Name

Integer Get_vector_length_squared(Vector3 &vect,Real &value)

Description

For the three dimensional vector vect, return the square of the length of the vector in value.

 Note: for V(x,y,z), length squared = x*x + y*y + z*z

A function return value of zero indicates the length squared was successfully returned.

Get_vector_length_squared(Vector4 &vect,Real &value)

Name

Integer Get_vector_length_squared(Vector4 &vect,Real &value)

Description

For the four dimensional vector vect, return the square of the length of the vector in value.

 Note: for V(x,y,z,w), length squared = x*x + y*y + z*z + w*w

A function return value of zero indicates the length squared was successfully returned.

Get_vector_length_squared(Vector2 &vect)

Name

Real Get_vector_length_squared(Vector2 &vect)

Description

For the two dimensional vector vect, return the square of the length of the vector as the function
return value.

 Note: for V(x,y), length squared = x*x + y*y

Get_vector_length_squared(Vector3 &vect)

Name

Real Get_vector_length_squared(Vector3 &vect)

Description

For the three dimensional vector vect, return the square of the length of the vector as the
function return value.

 Note: for V(x,y,z), length squared = x*x + y*y + z*z

Get_vector_length_squared(Vector4 &vect)

Name

Real Get_vector_length_squared(Vector4 &vect)

Description

For the four dimensional vector vect, return the square of the length of the vector as the function
return value.
Page 94 Vectors and Matrices

Chapter 5 4DML Library Calls
 Note: for V(x,y,z,w), length squared = x*x + y*y + z*z + w*w

Get_vector_normalize(Vector2 &vect,Vector2 &normalised)

Name

Integer Get_vector_normalize(Vector2 &vect,Vector2 &normalised)

Description

For the two dimensional vector vect, return the normalised vector of vect in the Vector2
normalised.

 Note: for a normalised vector, length = 1 and for the vector V(x,y), the normalised vector
N(a,b) is:

N(a,b) = (x/length(V),y/length(V))

A function return value of zero indicates the normalised vector was successfully returned.

Get_vector_normalize(Vector3 &vect,Vector3 &normalised)

Name

Integer Get_vector_normalize(Vector3 &vect,Vector3 &normalised)

Description

For the three dimensional vector vect, return the normalised vector of vect in the Vector3
normalised.

 Note: for a normalised vector, length = 1 and for the vector V(x,y,z), the normalised vector
N(a,b,c) is:

N(a,b,c) = (x/length(V),y/length(V),z/length(V))

A function return value of zero indicates the normalised vector was successfully returned.

Get_vector_normalize(Vector4 &vect,Vector4 &normalised)

Name

Integer Get_vector_normalize(Vector4 &vect,Vector4 &normalised)

Description

For the four dimensional vector vect, return the normalised vector of vect in the Vector4
normalised.

 Note: for a normalised vector, length = 1 and for the vector V(x,y,z,w), the normalised vector
N(a,b,c,d) is:

N(a,b,c,d) = (x/length(V),y/length(V),z/length(V),w/length(V))

A function return value of zero indicates the normalised vector was successfully returned.

Get_vector_normalize(Vector2 &vect)

Name

Vector2 Get_vector_normalize(Vector2 &vect)

Description

For the two dimensional vector vect, return the normalised vector of vect as the function return
value.

 Note: for a normalised vector, length = 1 and for the vector V(x,y), the normalised vector
Page 95Vectors and Matrices

12d Model Programming Manual
N(a,b) is:

N(a,b) = (x/length(V),y/length(V))

Get_vector_normalize(Vector3 &vect)

Name

Vector3 Get_vector_normalize(Vector3 &vect)

Description

For the three dimensional vector vect, return the normalised vector as the function return value.

 Note: for a normalised vector, length = 1 and for the vector V(x,y,z), the normalised vector
N(a,b,c) is:

N(a,b,c) = (x/length(V),y/length(V),z/length(V))

Get_vector_normalize(Vector4 &vect)

Name

Vector4 Get_vector_normalize(Vector4 &vect)

Description

For the four dimensional vector vect, return the normalised vector as the function return value.

 Note: for a normalised vector, length = 1 and for the vector V(x,y,z,w), the normalised vector
N(a,b,c,d) is:

N(a,b,c,d) = (x/length(V),y/length(V),z/length(V),w/length(V))

Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)

Name

Integer Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)

Description

For the three dimensional vector vect, return the homogenized vector of vect in the Vector3
homogenized.

 Note: for a homogenized vector, the third component = 1 and for the vector V(x,y,z), the
homogenized vector H(a,b,c) is:

H(a,b,c) = (x/z,y/z,1)

A function return value of zero indicates the homogenized vector was successfully returned.

Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)

Name

Integer Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)

Description

For the four dimensional vector vect, return the homogenized vector of vect in the Vector4
homogenized.

 Note: for a homogenized vector, the fourth component = 1 and for the vector V(x,y,z,w), the
homogenized vector H(a,b,c,d) is:

H(a,b,c,d) = (x/z,y/w,z/w,1)
Page 96 Vectors and Matrices

Chapter 5 4DML Library Calls
A function return value of zero indicates the homogenized vector was successfully returned.

Get_vector_homogenize(Vector3 &vect)

Name

Vector3 Get_vector_homogenize(Vector3 &vect)

Description

For the three dimensional vector vect, return the homogenized vector of vect as the function
return value.

 Note: for a homogenized vector, the third component = 1 and for the vector V(x,y,z), the
homogenized vector H(a,b,c) is:

H(a,b,c) = (x/z,y/z,1)

Get_vector_homogenize(Vector4 &vect)

Name

Vector4 Get_vector_homogenize(Vector4 &vect)

Description

For the four dimensional vector vect, return the homogenized vector of vect as the function
return value.

 Note: for a homogenized vector, the fourth component = 1 and for the vector V(x,y,z,w), the
homogenized vector H(a,b,c,d) is:

H(a,b,c,d) = (x/z,y/w,z/w,1)

Set_matrix_zero(Matrix3 &matrix)

Name

Integer Set_matrix_zero(Matrix3 &matrix)

Description

For the three by three Matrix3 matrix, set all the values in the matrix to zero.

A function return value of zero indicates the matrix was successfully zero’d.

Set_matrix_zero(Matrix4 &matrix)

Name

Integer Set_matrix_zero(Matrix4 &matrix)

Description

For the four by four Matrix4 matrix, set all the values in the matrix to zero.

A function return value of zero indicates the matrix was successfully zero’d.

Set_matrix_identity(Matrix3 &matrix)

Name

Integer Set_matrix_identity(Matrix3 &matrix)

Description
Page 97Vectors and Matrices

12d Model Programming Manual
For the three by three Matrix3 matrix, set matrix to the identity matrix.

That is, for the matrix (row,column) values are:

 matrix(1,1) = 1 matrix (1,2) = 0 matrix(1,3) = 0

 matrix(2,1) = 0 matrix (2,2) = 1 matrix(2,3) = 0

 matrix(3,1) = 0 matrix (3,2) = 0 matrix(3,3) = 1

A function return value of zero indicates the matrix was successfully set to the identity matrix.

Set_matrix_identity(Matrix4 &matrix)

Name

Integer Set_matrix_identity(Matrix4 &matrix)

Description

For the four by four Matrix4 matrix, set matrix to the identity matrix.

That is, for the matrix (row,column) values are:

 matrix(1,1) = 1 matrix (1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix (2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix (3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0

 matrix(4,1) = 0 matrix (4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1

A function return value of zero indicates the matrix was successfully set to the identity matrix.

Set_matrix(Matrix3 &matrix,Real value)

Name

Integer Set_matrix(Matrix3 &matrix,Real value)

Description

For the three by three Matrix4 matrix, set all the values in the rows and columns of matrix to
value.

A function return value of zero indicates the matrix was successfully set to value.

Set_matrix(Matrix4 &matrix,Real value)

Name

Integer Set_matrix(Matrix4 &matrix,Real value)

Description

For the four by four Matrix4 matrix, set all the values in the rows and columns of matrix to value.

A function return value of zero indicates the matrix was successfully set to value.

Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)

Name

Integer Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)

Description

For the three by three Matrix3 matrix, set the value of matrix(row,col) to value.

A function return value of zero indicates the matrix(row,col) was successfully set to value.
Page 98 Vectors and Matrices

Chapter 5 4DML Library Calls
Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)

Name

Integer Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)

Description

For the four by four Matrix4 matrix, set the value of matrix(row,col) to value.

A function return value of zero indicates the matrix(row,col) was successfully set to value.

 Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)

Name

Integer Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)

Description

For the three by three Matrix3 matrix, get the value of matrix(row,col) and return it in value.

A function return value of zero indicates the matrix(row,col) was successfully returned.

Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)

Name

Integer Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)

Description

For the four by four Matrix4 matrix, get the value of matrix(row,col) and return it in value.

A function return value of zero indicates the matrix(row,col) was successfully returned.

Get_matrix(Matrix3 &matrix,Integer row,Integer col)

Name

Real Get_matrix(Matrix3 &matrix,Integer row,Integer col)

Description

For the three by three Matrix3 matrix, the value of matrix(row,col) is returned as the function
return value.

Get_matrix(Matrix4 &matrix,Integer row,Integer col)

Name

Real Get_matrix(Matrix4 &matrix,Integer row,Integer col)

Description

For the four by four Matrix3 matrix, the value of matrix(row,col) /.

Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Name

Integer Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Description
Page 99Vectors and Matrices

12d Model Programming Manual
For the three by three Matrix3 matrix, set the values of row row to the values of the components
of the Vector3 vect. That is:

 matrix(row,1) = vect(1) matrix(row,2) = vect(2) matrix(row,3) = vect(3).

A function return value of zero indicates that the row of matrix was successfully set.

 Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)

Name

Integer Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)

Description

For the four by four Matrix4 matrix, set the values of row row to the values of the components of
the Vector4 vect. That is:

 matrix(row,1)=vect(1) matrix(row,2)=vect(2) matrix(row,3)=vect(3) matrix(row,4)=vect(4).

A function return value of zero indicates the row of matrix was successfully set.

Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Name

Integer Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)

Description

For the three dimensional vector vect, set the values of vect to the values of row row of the
three by three Matrix3 matrix. That is:

 vect(1) = matrix(row,1) vect(2) = matrix(row,2) vect(3) = matrix(row,3).

A function return value of zero indicates that the components of vect were successfully set.

Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)

Name

Integer Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)

Description

For the four dimensional vector vect, set the values of vect to the values of row row of the four
by four Matrix4 matrix. That is:

 vect(1)=matrix(row,1) vect(2)=matrix(row,2) vect(3)=matrix(row,3) vect(4)=matrix(row,4).

A function return value of zero indicates that the components of vect were successfully set.

Get_matrix_row(Matrix3 &matrix,Integer row)

Name

Vector3 Get_matrix_row(Matrix3 &matrix,Integer row)

Description

For the three by three Matrix3 matrix, the values of row row of matrix are returned as the
Vector3 function return value.

Get_matrix_row(Matrix4 &matrix,Integer row)

Name
Page 100 Vectors and Matrices

Chapter 5 4DML Library Calls
Vector4 Get_matrix_row(Matrix4 &matrix,Integer row)

Description

For the four by four Matrix4 matrix, the values of row row of matrix are returned as the Vector4
function return value.

Get_matrix_transpose(Matrix3 &source,Matrix3 &target)

Name

Integer Get_matrix_transpose(Matrix3 &source,Matrix3 &target)

Description

For the three by three Matrix3 matrix, return the transpose of matrix as Matrix3 target.

That is, target(row,column) = matrix(column,row).

A function return value of zero indicates the matrix transpose was successfully returned.

Get_matrix_transpose(Matrix4 &source,Matrix4 &target)

Name

Integer Get_matrix_transpose(Matrix4 &source,Matrix4 &target)

Description

For the four by four Matrix3 matrix, return the transpose of matrix as Matrix4 target.

That is, target(row,column) = matrix(column,row).

A function return value of zero indicates the matrix transpose was successfully returned.

Get_matrix_transpose(Matrix3 &source)

Name

Matrix3 Get_matrix_transpose(Matrix3 &source)

Description

For the three by three Matrix3 source, return the transpose of matrix as the function return value.

Get_matrix_transpose(Matrix4 &source)

Name

Matrix4 Get_matrix_transpose(Matrix4 &source)

Description

For the four by four Matrix4 source, return the transpose of matrix as the function return value.

Get_matrix_inverse(Matrix3 &source,Matrix3 &target)

Name

Integer Get_matrix_inverse(Matrix3 &source,Matrix3 &target)

Description

For the three by three Matrix3 source, return the inverse of the matrix as Matrix3 target.

A function return value of zero indicates the matrix inverse was successfully returned.
Page 101Vectors and Matrices

12d Model Programming Manual
Get_matrix_inverse(Matrix4 &source,Matrix4 &target)

Name

Integer Get_matrix_inverse(Matrix4 &source,Matrix4 &target)

Description

For the four by four Matrix4 source, return the inverse of the matrix as Matrix4 target.

A function return value of zero indicates the matrix inverse was successfully returned.

Get_matrix_inverse(Matrix3 &source)

Name

Matrix3 Get_matrix_inverse(Matrix3 &source)

Description

For the three by three Matrix3 source, return the inverse of the matrix as the function return
value.

Get_matrix_inverse(Matrix4 &source)

Name

Matrix4 Get_matrix_inverse(Matrix4 &source)

Description

For the four by four Matrix4 source, return the inverse of the matrix as the function return value.

Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)

Name

Integer Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)

Description

For the three by three Matrix3 matrix, swap row row1 with row row2.

A function return value of zero indicates the swapped matrix was successfully returned.

Swap_matrix_rows(Matrix4 &matrix,Integer row1,Integer row2)

Name

Integer Swap_matrix_cols(Matrix4 &matrix,Integer Swap_matrix_rows(Matrix4 &matrix,Integer
row1,Integer row2)

Description

For the four by four Matrix4 matrix, swap row row1 with row row2.

A function return value of zero indicates the swapped matrix was successfully returned.

Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)

Name

Integer Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)
Page 102 Vectors and Matrices

Chapter 5 4DML Library Calls
Description

For the three by three Matrix3 matrix, swap column col1 with column col2.

A function return value of zero indicates the swapped matrix was successfully returned.

Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)

Name

Integer Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)

Description

For the four by four Matrix4 matrix, swap column col1 with column col2.

A function return value of zero indicates the swapped matrix was successfully returned.

Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)

Name

Integer Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)

Description

From the two dimension vector vect, create the three by three matrix representing the vector as
a translation and return it as matrix.

That is, for vect(x,y), the matrix(row,column) values are:

 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = x

 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = y

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

A function return value of zero indicates the translation matrix was successfully returned.

Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)

Name

Integer Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)

Description

From the three dimension vector vect, create the four by four Matrix4 matrix representing the
vector as a translation and return it as matrix.

That is, for vect(x,y,z), the matrix(row,column) values are:

 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = x

 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = y

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = z

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1

A function return value of zero indicates the translation matrix was successfully returned.

Get_translation_matrix(Vector2 &vect)

Name

Matrix3 Get_translation_matrix(Vector2 &vect)

Description
Page 103Vectors and Matrices

12d Model Programming Manual
For the two dimension vector vect, the three by three Matrix3 representing the vector as a
translation is returned as the function return value.

Get_translation_matrix(Vector3 &vect)

Name

Matrix4 Get_translation_matrix(Vector3 &vect)

Description

For the three dimension vector vect, the four by four Matrix4 representing the vector as a
translation is returned as the function return value.

Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)

Name

Integer Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)

Description

From the Vector2 centre and Real angle, construct the three by three Matrix3 matrix given
below.

If centre is (x,y), C = cos(angle) and S = sin(angle).

 the matrix(row,column) values are:

 matrix(1,1) = C matrix(1,2) = -S matrix(1,3) = x*(1 - C) + y*S

 matrix(2,1) = S matrix(2,2) = C matrix(2,3) = y*(1 - C) - x*S

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the matrix was successfully returned.

Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)

Name

Integer Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)

Description

From the Vector3 axis and Real angle, construct the four by four Matrix4 matrix given below.

If Naxis is axis normalised and Naxis = (X,Y,Z), C = cos(angle), S = sin(angle) and T = 1 - C

 the matrix(row,column) values are:

 matrix(1,1) = T*X*X+C matrix(1,2) = T*X*Y-SZ matrix(1,3) = T*X*Z+S*Y matrix(1,4) = 0

 matrix(2,1) = T*X*Y+S*Z matrix(2,2) = T*Y*Y+C matrix(2,3) = T*Y*Z-S*X matrix(1,4) = 0

 matrix(3,1) = T*X*Z-S*Y matrix(3,2) = T*Y*Z+S*X matrix(3,3) = T*Z*Z+C matrix(1,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,1) = 1

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the matrix was successfully returned.

Get_rotation_matrix(Vector2 ¢re,Real angle)

Name
Page 104 Vectors and Matrices

Chapter 5 4DML Library Calls
Matrix3 Get_rotation_matrix(Vector2 ¢re,Real angle)

Description

From the Vector2 centre and Real angle, construct the three by three Matrix3 matrix given
below and return it as the function return value.

If centre is (X,Y), C = cos(angle) and S = sin(angle) and Matrix3 matrix.

 the matrix(row,column) values are:

 matrix(1,1) = C matrix(1,2) = -S matrix(1,3) = X*(1 - C) + Y*S

 matrix(2,1) = S matrix(2,2) = C matrix(2,3) = Y*(1 - C) - X*S

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

Get_rotation_matrix(Vector3 &axis,Real angle)

Name

Matrix4 Get_rotation_matrix(Vector3 &axis,Real angle)

Description

From the Vector3 axis and Real angle, construct the four by four Matrix4 matrix given below
and return it as the function return value.

If Naxis is axis normalised and Naxis = (X,Y,Z), C = cos(angle), S = sin(angle), T = 1 - C and
Matrix4 matrix

 the matrix(row,column) values are:

 matrix(1,1) = T*X*X+C matrix(1,2) = T*X*Y-SZ matrix(1,3) = T*X*Z+S*Y matrix(1,4) = 0

 matrix(2,1) = T*X*Y+S*Z matrix(2,2) = T*Y*Y+C matrix(2,3) = T*Y*Z-S*X matrix(1,4) = 0

 matrix(3,1) = T*X*Z-S*Y matrix(3,2) = T*Y*Z+S*X matrix(3,3) = T*Z*Z+C matrix(1,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,1) = 1

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)

Name

Integer Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)

Description

From the two dimension vector scale, create the three by three Matrix3 representing the vector
as a scaling matrix and return it as matrix.

That is, for scale(S,T), the matrix(row,column) values are:

 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

A function return value of zero indicates the translation matrix was successfully returned.

Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)

Name

Integer Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)
Page 105Vectors and Matrices

12d Model Programming Manual
Description

From the three dimension vector scale, create the four by four Matrix4 representing the vector as
a scaling matrix and return it as matrix.

That is, for scale(S,T,U), the matrix(row,column) values are:

 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = U matrix(3,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1

A function return value of zero indicates the scaling matrix was successfully returned.

Get_scaling_matrix(Vector2 &scale)

Name

Matrix3 Get_scaling_matrix(Vector2 &scale)

Description

From the two dimension vector scale, create the three by three Matrix3 matrix as given below.
The matrix represents the vector as a scaling and it is return as the function return value.

That is, for scale(S,T), the returned matrix(row,column) values are:

 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1

Get_scaling_matrix(Vector3 &scale)

Name

Matrix4 Get_scaling_matrix(Vector3 &scale)

Description

From the three dimension vector scale, create the four by four Matrix4 matrix as given below.
The matrix represents the vector as a scaling and it is return as the function return value.

That is, for scale(S,T,U), the returned matrix(row,column) values are:

 matrix(1,1) = S matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix(2,2) = T matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = U matrix(3,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 0 matrix(4,4) = 1

Get_perspective_matrix(Real d,Matrix4 &matrix)

Name

Integer Get_perspective_matrix(Real d,Matrix4 &matrix)

Description

For the distance d, create the four by four Matrix4 and return it as matrix.

That is, for Real d, the matrix(row,column) values are:

 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0
Page 106 Vectors and Matrices

Chapter 5 4DML Library Calls
 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 1/d matrix(4,4) = 0

A function return value of zero indicates the matrix was successfully returned.

Get_perspective_matrix(Real d)

Name

Matrix4 Get_perspective_matrix(Real d)

Description

For the distance d, create the four by four Matrix4 and return it as the function return value.

That is, for Real d, the matrix(row,column) values are:

 matrix(1,1) = 1 matrix(1,2) = 0 matrix(1,3) = 0 matrix(1,4) = 0

 matrix(2,1) = 0 matrix(2,2) = 1 matrix(2,3) = 0 matrix(2,4) = 0

 matrix(3,1) = 0 matrix(3,2) = 0 matrix(3,3) = 1 matrix(3,4) = 0

 matrix(4,1) = 0 matrix(4,2) = 0 matrix(4,3) = 1/d matrix(4,4) = 0

matrix is returned as the function return value.
Page 107Vectors and Matrices

12d Model Programming Manual
Triangles
Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])

Name

Integer Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])

Description

Calculate the normal vector to the triangle given by the coordinates in the arrays xarray[],
yarray[], zarray[] (the arrays are of dimension 3).

The normal vector is returned in Normal[1], Normal [2] and Normal[3].

A function return value of zero indicates the function was successful.

Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &xn,Real &yn,Real &zn)

Name

Integer Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&xn,Real &yn,Real &zn)

Description

Calculate the normal vector to the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and
(x3,y3,z3).

The normal vector is returned in (xn,yx,zn).

A function return value of zero indicates the function was successful.

Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)

Name

Integer Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)

Description

Calculate the slope of the triangle given by the coordinates in the arrays xarray[], yarray[],
zarray[] (the arrays are of dimension 3), and return the value as slope.

The units for slope is an angle in radians measured from the horizontal plane.

A function return value of zero indicates the function was successful.

Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &slope)

Name

Integer Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&slope)

Description

Calculate the slope of the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3),
and return the value as slope.

The units for slope is an angle in radians measured from the horizontal plane.

A function return value of zero indicates the function was successful.
Page 108 Triangles

Chapter 5 4DML Library Calls
Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)

Name

Integer Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)

Description

Calculate the aspect of the triangle given by the coordinates in the arrays xarray[], yarray[],
zarray[] (the arrays are of dimension 3), and return the value as aspect.

The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).

A function return value of zero indicates the function was successful.

Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real
y3,Real z3,Real &aspect)

Name

Integer Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real
&aspect)

Description

Calculate the aspect of the triangle given by the coordinates (x1,y1,z1), (x2,y2,z2) and
(x3,y3,z3), and return the value as aspect.

The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).

A function return value of zero indicates the function was successful.
Page 109Triangles

12d Model Programming Manual
System
System(Text msg)

Name

Integer System(Text msg)

Description

Make a system call.

The message passed to the system call is given by Text msg.

For example,

 system ("ls *.tmp>fred")

A function return value of zero indicates success.

Note

The types of system calls that can be made is operating system dependant.

Date(Text &date)

Name

Integer Date(Text &date)

Description

Get the current date.

The date is returned in Text date with the format

 DDD MMM dd yyyy

where DDD is three characters for the day, MMM is three characters for the month

dd is two numbers for the day of the month and yyyy is four numbers for the year, and each is
separated by one space.

For example,

 Sun Mar 17 1996

A function return value of zero indicates the date was returned successfully.

Date(Integer &d,Integer &m,Integer &y)

Name

Integer Date(Integer &d,Integer &m,Integer &y)

Description

Get the current date as the day of the month, month & year.

The day of the month value is returned in Integer d.

The month value is returned in Integer m.

The year value is returned in Integer y (fours digits).

A function return value of zero indicates the date was returned successfully.

Time(Integer &time)

Name
Page 110 System

Chapter 5 4DML Library Calls
Integer Time(Integer &time)

Description

Get the current time as seconds since January 1 1970.

The time value is returned in Integer time.

A function return value of zero indicates the time was returned successfully.

Time(Real &time)

Name

Integer Time(Real &time)

Description

Get the current time as the number of seconds since January 1st 1601 down to precision of 10-7
(100 nanoseconds) and return it as time.

A function return value of zero indicates the time was returned successfully.

Time(Text &time)

Name

Integer Time(Text &time)

Description

Get the current time.

The time is returned in Text time with the format (known as the ctime format)

 DDD MMM dd hh:mm:ss yyyy where

where DDD is three characters for the day, MMM is three characters for the month

dd two digits for the day of the month, hh two digits for the hour, mm two digits for the hour (in
twenty four hour format), ss two digits for seconds and yyyy is four digits for the year.

For example,

 Sun Mar 17 23:19:24 1996

A function return value of zero indicates the time was returned successfully.

Time(Integer &h,Integer &m,Real &sec)

Name

Integer Time(Integer &h,Integer &m,Real &sec)

Description

Get the current time in hours, minutes & seconds.

The hours value is returned in Integer h.

The minutes value is returned in Integer m.

The seconds value is returned in Real s.

A function return value of zero indicates the time was returned successfully.

Convert_time(Integer t1,Text &t2)

Name
Page 111System

12d Model Programming Manual
Integer Convert_time(Integer t1,Text &t2)

Description

Convert the time in seconds since January 1 1970, to the standard ctime format given in an
earlier Time function.

The time in seconds is given by Integer t1 and the Text t2 returns the time in ctime format.

Get_user_name(Text &name)

Name

Integer Get_user_name(Text &name)

Description

Get user’s name, the name currently logged onto the system.

The name is returned in Text name.

A function return value of zero indicates the name was returned successfully.

Convert_time(Text &t1,Integer t2)

Name

Integer Convert_time(Text &t1,Integer t2)

Description

Convert the time in ctime format to the time in seconds since January, 1 1970.

The time in ctime format is given by Text t1 and the time in seconds is returned as Integer t2.

Note

Not yet implemented.

Convert_time(Integer t1,Text format,Text &t2)

Name

Integer Convert_time(Integer t1,Text format,Text &t2)

Description

Convert the time in seconds since January 1 1970, to the Text format (as defined in the section
on Title Blocks in the 12d Model Reference Manual).

The time in seconds is given by Integer t1 and the Text t2 returns the time in the specified format.

Get_macro_name()

Name

Text Get_macro_name()

Description

Get the name of the macro file.

A function return value is the macro name.

Get_module_license(Text module_name)

Name
Page 112 System

Chapter 5 4DML Library Calls
Integer Get_module_license(Text module_name)

Description

Get the status of each module license.

If the module_name is:

 points_limit
 tins_limit
 remaining_days
 warned

the function returns number of available units.

If the module_name is:

 ok lite
 drainage digitizer
 pipeline
 sewer survey
 tin_analysis volumes
 volumesII trarr
 vehicle_path sight_distance
 cartographic dxf
 genio keays
 geocomp dgn
 civilcad mapinfo
 arcview alignment

The function returns 1 for licensed, 0 for not licensed.

Getenv(Text env)

Name

Text Getenv(Text env)

Description

Get the temporary directory for Windows.

Find_system_file(Text new_file_name,Text old_file_name,Text env)

Name

Text Find_system_file(Text new_file_name,Text old_file_name,Text env)

Description

<no description>

Find_system_file(file_name,"colour_map.def","COLOUR_4D")

Name

Text Find_system_file(file_name,"colour_map.def","COLOUR_4D")

Description

<no description>

Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)

Name
Page 113System

12d Model Programming Manual
void Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)

Description

<no description>

Is_practise_version()

Name

Integer Is_practise_version()

Description

Check if the current 12d Model is a practise version.

A non-zero function return value indicates that 12d Model is a practise version.

A zero function return value indicates that 12d Model is not a practise version.

Warning this is the opposite of most 4DML function return values

Create_process(Text program_name,Text command_line,Text start_directory,
Integer flags,Integer wait,Integer inherit)

Name
Integer Create_process(Text program_name,Text command_line,Text start_directory,Integer flags,Integer
wait,Integer inherit)

Description

<no description>

Shell_execute(Widget widget,Text operation,Text file,Text parameters,
Text directory,Integer showcmd)

Name

Integer Shell_execute(Widget widget,Text operation,Text file,Text parameters,Text directory,Integer
showcmd)

Description

<no description>
Page 114 System

Chapter 5 4DML Library Calls
Uid’s
Elements created within 12d Model are given a unique identifier called a Uid.

A Uid is made up of two parts:

(a) a Global Unique Identifier (Guid)

and a

(b) 12d Model generated Id.

Guid’s
A Global Unique Identifier (Guid) is a unique number which encodes space and time (see Guid
in Wikipedia). Whenever a 12d Model is created, a Guid is generated at the time of creation and
this Guid is permanently stored as part of the 12d Model project. The Guid takes 128 bits of
storage. If a 12d Model copy is made of a project, then the new project is given a new unique
Guid.

Id’s
When a 12d Model project is created, the project Id counter, which is a 64-bit Integer, is set to
zero and every time a new element is created, the Id counter is incremented and the new
element given the current Id value.

The Id counter only ever increases and if an element in a project is deleted, its Id is never reused.

Uid
For a 12d Model Element, the Uid consists of both the Guid of its parent project and its unique Id
within that project.

For documentation on Uid calls, go to the next section Uid Functions

Uid Functions

Get_next_uid()

Name

Uid Get_next_uid()

Description

Get the next available Uid and return it as the function return value.

This is often used in Undo’s.

Get_next_id()

Name

Integer Get_next_id()

Description
Page 115Uid’s

12d Model Programming Manual
Get the next available Id and return it as the function return value.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Uid Get_next_uid() instead.

Get_last_uid()

Name

Uid Get_last_uid()

Description

Get the last used Uid (that is the one from the last created Element) and return it as the function
return value.

Get_last_id()

Name

Integer Get_last_id()

Description

Get the last used Id (that is the one from the last created Element) and return it as the function
return value.

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Get_last_uid instead (see Get_last_uid() .

void Print(Uid uid)

Name

void Print(Uid uid)

Description

Prints a text conversion of the UID uid to the Output Window.

Three is no function return value.

Convert_uid(Uid uid,Text &txt)

Name

Integer Convert_uid(Uid uid,Text &txt)

Description

Convert the UID uid to a Text. The Text is returned in txt.

A function return value of zero indicates the Uid was successfully converted to text.

Convert_uid(Uid uid,Integer &id)

Name

Integer Convert_uid(Uid uid,Integer &id)

Description

Convert the UID uid to an Integer The Integer is returned in id.

Note - this in only possible if the uid can be expressed as an Integer,
Page 116 Uid’s

Chapter 5 4DML Library Calls
A function return value of zero indicates the Uid was successfully converted. to an Integer.

Convert_uid(Text txt,Uid &uid)

Name

Integer Convert_uid(Text txt,Uid &uid)

Description

Convert the Text txt to an UID. The Uid is returned in uid.

Note - this in only possible if txt is in the correct form of an Uid.

A function return value of zero indicates the Text was successfully converted to a Uid.

Convert_uid(Integer id,Uid &uid)

Name

Integer Convert_uid(Integer id,Uid &uid)

Description

Convert the Integer id to an UID. The Uid is returned in uid.

Note - this in only possible if the Integer id can be expressed as an Uid.

A function return value of zero indicates the Integer was successfully converted to a Uid.

To_text(Uid uid)

Name

Text To_text(Uid uid)

Description

Convert the UID uid to a Text.

The Text is returned as the function return value.

From_text(Text txt,Uid &uid)

Name

Integer From_text(Text txt,Uid &uid)

Description

Convert the Text txt to a Uid and the Uid is returned in uid.

A function return value of zero indicates the txt was successfully converted to a Uid.

Null(Uid &uid)

Name

void Null(Uid &uid)

Description

Set the UID uid to be a null Uid.

There is no function return value.
Page 117Uid’s

12d Model Programming Manual
Is_null(Uid uid)

Name

Integer Is_null(Uid uid) \

Description

Check to see if the UID uid is a null Uid.

A non-zero function return value indicates that uid is null.

A zero function return value indicates that uid is not null.

Warning this is the opposite of most 4DML function return values

Is_contour(Uid uid)

Name

Integer Is_contour(Uid uid)

Description

Check to see if the UID uid is the Uid of a string created by a 12d Model Contour option.

Note - such strings are ignored in 12d Model number counts for Base size.

A non-zero function return value indicates that the uid is of a string created by a 12d Model
Contour option.

A zero function return value indicates that the uid is not the uid of a string created by a 12d Model
Contour option.

Warning this is the opposite of most 4DML function return values

Is_plot(Uid uid)

Name

Integer Is_plot(Uid uid)

Description

Check to see if the UID uid is the Uid of a string created by a 12d Model Plot option.

Note - such strings are ignored in 12d Model number counts for Base size.

A non-zero function return value indicates that the uid is of a string created by a 12d Model Plot
option.

A zero function return value indicates that the uid is not the uid of a string created by a 12d Model
Plot option.

Warning this is the opposite of most 4DML function return values

Is_function(Uid uid)

Name

Integer Is_function(Uid uid)

Description

Check to see if the UID 12d Model is the Uid of a 12d Model Function/Macro_Function.

A non-zero function return value indicates that the uid is of a 12d Model Function/
Macro_Function

A zero function return value indicates that the uid is not the uid of a 12d Model Function/
Macro_Function.
Page 118 Uid’s

Chapter 5 4DML Library Calls
Warning this is the opposite of most 4DML function return values

Function_exists(Integer id)

Name

Integer Function_exists(Integer id)

Description

Check to see if id is the Id of a 12d Function.

1 for yes

A non-zero function return value indicates that id is the Id of a 12d Model Function/
Macro_Function

A zero function return value indicates that id is not the Id of a 12d Model Function/
Macro_Function.

Warning this is the opposite of most 4DML function return values

Deprecation Warning - this function has now been deprecated and will no longer exist unless
special compile flags are used. Use Integer Is_function(Uid uid) instead.

Is_valid(Uid uid)

Name

Integer Is_valid(Uid uid)

Description

Check to see if the UID uid is a valid Uid.

 A non-zero function return value indicates that uid is a valid Uid.

Warning this is the opposite of most 4DML function return values

Is_unknown(Uid uid)

Name

Integer Is_unknown(Uid uid)

Description

<no description>

Is_global(Uid uid)

Name

Integer Is_global(Uid uid)

Description

Check to see if the UID uid is of a shared element. That is, the element has not been created in
this project but has been shared in from another project.

 A non-zero function return value indicates that uid is of a shared element.

Warning this is the opposite of most 4DML function return values
Page 119Uid’s

12d Model Programming Manual
Input/Output
Information can be written out to the 12d Model Output Window.

Print(Text msg)

Name

void Print(Text msg)

Description

Print the Text msg to the window.

A function return value of zero indicates success.

Print(Integer value)

Name

void Print(Integer value)

Description

Print the Integer value out in text to the window.

A function return value of zero indicates success.

Print(Real value)

Name

void Print(Real value)

Description

Print the Real value out in text to the window.

A function return value of zero indicates success.

void Print()

Name

void Print()

Description

Print the text "\n" (a new line) to the window.
Page 120 Input/Output

Chapter 5 4DML Library Calls
Files
Disk files are used extensively in computing for reasons such as passing data between
programs, writing out permanent records and reading in bulk input data.

4DML provides a wide range of functions to allow the user to easily read and write files within
macros.

For reading in data, 4DML only provides the File_read_line function which reads only read one
line of text. However, the powerful 4DML Text functions can then be used on the text line to "pull
the line apart" and extract the relevant information.

Similarly, the File_write_line function only outputs one text line but again the powerful Text
functions are used to build up any complex line of text required.

File_exists(Text file_name)

Name

Integer File_exists(Text file_name)

Description

Checks to see if a file of name file_name exists.

A non-zero function return value indicates the file exists.

A zero function return value indicates the file does not exist.

Warning - this is the opposite to most 4DML function return values

File_delete(Text file_name)

Name

Integer File_delete(Text file_name)

Description

Delete a file from the disk

A function return value of zero indicates the file was deleted.

File_open(Text file_name,Text mode,File &file)

Name

Integer File_open(Text file_name,Text mode,File &file)

Description

Opens a file of name file_name with open type mode. The file unit is returned as File file.

The available modes are

r open for reading
r+ open for update, reading and writing
rb read binary
w truncate or create for writing
w+ truncate or create for update
wb write binary
a append open for writing at the end of file or create for writing
a+ open for update at end of file or create for update

When a file is open for append (i.e. a or a+), it is impossible to overwrite information that is
already in the file.

A function return value of zero indicates the file was opened successfully.
Page 121Input/Output

12d Model Programming Manual
File_close(File file)

Name

Integer File_close(File file)

Description

Close the File file.

A function return value of zero indicates file was closed successfully.

File_read_line(File file,Text &text_in)

Name

Integer File_read_line(File file,Text &text_in)

Description

Read a line of text from the File file. The text is read into the Text text_in.

A function return value of zero indicates the text was successfully read in.

File_write_line(File file,Text text_out)

Name

Integer File_write_line(File file,Text text_out)

Description

Write a line of text to the File file. The text to write out is Text text_out.

A function return value of zero indicates the text was successfully written out.

File_rewind(File file)

Name

Integer File_rewind(File file)

Description

Rewind the File file to its beginning.

A function return value of zero indicates the file was successfully rewound.

File_tell(File file,Integer &pos)

Name

Integer File_tell(File file,Integer &pos)

Description

Get the current position in the File file.

A function return value of zero indicates the file position was successfully found.

File_seek(File file,Integer pos)

Name

Integer File_seek(File file,Integer pos)
Page 122 Input/Output

Chapter 5 4DML Library Calls
Description

Go to the position pos in the File file.

Position pos has normally been found by a previous File_tell call.

If the file open type was a or a+, then a File_seek cannot be used to position for a write in any
part of the file that existed when the file was opened.

A function return value of zero indicates the file position was successfully found.

File_flush(File file)

Name

Integer File_flush(File file)

Description

Make sure the File file is up to date with what has been written out.

A function return value of zero indicates the file was successfully flushed.
Page 123Input/Output

12d Model Programming Manual
12d Ascii

Read_4d_ascii(Text filename,Text prefix)

Name

Integer Read_4d_ascii(Text filename,Text prefix)

Description

Read in and process the file called filename as a 12d Ascii file. The post-prefix for models is
given in prefix.

A function return value of zero indicates the file was successfully read.
Page 124 Input/Output

Chapter 5 4DML Library Calls
Menus
Menus with the same look and feel as 12d Model menus can be easily created within 4DML.

A 4DML menu consists of a title and any number of menu options (called buttons) that are
displayed one per line down the screen.

When the menu is displayed on the screen, the menu buttons will highlight as the cursor passes
over them. If a menu button is selected (by pressing the LB whilst the button is highlighted), the
menu will be removed from the screen and the user-defined code for the selected button
returned to the macro.

To represent menus, 4DML has a special variable type called Menu.

Screen Co-Ordinates
When placing Menus, screen positions are given as co-ordinates (across_pos,down_pos) where
across_pos and down_pos are measured from the top left-hand corner of the 12d Model
window.

The units for screen co-ordinates are pixels.

A full computer screen is approximately 1000 pixels across by 800 pixels down.

Create_menu(Text menu_title)

Name

Menu Create_menu(Text menu_title)

Description

A Menu is created which is used when referring to this particular menu. The menu title is defined
when the menu variable is created and is the Text menu_title.

The function return value is the required Menu variable.

(To represent menus, 4DML has this special variable type called Menu.)

Menu_delete(Menu menu)

Name

Integer Menu_delete(Menu menu)

Description

Delete the menu defined by Menu menu.

A function return value of zero indicates the menu was deleted successfully.

Create_button(Menu menu,Text button_text,Text button_reply)

Name

Integer Create_button(Menu menu,Text button_text,Text button_reply)

Description

This function adds buttons to the menu with button_text as the text for the button.

The button is also supplied with a Text button_reply which is returned to the macro through the
function Display or Display_relative when the button is selected.

The menu buttons will appear in the Menu in the order that they are added to the menu structure
by the Create_button function.
Page 125Menus

12d Model Programming Manual
A function return value of zero indicates that the button was created successfully.

Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)

Name

Integer Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)

Description

When called, the Menu menu is displayed on the screen with screen co-ordinates
(across_pos,down_pos).

The menu remains displayed on the screen until a menu button is selected by the user.

When a menu button is selected, the menu is removed from the screen and the appropriate
button return code returned in the Text variable reply.

Whilst displayed on the screen, the menu can be moved around the 12d Model window by using
the mouse. When a menu selection is finally made, the actual position of the menu at selection
time is returned as (across_pos,down_pos).

A function return value of zero indicates that a successful menu selection was made.

Note

An (across_pos,down_pos) of (-1,-1) indicates the current cursor position.

Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)

Name

Integer Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)

Description

When called, the Menu menu is displayed on the screen with screen co-ordinates of
(across_rel,down_rel) relative to the cursor position.

The menu remains displayed until a menu button is selected.

When a menu button is selected, the menu is removed from the screen and the appropriate
button return code returned in the Text variable reply.

Whilst displayed, the menu can be moved in 12d Model by using the mouse. When the selection
is made, the final absolute position of the menu is returned as (across_rel,down_rel).

A function return value of zero indicates that a successful menu selection was made.

Thus the sequence used to define and display a menu and the relevant functions used are:

(a) a Menu variable is created which is used when referring to this particular menu. The menu
title is defined when the menu variable is created. Use:

Create_menu(Text menu_title)

For example

Menu menu = Create_menu("Test");

(b) the menu buttons are added to the menu structure in the order that they will appear in the
menu. The button text and the text that will be returned to the macro if the button is selected
are both supplied. Use:

Create_button(Menu menu,Text button_text,Text reply)

For example

Create_button(menu,"First options","Op1");
Create_button(menu,"Second options","Op2");
Create_button(menu,"Finish","Fin");
Page 126 Menus

Chapter 5 4DML Library Calls
(c) the menu is displayed on the screen. The menu will continued to be displayed until a menu
button is selected. When the menu button is selected, the menu is removed from the screen
and the appropriate button return code returned to the macro.

Use:

Display(Menu menu,Integer row_pos,Integer col_pos,
Text &reply)

Display_relative(Menu menu,Integer row_pos,Integer col_pos,
Text &reply)

For example

Display(menu,5,10,reply);

A more complete example of defining and using a menu is:

void main()

{
 // create a menu with title "Silly Menu"
 Menu menu = Create_menu("Silly Menu");

 /* add menu button with titles "Read", "Write", "Draw"
 and "Quit". The returns codes for the buttons are
 the same as the button titles
 */

 Create_button(menu,"Read","Read");
 Create_button(menu,"Write","Write");
 Create_button(menu,"Draw","Draw");
 Create_button(menu,"Quit","Quit");

 /* display the menu on the screen at the current cursor
 position and wait for a button to selected.
 When a button is selected, print out its return code
 If the return code isn't "Quit", redisplay the menu.
 */

 Text reply;

 do {
 Display(menu,-1,-1,reply);
 Print(reply); Print("\n");
 } while(reply != "Quit");
}

Page 127Menus

12d Model Programming Manual
Dynamic Arrays
The 4DML Dynamic Arrays are used to hold one or more items. That is, a Dynamic Arrays
contains an arbitrary number of items.

The items in a Dynamic Array are accessed by their unique number position number in the
Dynamic Array.

As for fixed arrays, the Dynamic Array positions go from one to the number of items in the
Dynamic Array. However, unlike fixed arrays, extra items can be added to a Dynamic Array at
any time.

Hence a 4DML Dynamic Array can be thought of as a dynamic array of items.

The types of Dynamic Arrays are Dynamic_Element, Dynamic_Text, Dynamic_Real and
Dynamic_Integer

For more information on Dynamic_Element, go to Dynamic Element Arrays .
Dynamic_Text, go to Dynamic Text Arrays .
Dynamic_Real, go to Dynamic Real Arrays .
Dynamic_Integer, go to Dynamic Integer Arrays .

Dynamic Element Arrays
The 4DML variable type Dynamic_Element is used to hold one or more Elements. That is, a
Dynamic_Element contains an arbitrary number of Elements.

The Elements in a Dynamic_Element are accessed by their unique number position number in
the Dynamic_Element.

As for fixed arrays, the Dynamic_Element positions go from one to the number of Elements in the
Dynamic_Element. However, unlike fixed arrays, extra Elements can be added to a
Dynamic_Element at any time.

Hence a 4DML Dynamic_Element can be thought of as a dynamic array of Elements.

The following functions are used to access and modify Elements in a Dynamic_Element.

Null(Dynamic_Element &delt)

Name

Integer Null(Dynamic_Element &delt)

Description

Removes and nulls all the Elements from the Dynamic_Element delt and sets the number of
items to zero.

A function return value of zero indicates that delt was successfully nulled.

Get_number_of_items(Dynamic_Element &delt,Integer &no_items)

Name

Integer Get_number_of_items(Dynamic_Element &delt,Integer &no_items)

Description

Get the number of Elements currently in the Dynamic_Element delt.

The number of Elements is returned in Integer no_items.

A function return value of zero indicates the number of Elements was returned successfully.
Page 128 Dynamic Arrays

Chapter 5 4DML Library Calls
Get_item(Dynamic_Element &delt,Integer i,Element &elt)

Name

Integer Get_item(Dynamic_Element &delt,Integer i,Element &elt)

Description

Get the ith Element from the Dynamic_Element delt.

The Element is returned in elt.

A function return value of zero indicates the ith Element was returned successfully.

Append(Element &elt,Dynamic_Element delt)

Name

Integer Append(Element &elt,Dynamic_Element delt)

Description

Append the Element elt to the end of the contents of the Dynamic_Element elt. This will increase
the size of the Dynamic_Element by one.

A function return value of zero indicates the append was successful.

Set_item(Dynamic_Element &delt,Integer i,Element elt)

Name

Integer Set_item(Dynamic_Element &delt,Integer i,Element elt)

Description

Set the ith Element in the Dynamic_Element delt to the Element elt.

If the position i is greater or equal to the total number of Elements in the Dynamic_Element, then
the Dynamic_Element will automatically be extended so that the number of Elements is i. Any
extra Elements that are added will be set to null.

A function return value of zero indicates the Element was successfully set.

Null_item(Dynamic_Element &delt,Integer i)

Name

Integer Null_item(Dynamic_Element &delt,Integer i)

Description

Set the ith Element to null.

A function return value of zero indicates the Element was successfully set to null.

Append(Dynamic_Element from_de,Dynamic_Element &to_de)

Name

Integer Append(Dynamic_Element from_de,Dynamic_Element &to_de)

Description

Append the contents of the Dynamic_Element from_de to the Dynamic_Element to_de.

A function return value of zero indicates the append was successful.
Page 129Dynamic Arrays

12d Model Programming Manual
Dynamic Text Arrays
The 4DML variable type Dynamic_Text is used to hold one or more Texts. That is, a
Dynamic_Text contains an arbitrary number of Texts.

The Texts in a Dynamic_Text are accessed by their unique number position number in the
Dynamic_Text.

As for fixed arrays, the Dynamic_Text positions go from one to the total number of items in the
Dynamic_Text. However, unlike fixed arrays, extra Text can be added to a Dynamic_Text at any
time.

Hence a 4DML Dynamic_Text can be thought of as a dynamic array of Texts.

The following functions are used to access and modify Dynamic_Text’s.

Null(Dynamic_Text &dt)

Name

Integer Null(Dynamic_Text &dt)

Description

Removes and deletes all the Texts from the Dynamic_Text dt and sets the number of items to
zero.

A function return value of zero indicates that dt was successfully nulled.

Get_number_of_items(Dynamic_Text &dt,Integer &no_items)

Name

Integer Get_number_of_items(Dynamic_Text &dt,Integer &no_items)

Description

Get the number of Texts currently in the Dynamic_Text dt.

The number of Texts is returned by Integer no_items.

A function return value of zero indicates the number of Texts was successfully returned.

Get_item(Dynamic_Text &dt,Integer i,Text &text)

Name

Integer Get_item(Dynamic_Text &dt,Integer i,Text &text)

Description

Get the ith Text from the Dynamic_Text dt.

The Text is returned by text.

A function return value of zero indicates the ith Text was returned successfully.

Set_item(Dynamic_Text &dt,Integer i,Text text)

Name

Integer Set_item(Dynamic_Text &dt,Integer i,Text text)

Description

Set the ith Text in the Dynamic_Text dt to the Text text.

A function return value of zero indicates success.
Page 130 Dynamic Arrays

Chapter 5 4DML Library Calls
Append(Text text,Dynamic_Text &dt)

Name

Integer Append(Text text,Dynamic_Text &dt)

Description

Append the Text text to the end of the contents of the Dynamic_Text dt. This will increase the
size of the Dynamic_Text by one.

A function return value of zero indicates the append was successful.

Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)

Name

Integer Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)

Description

Append the contents of the Dynamic_Text from_dt to the Dynamic_Text to_dt.

A function return value of zero indicates the append was successful.

Get_all_linestyles(Dynamic_Text &linestyles)

Name

Integer Get_all_linestyles(Dynamic_Text &linestyles)

Description

Get all linestyle names defined in the Linestyles pop-up for the current project,

and return the list in the Dynamic_Text linestyles.

A function return value of zero indicates the linestyle names were returned successfully.

Get_all_textstyles(Dynamic_Text &textstyles)

Name

Integer Get_all_textstyles(Dynamic_Text &textstyles)

Description

Get all textstyle names defined in the Textstyles pop-up for the current project,

and return the list in the Dynamic_Text textstyles.

A function return value of zero indicates the textstyle names are returned successfully.

Get_all_symbols(Dynamic_Text &symbols)

Name

Integer Get_all_symbols(Dynamic_Text &symbols)

Description

Get all symbol names defined in the Symbols pop-up for the current project, and return the list in
the Dynamic_Text symbols.

A function return value of zero indicates the symbol names were returned successfully.
Page 131Dynamic Arrays

12d Model Programming Manual
Get_all_patterns(Dynamic_Text &patterns)

Name

Integer Get_all_patterns(Dynamic_Text &patterns)

Description

Get all pattern names defined in the Patterns pop-up for the current project, and return the list in
the Dynamic_Text patterns.

A function return value of zero indicates the function was successful.

Dynamic Real Arrays
The 4DML variable type Dynamic_Real is used to hold one or more Reals. That is, a
Dynamic_Real contains an arbitrary number of Reals.

The Reals in a Dynamic_Real are accessed by their unique number position number in the
Dynamic_Real.

As for fixed arrays, the Dynamic_Real positions go from one to the total number of items in the
Dynamic_Real. However, unlike fixed arrays, extra Reals can be added to a Dynamic_Real at
any time.

Hence a 4DML Dynamic_Real can be thought of as a dynamic array of Reals.

The following functions are used to access and modify Dynamic_Real’s.

Null(Dynamic_Real &real_list)

Name

Integer Null(Dynamic_Real &real_list)

Description

Removes all the Reals from the Dynamic_Real real_list and sets the number of items to zero.

A function return value of zero indicates that real_list was successfully nulled.

Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)

Name

Integer Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)

Description

Get the number of Reals currently in the Dynamic_Real real_list.

The number of Reals is returned in Integer no_items.

A function return value of zero indicates the number of Reals was returned successfully.

Get_item(Dynamic_Real &real_list,Integer i,Real &value)

Name

Integer Get_item(Dynamic_Real &real_list,Integer index,Real &value)

Description

Get the i’th Real from the Dynamic_Real real_list.

The Real is returned in value.

A function return value of zero indicates the i’th Real was returned successfully.
Page 132 Dynamic Arrays

Chapter 5 4DML Library Calls
Set_item(Dynamic_Real &real_list,Integer index,Real value)

Name

Integer Set_item(Dynamic_Real &real_list,Integer i,Real value)

Description

Set the ith Real in the Dynamic_Real real_list to the Real value.

If the position i is greater or equal to the total number of Real in the Dynamic_Real, then the
Dynamic_Real will automatically be extended so that the number of Reals is i. Any extra Real
that are added will be set to null (LJG? or zero?).

A function return value of zero indicates the Real was successfully set.

Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)

Name

Integer Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)

Description

Append the contents of the Dynamic_Real from_dr to the Dynamic_Real to_dr.

A function return value of zero indicates the append was successful.

Append(Real value,Dynamic_Real &real_list)

Name

Integer Append(Real value,Dynamic_Real &real_list)

Description

Append the Real value to the end of the contents of the Dynamic_Real real_list. This will
increase the size of the Dynamic_Real by one.

A function return value of zero indicates the append was successful.

Dynamic Integer Arrays
The 4DML variable type Dynamic_Integer is used to hold one or more Integers. That is, a
Dynamic_Integer contains an arbitrary number of Integers.

The Integers in a Dynamic_Integer are accessed by their unique number position number in the
Dynamic_Integer.

As for fixed arrays, the Dynamic_Integer positions go from one to the total number of items in the
Dynamic_Integer. However, unlike fixed arrays, extra Integers can be added to a
Dynamic_Integer at any time.

Hence a 4DML Dynamic_Integer can be thought of as a dynamic array of Integers.

The following functions are used to access and modify Dynamic_Integer’s.

Null(Dynamic_Integer &integer_list)

Name

Integer Null(Dynamic_Integer &integer_list)

Description
Page 133Dynamic Arrays

12d Model Programming Manual
Removes all the Integers from the Dynamic_Integer integer_list and sets the number of items to
zero.

A function return value of zero indicates that integer_list was successfully nulled.

Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)

Name

Integer Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)

Description

Get the number of Integers currently in the Dynamic_Integer integer_list.

The number of Integers is returned in Integer no_items.

A function return value of zero indicates the number of Integers was returned successfully.

Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)

Name

Integer Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)

Description

Get the i’th Integer from the Dynamic_Integer integer_list.

The Integer is returned in value.

A function return value of zero indicates the i’th Integer was returned successfully.

Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)

Name

Integer Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)

Description

Set the ith Integer in the Dynamic_Integer integer_list to the Integer value.

If the position i is greater or equal the total number of Integer in the Dynamic_Integer, then the
Dynamic_Integer will automatically be extended so that the number of Integers is i. Any extra
Integer that are added will be set to zero (LJG? or zero?).

A function return value of zero indicates the Integer was successfully set.

Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)

Name

Integer Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)

Description

Append the contents of the Dynamic_Integer from_di to the Dynamic_Integer to_di.

A function return value of zero indicates the append was successful.

Append(Integer value,Dynamic_Integer &integer_list)

Name

Integer Append(Integer value,Dynamic_Integer &integer_list)
Page 134 Dynamic Arrays

Chapter 5 4DML Library Calls
Description

Append the Integer value to the end of the contents of the Dynamic_Integer integer_list. This
will increase the size of the Dynamic_Integer by one.

A function return value of zero indicates the append was successful.
Page 135Dynamic Arrays

12d Model Programming Manual
Points
A variable of type Point in created in the same way as Integers and Reals. That is, the Point
variable name is given after the Point declaration.

For example, a Point of name pt is created by:

Point pt;

When the Point pt is created, it has the default co-ordinates of (0,0,0).

The co-ordinates for pt can then be set to new values using Set commands.

Get_x(Point pt)

Name

Real Get_x(Point pt)

Description

Get the x co-ordinate of the Point pt.

The function return value is the x co-ordinate value of pt.

Get_y(Point pt)

Name

Real Get_y(Point pt)

Description

Get the y co-ordinate of the Point pt.

The function return value is the y co-ordinate value of pt.

Get_z(Point pt)

Name

Real Get_z(Point pt)

Description

Get the z co-ordinate of the Point pt.

The function return value is the z co-ordinate value of pt.

Set_x(Point &pt,Real x)

Name

Real Set_x(Point &pt,Real x)

Description

Set the x co-ordinate of the Point pt to the value x.

The function return value is the x co-ordinate value of pt.

Set_y(Point &pt,Real y)

Name

Real Set_y(Point &pt,Real y)

Description
Page 136 Points

Chapter 5 4DML Library Calls
Set the y co-ordinate of the Point pt to the value y.

The function return value is the y co-ordinate value of pt.

Set_z(Point &pt,Real z)

Name

Real Set_z(Point &pt,Real z)

Description

Set the z co-ordinate of the Point pt to the value z.

The function return value is the z co-ordinate value of pt.
Page 137Points

12d Model Programming Manual
Lines
A Line is three dimensional line joining two Points.

A variable of type Line is created in the same way as Points. That is, the Line variable name is
given after the Line declaration.

For example, a Line of name line created by:

Line line;

When the Line line is created, it has default start and end Points with co-ordinates of (0,0,0).

The co-ordinates for the start and end Points of the Line line can then be set to new values using
Set commands.

The direction of the Line is from the start point to the end point.

Get_start(Line line)

Name

Point Get_start(Line line)

Description

Get the start Point of the Line line.

The function return value is the start Point of line.

Get_end(Line line)

Name

Point Get_end(Line line)

Description

Get the end Point of the Line line.

The function return value is the start Point of line.

Set_start(Line &line, Point pt)

Name

Point Set_start(Line &line, Point pt)

Description

Set the start Point of the Line line to be the Point pt.

The function return value is also the start Point of line.

Set_end(Line &line, Point pt)

Name

Point Set_end(Line &line, Point pt)

Description

Set the end Point of the Line line to be the Point pt.

The function return value is also the end Point of line.

Reverse(Line line)
Page 138 Lines

Chapter 5 4DML Library Calls
Name

Line Reverse(Line line)

Description

Reverse the direction of the Line line.

That is, Reverse swaps the start and end Points of the Line line.

The unary operator "-" will also reverse a Line.

The function return value is the reversed Line.
Page 139Lines

12d Model Programming Manual
Arcs
A 4DML Arc is a helix which projects onto a circle in the (x,y) plane.

An Arc has a radius and Points for its centre, start and end. The radius can be positive or
negative (but not zero).

A positive radius indicates that the direction of travel between the start and end points is in the
clockwise directions (to the right).

A negative radius indicates that the direction of travel between the start and end points is in the
anti-clockwise direction (to the left).

A variable of type Arc is created in the same way as Points and Lines. That is, the Arc variable
name is given after the Arc declaration.

For example, an Arc of name arc created by:

Arc arc;

When the Arc arc is created, it has default centre (0,0,0), start, end Points with co-ordinates of
(1,0,0) and a radius of one.

The radius and co-ordinates for centre, start and end points of the Arc can then be set to new
values using Set commands.

Creating an Arc
A 4DML Arc can be created by first setting the radius and the (x,y) co-ordinates of the centre
point to define a plan circle.

This defines the unique plan circle that the 4DML Arc projects onto.

Next the (x,y) part of the start and end points are dropped perpendicularly onto the plan circle to
define the start and the end points of the plan projection of the arc. Thus the start and end points
used to define the arc may not lie on the created arc but stored projected points will.

Finally, the arc is given the start and end heights of the start and end points respectively.

WARNING

For a new Arc, the radius and centre point must be defined before the start and end points.

Get_centre(Arc arc)

Name

Point Get_centre(Arc arc)

Description

Get the centre point of the Arc arc.

The function return value is the centre point of the arc.

Get_radius(Arc arc)

Name

Real Get_radius(Arc arc)

Description

Get the radius of the Arc arc.

The function return value is the radius of the arc.
Page 140 Arcs

Chapter 5 4DML Library Calls
Get_start(Arc arc)

Name

Point Get_start(Arc arc)

Description

Get the start point of the Arc arc.

The function return value is the start point of the arc.

Get_end(Arc arc)

Name

Point Get_end(Arc arc)

Description

Get the end point of the Arc arc.

The function return value is the end point of the arc.

Set_centre(Arc &arc,Point pt)

Name

Point Set_centre(Arc &arc,Point pt)

Description

Set the centre point of the Arc arc to be the Point pt. The start and end points are also translated
by the vector between the new and old arc centres.

The function return value is the centre point of the arc.

Set_radius(Arc &arc,Real rad)

Name

Real Set_radius(Arc &arc,Real rad)

Description

Set the radius of the Arc arc to the value rad. The start and end points are projected radially onto
the new arc.

The function return value is the radius of the arc.

Set_start(Arc &arc,Point start)

Name

Point Set_start(Arc &arc,Point start)

Description

Set the start point of the Arc arc to be the Point start. If the start point is not on the Arc, the point
is dropped perpendicularly onto the Arc to define the actual start point that lies on the Arc.

The function return value is the actual start point on the arc.

Set_end(Arc &arc,Point end)

Name
Page 141Arcs

12d Model Programming Manual
Point Set_end(Arc &arc,Point end)

Description

Set the end point of the Arc arc to be the Point end. If the end point is not on the Arc, the point is
dropped perpendicularly onto the Arc to define the actual end point that lies on the Arc.

The function return value is the actual end point on the arc.

Reverse(Arc arc)

Name

Arc Reverse(Arc arc)

Description

Reverse the sign of the radius and swap the start and end points of the Arc arc. Hence the
direction of travel for the Arc is reversed.

The unary operator "-" will also reverse an Arc.

The function return value is the Arc arc.
Page 142 Arcs

Chapter 5 4DML Library Calls
Spirals and Transitions
There is often confusion between the words spirals and transitions.

Basically a transition is a curve which starts with a radius of curvature of infinity, and the radius
of curvature then continuously decreases along the transition until it reaches a final value of
R.

The purpose of a transition is to have a curve to join straights and arcs so that the radius of
curvature varies continuously between the infinite radius on the straight and the radius of
curvature on the arc (the radius of curvature of an arc is the arc radius). So a transition is used to
makes a smooth transition from a straight to an arc.

A spiral (also known as Euler spiral, or natural or a clothoid) is a special curve defined for each
point on the curve by:

 r x len = a constant = K

where r is the radius of curvature at a point and len is the length of the curve to that point.

This spiral is the most common theoretical transition used in road design (and some rail design)
however because the definition was difficult to use with hand calculations, various
approximations to the real spiral have been used.

For example, what is normally called a clothoid by most road authorities is only an approximation
to the full spiral. The Westrail Cubic used by Westrail in Western Australia is a different
approximation. The Cubic Spiral is another very simple approximation used in early textbooks.

Examples of a common transitions used (mainly for rail) are:

 Cubic Parabola - used by NSW Railways. This is NOT a spiral.
 Bloss
 Sinusoidal
 Cosinusoidal

So in its basic form, a transition starts with an infinite radius of curvature, and ends with a radius
of curvature of R and a total transition length of L.

R can be:
 positive. The transition will then curve to the right

or
or negative. The transition will curve to the left. The start radius of curvature would then be
considered to be negative infinity.

The transition can be drawn in local co-ordinates with the origin (0,0) at the point where the
radius of curvature is infinity.

positive y

positive x

transition origin (0,0)

curve of positive radius R

full transition end
with radius is R

point on the transition with
local co-ordinates (x,y)

The radius at the origin
is infinity

radius r at the point

Transition in Local Coordinates

is between infinity and R
and length of the
full transition is L

The length to the point is l
Page 143Spirals and Transitions

12d Model Programming Manual
Sometimes the full transition curve is not required and only a part of the transition is used. The
transition is only used from a start point (at transition length start length from the beginning of
the full transition), to and end point (at transition length end length from the beginning of the full
transition).

In practise transitions are required to be used in both directions. That is, starting on a straight and
ending on a curve, or starting on a curve and ending on a straight.

So a

leading transition starts on a straight and ends on an arc of absolute value R. The absolute
value of the radius of curvature goes from infinity to a value R.

trailing transition starts on a curve of absolute radius R and ends on a straight. The absolute
value of the radius of curvature goes from infinity to a value R

travel direction of

The absolute value of the radius decreases
going along a leading transition

positive y

positive x

transition origin (0,0)

curve of positive radius R

full transition end
with radius is R

point on the transition with
local co-ordinates (x,y)

The radius at the origin
is infinity

radius r at the point

A Leading Transition in Local Coordinates

is between infinity and R
and length of the
full transition is L

The length to the point is l

start point end pointthe transition

Finally the transition needs to be placed in world coordinates.

So to position the transition in world coordinates, the local transition origin (0,0) is translated to
the position (x,y) (called the anchor point of the transition) and the transition is rotated about the
anchor point though the angle direction (the angle is measure in a counterclockwise direction
from the positive x axis). So the at the anchor point will be at the angle direction.
Page 144 Spirals and Transitions

Chapter 5 4DML Library Calls
Full Leading Transition

travel direction of string

straight

transition

curve of radius +600

radius

radius of transition

anchor point

end point of transition

at end point is +600

at anchor point

length of transition from
anchor point to end point is L

angle of tangent to transition

as the angle of the straight
at the anchor point is the same

and start point of

Partial Leading Transition

travel direction of string

start point
of partial transition

anchor point

radius of transition
end point of partial transition

at end point is +600

curve of radius +600

start length of partial transition
is the length from anchor point
to the start point

full transition

is infinity

of transition

travel direction

travel direction

straight

curve of radius +600curve of radius -600

straight

leading transition
going to the left

leading transition
going to the right

i.e.negative radius i.e. positive radius

of transition

of transition
Page 145Spirals and Transitions

12d Model Programming Manual
travel direction of string

leading transition with positive radius

trailing transition with positive radius

travel direction
on leading
transition

travel direction on
trailing transition

The absolute value of the radius decreases
going along a leading transition

The absolute value of the radius increases
going along a trailing transition

In 12d Model, a variable of type Spiral exists to define and manipulate transitions and it is used
in the same way as variable types Points, Lines and Arcs. That is, a Spiral variable name is given
after the Spiral declaration.

Note: the radius of curvature at a point on a transition is simply referred to as the radius at that
point.

Defining a Transition
A 4DML transition (Spiral) is defined by giving:

(a) the transition type

(b) the length of the full transition L

(c) the radius R at length L That is, the radius at the end of the full transition. This is a signed
radius.

(d) the start length for the part of the full transition that is actually going to be used. - the
transition length from the start of the

This is enough to define the full transition in Local Transition Coordinates with origin at (0,0).

(e) the (x,y) position of the anchor point. That is the real world co-ordinates (x,y) of what is the
origin in local transition coordinates. It if the real world coordinates of the point on the full
transition where the radius is infinity.

(f) the angle of the tangent of the transition at the anchor point (the direction).

This defines where the full transition is in world coordinates.

(g) the start length - the length of transition from the anchor point (the position on the full
transition where the radius in infinity) to what is the first position used on the transition

(h) the end length - the length of transition from the anchor point (the position on the transition
where the radius in infinity) to what is final position used on the transition

This finally defines what part of the full transition is actually used.

Set_type(Spiral spiral,Integer type)
Page 146 Spirals and Transitions

Chapter 5 4DML Library Calls
Name

Integer Set_type(Spiral spiral,Integer type)

Description

LJG - this could have problems with changes. This is broken for V8, V9, V10

V7? depends on file Spirals.4d; type = 0 clothoid, 1 westrail cubic, 2 cubic spiral 3 natural
clothoid (LandXML) 4 NSW cubic parabola

V9? type = 1 clothoid, 2 westrail cubic, 3 clothoid LandXML 4 Cubic spiral 5 Natural clothoid 6
Cubic parabola

Set_leading(Spiral transition,Integer leading)

Name

Integer Set_leading(Spiral transition,Integer leading)

Description

Set whether transition is a leading transition (radius decreases along the transition) or a trailing
transition (radius increases along the transition).

If leading is non-zero then it is a leading transition.
If leading is zero then it is a trailing transition.

A function return value of zero indicates that the function call was successful.

Set_length(Spiral transition,Real length)

Name

Integer Set_length(Spiral transition,Real length)

Description

Set the length of the full length transition to length.

A function return value of zero indicates that the function call was successful.

Note - the length of the transition is defined from the position on the transition where the radius is
infinity (i.e. is a straight) to the other end of the transition.

For a leading transition, the radius is infinity at the start of the transition.
For a trailing transition, the radius is infinity at the end of the transition.

Set_radius(Spiral trans,Real radius)

Name

Integer Set_radius(Spiral trans,Real radius)

Description

Sign of radius.
For a leading transition, set the end radius of the transition trans to radius.
For a trailing transition, set the start radius of the transition trans to radius.

Note - the radius is a signed value.
 If radius > 0 the transition curves to the right.
 If radius <0, the transition curves to the left.

A function return value of zero indicates that the function call was successful.
Page 147Spirals and Transitions

12d Model Programming Manual
Set_direction(Spiral trans,Real angle)

Name

Integer Set_direction(Spiral trans,Real angle)

Description

For the end of the transition trans where the radius is infinity, set the angle of the tangent at that
position to angle. angle is in radians and is measured in a counterclockwise direction from the
positive x-axis.

For a leading transition, set the angle of the tangent at the start of trans to angle.
For a trailing transition, set the angle of the tangent at the end of trans to angle.

A function return value of zero indicates that the function call was successful.

Set_anchor(Spiral trans,Real point)

Name

Integer Set_anchor(Spiral trans,Real point)

Description

For the end of the transition trans where the radius is infinity, set the co-ordinates of that position
to point.

For a leading transition, the anchor point is the start of trans.
For a trailing transition, the anchor point is the end of trans.

A function return value of zero indicates that the function call was successful.

Set_start_length(Spiral trans,Real start_length)

Name

Integer Set_start_length(Spiral trans,Real start_length)

Description

Set the start length of the transition trans to start_length.

A function return value of zero indicates that the function call was successful.

Note - the start length is the distance from the position on the full transition where the radius is
infinity (anchor point) to the start of the transition. If the start_length is non-zero then it is not a full
transition but a partial transition.

Set_end_length(Spiral trans,Real length)

Name

Integer Set_end_length(Spiral trans,Real end_length)

Description

Set the end length of the transition trans to end_length.

The end length is the distance from the position on the full transition where the radius is infinity to
the point on the transition where no more of the transition is used.

A function return value of zero indicates that the function call was successful.

Note: even through the full transition has a length of L say, the part of the transition that is
actually used is only from the start length to the end length.
Page 148 Spirals and Transitions

Chapter 5 4DML Library Calls
Set_start_height(Spiral trans,Real height)

Name

Integer Set_start_height(Spiral trans,Real height)

Description

For the transition trans, set the z-value at the position start length along the transition to height.

A function return value of zero indicates that the function call was successful.

Set_end_height(Spiral trans,Real height)

Name

Integer Set_end_height(Spiral trans,Real height)

Description

For the transition trans, set the z-value at the position end length along the transition to height.

A function return value of zero indicates that the function call was successful.

Get_valid(Spiral trans)

Name

Integer Get_valid(Spiral trans)

Description

If trans is a valid transition, then the function return value is zero.

If trans is not a valid transition, then the function return value is non-zero.

Note - the parameters given to define the transition may be inconsistent and not be able to define
an actual transition.

Get_type(Spiral trans)

Name

Integer Get_type(Spiral trans)

Description

LJG? yes what are they?

Get_leading(Spiral trans)

Name

Integer Get_leading(Spiral trans)

Description

A transition is a leading transition if the radius decreases along the transition, or a trailing
transition if the radius increases along the transition.

If trans is a leading transition then return a non-zero function return value.
If trans is a trailing transition then return zero as the function return value.

Get_length(Spiral trans)
Page 149Spirals and Transitions

12d Model Programming Manual
Name

Real Get_length(Spiral trans)

Description

For the full transition of trans, return the length to the end of the full transition as the function
return value.

Get_radius(Spiral trans)

Name

Real Get_radius(Spiral trans)

Description

For a leading transition trans, get the radius at the end of the full transition and return it as the
function return value.

For a trailing transition trans, get the radius at the start of the full transition and return it as the
function return value.

Get_direction(Spiral trans)

Name

Real Get_direction(Spiral trans)

Description

Get the angle of the tangent at the anchor point (the end of the transition trans where the radius
is infinity), and return it as the function return value.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

For a leading transition trans, it is the angle of the tangent at the start of the full transition.
For a trailing transition trans, it is the angle of the tangent at the end of the full transition.

Get_anchor(Spiral trans)

Name

Point Get_anchor(Spiral trans)

Description

Get the co-ordinates of the anchor point (the end of the full transition where the radius is infinity),
and return them as the function return value.

For a leading transition trans, the anchor point is the start of the full transition.
For a trailing transition trans, the anchor point is the end of the full transition.

Get_start_length(Spiral trans)

Name

Real Get_start_length(Spiral trans)

Description

Get the start length of the transition trans and return it as the function return value.

Get_end_length(Spiral trans)
Page 150 Spirals and Transitions

Chapter 5 4DML Library Calls
Name

Real Get_end_length(Spiral trans)

Description

Get the end length of the transition trans and return it as the function return value.

Get_start_height(Spiral trans)

Name

Real Get_start_height(Spiral trans)

Description

For the transition trans, get the height at the position start length along the transition and return
it as the function return value.

Get_end_height(Spiral trans)

Name

Real Get_end_height(Spiral trans)

Description

For the transition trans, get the height at the position end length along the transition and return
it as the function return value.

Get_start_point(Spiral trans)

Name

Point Get_start_point(Spiral trans)

Description

For the transition trans, get the Point at the position start length along the transition and return
it as the function return value.

Get_end_point(Spiral trans)

Name

Point Get_end_point(Spiral trans)

Description

For the transition trans, get the Point at the position end length along the transition and return it
as the function return value.

Get_local_point(Spiral trans,Real len)

Name

Point Get_local_point(Spiral trans,Real len)

Description

For the transition trans, get the local co-ordinates (as a Point) of the position at length len from
the start of the full transition and return it as the function return value.

Note - the transition is in world coordinates and needs to be translated and rotated before getting
the local coordinates of the position at length len along the transition.
Page 151Spirals and Transitions

12d Model Programming Manual
Get_point(Spiral trans,Real len)

Name

Point Get_point(Spiral trans,Real len)

Description

For the transition trans, get the co-ordinates of the position (as a Point) at length len from the
start of the full transition, and return it as the function return value.

Get_local_angle(Spiral trans,Real len)

Name

Real Get_local_angle(Spiral trans,Real len)

Description

For the transition trans, get the local angle of the tangent at the position at length len from the
start of the full transition, and return it as the function return value.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

Note - the transition is in world coordinates and needs to be translated and rotated before getting
the angle of the tangent of the position at length len along the transition.

Get_angle(Spiral trans,Real len)

Name

Real Get_angle(Spiral trans,Real len)

Description

For the transition trans, get the angle of the tangent of the position at length len from the start of
the full transition, and return it as the function return value.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

Get_radius(Spiral trans,Real len)

Name

Real Get_radius(Spiral trans,Real len)

Description

For the transition trans, get the radius at the position at length len from the start of the full
transition, and return it as the function return value.

Get_shift_x(Spiral trans)

Name

Real Get_shift_x(Spiral trans)

Description

shift at end point of transition trans (what is x/y which is offset, which is along tangent)

Get_shift_y(Spiral trans)
Page 152 Spirals and Transitions

Chapter 5 4DML Library Calls
Name

Real Get_shift_y(Spiral trans)

Description

shift at end point of transition trans

Get_shift(Spiral trans)

Name

Real Get_shift(Spiral trans)

Description

shift

Reverse(Spiral trans)

Name

Spiral Reverse(Spiral trans)

Description

Create a Spiral that is the same as transition trans but has the reverse travel direction. The
created transition is returned as the function return value.

So a leading transition becomes a trailing transition and a trailing transition becomes a leading
transition.

The unary operator "-" will also reverse a Spiral.

The function return value is the reversed Spiral.
Page 153Spirals and Transitions

12d Model Programming Manual
Segments
A Segment is either a Point, Line, Arc or a Spiral.

A Segment has a unique type that specifies whether it is a Point, Line, Arc or a Spiral.

Get_type(Segment segment)

Name

Integer Get_type(Segment segment)

Description

Get the type of the Segment segment.

A Segment type of

1 denotes a Point
2 denotes a Line
3 denotes an Arc
4 denotes a Spiral

The function return value is the Segment type.

Get_point(Segment segment,Point &point)

Name

Integer Get_point(Segment segment,Point &point)

Description

If the Segment is of type 1, the Point of the Segment is returned as point, otherwise it is an error.

A function return value of zero indicates the Segment was a Point Segment and that the Point
was returned successfully.

Get_line(Segment segment,Line &line)

Name

Integer Get_line(Segment segment,Line &line)

Description

If the Segment is of type 2, the Line of the Segment is returned as line, otherwise it is an error.

A function return value of zero indicates the Segment was a Line Segment and that the Line was
returned successfully.

Get_arc(Segment segment,Arc &arc)

Name

Integer Get_arc(Segment segment,Arc &arc)

Description

If the Segment is of type 3, the Arc of the Segment is returned as arc, otherwise it is an error.

A function return value of zero indicates the Segment was an Arc Segment and that the Arc was
returned successfully.

Get_spiral(Segment segment,Spiral &trans)
Page 154 Segments

Chapter 5 4DML Library Calls
Name

Integer Get_spiral(Segment segment,Spiral &trans)

Description

If the Segment is of type 4, the Spiral of the Segment is returned as transition trans, otherwise it
is an error.

A function return value of zero indicates the Segment was an Spiral Segment and that the Spiral
was returned successfully.

Get_start(Segment segment,Point &point)

Name

Integer Get_start(Segment segment,Point &point)

Description

Get the start Point of the Segment segment.

The start value is returned by Point point.

A function return value of zero indicates the start point was successfully returned.

Get_end(Segment segment,Point &point)

Name

Integer Get_end(Segment segment,Point &point)

Description

Get the end Point of the Segment segment.

The end value is returned by Point point.

A function return value of zero indicates the end point was successfully returned.

Set_point(Segment &segment,Point point)

Name

Integer Set_point(Segment &segment,Point point)

Description

Sets the Segment type to 1 and the Point of the Segment to point.

A function return value of zero indicates the Segment was successfully set.

Set_line(Segment &segment,Line line)

Name

Integer Set_line(Segment &segment,Line line)

Description

Sets the Segment type to 2 and the Line of the Segment to line.

A function return value of zero indicates the Segment was successfully set.

Set_arc(Segment &segment,Arc arc)

Name
Page 155Segments

12d Model Programming Manual
Integer Set_arc(Segment &segment,Arc arc)

Description

Sets the Segment type to 3 and the Arc of the Segment to arc.

A function return value of zero indicates the Segment was successfully set.

Set_spiral(Segment &segment,Spiral trans)

Name

Integer Set_spiral(Segment &segment,Spiral trans)

Description

Sets the Segment type to 4 and the Spiral of the Segment to transition trans.

A function return value of zero indicates the Segment was successfully set.

Set_start(Segment &segment,Point point)

Name

Integer Set_start(Segment &segment,Point point)

Description

Set the start Point of the Segment segment.

The start value is defined by Point point.

A function return value of zero indicates the start point was successfully set.

Set_end(Segment &segment,Point point)

Name

Integer Set_end(Segment &segment,Point point)

Description

Set the end Point of the Segment segment.

The end value is defined by Point point.

A function return value of zero indicates the end point was successfully set.

Reverse(Segment segment)

Name

Segment Reverse(Segment segment)

Description

Reverse the direction of the Segment segment.

Note that the reverse of a segment of type 1 (a Point segment) is simply a point of exactly the
same co-ordinates.

The unary operator "-" will also reverse a Segment.

The function return value is the reversed Segment.

Get_segments(Element elt,Integer &nsegs)
Page 156 Segments

Chapter 5 4DML Library Calls
Name

Integer Get_segments(Element elt,Integer &nsegs)

Description

Get the number of segments for a string Element elt.

The number of segments is returned as nsegs

A function return value of zero indicates the data was successfully returned.

Note

If a string has n points, then it has n-1 segments.

For example, a seven point string consists of six segments.

Get_segment(Element elt,Integer i,Segment &seg)

Name

Integer Get_segment(Element elt,Integer i,Segment &seg)

Description

Get the segment for the ith segment on the string.

The segment is returned as seg.

The types of segments returned are Line, or Arc.

A function return value of zero indicates the data was successfully returned.
Page 157Segments

12d Model Programming Manual
Segment Geometry

Length and Area

Get_length(Segment segment,Real &length)

Name

Integer Get_length(Segment segment,Real &length)

Description

Get the plan length of the Segment segment.

A function return value of zero indicates the plan length was successfully returned.

Get_length_3d(Segment segment,Real &length)

Name

Integer Get_length_3d(Segment segment,Real &length)

Description

Get the 3d length of the Segment segment.

A function return value of zero indicates the 3d length was successfully returned.

Plan_area(Segment segment,Real &plan_area)

Name

Integer Plan_area(Segment segment,Real &plan_area)

Description

Calculate the plan area of the Segment segment. For an Arc, the plan area of the sector is
returned. For a Line and a Point, zero area is returned.

The area is returned in the Real plan_area.

A function return value of zero indicates the plan area was successfully returned.
Page 158 Segment Geometry

Chapter 5 4DML Library Calls
Parallel
The parallel command is a plan parallel and is used for Lines, Arcs and Segments.

The sign of the distance to parallel the object is used to indicate whether the object is parallelled
to the left or to the right.

A positive distance means to parallel the object to the right.

A negative distance means to parallel the object to the left.

Parallel(Line line,Real distance,Line ¶llelled)

Name

Integer Parallel(Line line,Real distance,Line ¶llelled)

Description

Plan parallel the Line line by the distance distance.

The parallelled Line is returned as the Line parallelled. The z-values are not modified, i.e. they
are the same as for line.

A function return value of zero indicates the parallel was successful.

Parallel(Arc arc,Real distance,Arc ¶llelled)

Name

Integer Parallel(Arc arc,Real distance,Arc ¶llelled)

Description

Plan parallel the Arc arc by the distance distance.

The parallelled Arc is returned as the Arc parallelled. The z-values are not modified, i.e. they are
the same as for arc.

A function return value of zero indicates the parallel was successful.

Parallel(Segment segment,Real dist,Segment ¶llelled)

Name

Integer Parallel(Segment segment,Real dist,Segment ¶llelled)

Description

Plan parallel the Segment segment by the distance dist.

The parallelled Segment is returned as the Segment parallelled. The z-values are not modified,
i.e. they are the same as for segment.

If the Segment is of type Point, a Segment is not returned and the function return value is set to
non-zero.

A function return value of zero indicates the parallel was successful.

Fit Arcs (fillets)

Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)

Name

Integer Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)

Description
Page 159Segment Geometry

12d Model Programming Manual
Fit a plan arc through the (x,y) co-ordinates of the three Points pt_1, pt_2 and pt_3.

The arc is returned as Arc fillet and the z-values of its start and end points are zero.

A function return value of zero indicates success.

A non-zero return value indicates no arc exists.

Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)

Name

Integer Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)

Description

Create an plan arc from Segment seg_1 to Segment seg_2 with radius rad.

The arc start point is on the extended Segment seg_1 with start direction the same as the
direction of seg_1.

The arc end point is on the extended Segment seg_2 with end direction the same as the
direction of seg_1.

If more than one arc satisfies the above conditions, then the arc with centre closest to the Point
cpt will be selected.

The arc is returned as Arc fillet and the z-values of its start and end points are zero.

A function return value of zero indicates an arc exists.

A non-zero return value indicates no arc exists.

Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)

Name

Integer Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)

Description

Create a plan arc from Segment seg_1 to Segment seg_2.

The arc start point is the perpendicular projection of the Point start_tp onto the extended
Segment seg_1. The start direction of the arc is the same as the direction of seg_1.

The arc end point is be on the extended Segment seg_2 with end direction the same as the
direction of seg_1.

There is at most one arc that satisfies the above conditions.

The arc is returned as Arc fillet and the z-values of its start and end points are zero.

A function return value of zero indicates success.

A non-zero return value indicates no arc exists.
Page 160 Segment Geometry

Chapter 5 4DML Library Calls
Tangents

Tangent(Segment seg_1,Segment seg_2,Line &line)

Name

Integer Tangent(Segment seg_1,Segment seg_2,Line &line)

Description

Create the plan tangent line from the extended Segment seg_1 to the extended Segment set_2.

The direction of the Segments seg_1 and seg_2 is used to select a unique tangent line.

The tangent line is returned as the Line line with z-values of zero.

A function return value of zero indicates there were no errors in the calculations.
Page 161Segment Geometry

12d Model Programming Manual
Intersections

Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point
&p2)

Name

Integer Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

Description

Find the internal intersection between the Segments seg_1 and seg_2. That is, only find the
intersections of the two Segments that occur between the start and end points of the Segments.

The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.

A function return value of zero indicates there were no errors in the calculations.

Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point
&p1,Point &p2)

Name

Integer Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

Description

Find the intersection between the extended Segments seg_1 and seg_2.

The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.

A function return value of zero indicates there were no errors in the calculations.
Page 162 Segment Geometry

Chapter 5 4DML Library Calls
Offset Intersections

Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point
&p1,Point &p2)

Name

Integer Offset_intersect(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point
&p1,Point &p2)

Description

Find the internal intersection between the Segments seg_1 and seg_2 that have been
perpendicularly offset by the amounts off_1 and off_2 respectively.

The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2.

The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.

A function return value of zero indicates there were no errors in the calculations.

Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real
off_2,Integer &no_intersects,Point &p1,Point &p2)

Name

Integer Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer
&no_intersects,Point &p1,Point &p2)

Description

Find the intersection between the extended Segments seg_1 and seg_2 that have been
perpendicularly offset by the amounts off_1 and off_2 respectively.

The number of intersections is given by no_intersects and the possible intersections are given
in Points p1 and p2. The z-values of p1 and p2 are set to zero.

There may be zero, one or two intersection points.

A function return value of zero indicates there were no errors in the calculations.
Page 163Segment Geometry

12d Model Programming Manual
Angle Intersect

Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p)

Name

Integer Angle_intersect(Point pt_1,Real ang_1,Point pt_2,Real ang_2,Point &p)

Description

Find the point of intersection of the line going through the Point pt_1 with angle ang_1 and the
line going through the Point pt_2 with angle ang_2.

The intersection point is returned as Point p. The z-values of p1 and p2 are set to zero.

A function return value of zero indicates that the two lines intersect.

A function return value of zero indicates there were no errors in the calculations.
Page 164 Segment Geometry

Chapter 5 4DML Library Calls
Distance

Get_distance(Point p1,Point p2)

Name

Real Get_distance(Point p1,Point p2)

Description

Calculate the plan distance between the Points p1 and p2.

The function return value is the plan distance.

Get_distance_3d(Point p1,Point p2)

Name

Real Get_distance_3d(Point p1,Point p2)

Description

Calculate the 3d distance between the Points p1 and p2.

The function return value is the 3d distance.
Page 165Segment Geometry

12d Model Programming Manual
Locate Point

Locate_point(Point from,Real ang,Real dist,Point &to)

Name

Integer Locate_point(Point from,Real ang,Real dist,Point &to)

Description

Create the Point to which is a plan distance dist along the line of angle ang which goes through
the Point from. The z-value of to is the same as the z-value of from.

A function return value of zero indicates there were no errors in the calculations.
Page 166 Segment Geometry

Chapter 5 4DML Library Calls
Drop Point

Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)

Name

Integer Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)

Description

Drop a Point pt_to_drop perpendicularly in plan onto the Segment segment.

The position of the dropped point on the Segment in returned in the Point dropped_pt.

If the point cannot be dropped perpendicularly onto the Segment, then the point is dropped onto
the closest end point of the Segment. A z-value for dropped_pt is created by interpolation.

A function return value of zero indicates the point was dropped successfully.

Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)

Name

Integer Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)

Description

Drop a Point pt_to_drop onto the Segment segment.

The position of the dropped point on the Segment in returned in the Point dropped_pt.

The plan distance from pt_to_drop to dropped_pt is returned as dist.

If the point cannot be dropped perpendicularly onto the Segment, then the point is dropped onto
the closest end point of the Segment. A z-value for dropped_pt is created by interpolation.

A function return value of zero indicates the point was dropped successfully.
Page 167Segment Geometry

12d Model Programming Manual
Projection

Projection(Segment segment,Real dist,Point &projected_pt)

Name

Integer Projection(Segment segment,Real dist,Point &projected_pt)

Description

Create the Point projected_pt that is a plan distance of dist along from the start of the extended
Segment segment.

The z-value for projected_pt is calculated by linear interpolation. Note that for an Arc, the z-

value is interpolated for one full circuit of the arc beginning at the start point and the one circuit is
used for z-values for distances greater than the length of one circuit.

A function return value of zero indicates the projection was successful.

Projection(Segment segment,Point start_point, Real dist,Point &projected_pt)

Name

Integer Projection(Segment segment,Point start_point,Real dist,Point &projected_pt)

Description

Create the Point projected_pt that is a plan distance of dist along the extended Segment
segment where distance is measured from the Point start_point.

If start_point does not lie on the extended Segment, then start_point is automatically dropped
onto the extended Segment to create the start point for distance measurement.

The z-value for projected_pt is calculated by linear interpolation. Note that for an Arc, the z-

value is interpolated for one full circuit of the arc beginning at the start point and the one circuit is
used for z-values for distances greater than the length of one circuit.

A function return value of zero indicates the projection was successful.
Page 168 Segment Geometry

Chapter 5 4DML Library Calls
Change Of Angles

Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)

Name

Integer Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)

Description

Calculate the change of angle between the 3 points.

Point 1 is defined by Real x1 and Real y1.
Point 2 is defined by Real x2 and Real y2.
Point 3 is defined by Real x3 and Real y3.
The angle value is returned in Real angle.

A function return value of zero indicates the chainage was returned successfully.

Change_of_angle(Line l1,Line l2,Real &angle)

Name

Integer Change_of_angle(Line l1,Line l2,Real &angle)

Description

Calculate the change of angle between the 2 lines.

Line 1 is defined by Line l1.
Line 2 is defined by Line l2.
The angle value is returned in Real angle.

A function return value of zero indicates the chainage was returned successfully.
Page 169Segment Geometry

12d Model Programming Manual
Colours
Colours are stored in 12d Model as a number between 0 and 15, or if defined by the user,
between 0 and anything up to 255.

Colour numbers from 0 to 15 always exist.

The actual (red,green,blue) intensities and colour names used for each colour number can be
user defined.

Hence it is necessary that 4DML provides functions to check if colours of given names or
numbers exist and to convert between colour numbers and colour names.

Colour_exists(Text col_name)

Name

Integer Colour_exists(Text col_name)

Description

Checks if a colour of name col_name exists in 4DML.

The colour name to check for is given by Text col_name.

A non-zero function return value indicates the colour exist.

A zero function return value indicates the colour does not exist.

Warning - this is the opposite to most 4DML function return values

Colour_exists(Integer col_number)

Name

Integer Colour_exists(Integer col_number)

Description

Checks if a number is a valid colour number.

The number to check for is given by Integer col_number.

A non-zero function return value indicates the number is a valid colour number.

A zero function return value indicates the number is not a valid colour number.

Warning - this is the opposite of most 4DML function return values

Convert_colour(Text col_name,Integer &col_number)

Name

Integer Convert_colour(Text col_name,Integer &col_number)

Description

Tries to convert the Text col_name to a colour number.

If successful, the colour number is returned in Integer col_number.

A function return value of zero indicates the conversion was successful.

Convert_colour(Integer col_number,Text &col_name)

Name

Integer Convert_colour(Integer col_number,Text &col_name)
Page 170 Colours

Chapter 5 4DML Library Calls
Description

Tries to convert the Integer col_number to a colour name.

If successful, the colour name is returned in Text col_name.

A function return value of zero indicates the conversion was successful.

Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)

Name

Integer Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)

Description

Convert the colour number value to its red, green and blue components (0-255) and return them
in red, green and blue respectively.

A function return value of zero indicates the colour was successfully converted.

Get_project_colours(Dynamic_Text &colours)

Name

Integer Get_project_colours(Dynamic_Text &colours)

Description

Get a Dynamic_Text of all the colour names defined for the project.

The colour names are returned in the Dynamic_Text colours.

A function return value of zero indicates the colours were returned successfully.
Page 171Colours

12d Model Programming Manual
User Defined Attributes
Extra data can be attached to the Project, Models and Elements as user defined attributes.

The user defined attributes are contained in a variable of type Attributes.

Any number of bits of data of type Real, Integer, Text, Binary (blobs), 64-bit Integer and
Attributes can be attached to Attributes and when a bit of data is attached, it is given a unique
name which is used to retrieved the data at a later date.

The attribute type used for each data type is:

Data Type Attribute Type

Integer 1
Real 2
Text 3
Binary (blob) 4
Attributes 5
Uid 6
64-bit integer 7

Note that an Attributes att can contain zero or more user defined attributes, and zero or more
Attributes, so the Attributes definition allows Attributes inside Attributes, inside Attributes
and so on. So the data inside an Attributes forms a tree structure just like a Windows folder
system (that is, Windows folders can not only contain files and links, but also Windows folders).

For an Attributes att, all the data attached to it (called attributes) is said to be of the first level
and all the attributes must have a unique name (attribute names are case sensitive). So the
Attributes att may have zero or more attributes attached to it, each with a unique case sensitive
name, and each with an attribute type.

Attributes are added to att in a sequential order so each attribute of att will have a unique
attribute number.

If bb is an attribute of att and bb is of type Attributes, then bb is also an Attributes and can
contain its own attributes of various attribute types. The first level of bb is considered to be the
second level of att.

Attribute_exists(Attributes attr,Text att_name)

Name

Integer Attribute_exists(Attributes attr,Text att_name)

Description

Checks to see if an attribute with the name att_name exists in the Attributes attr.

att_name can have a full path name of the attribute. Attribute names are case sensitive.

A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Attribute_exists(Attributes attr,Text name,Integer &no)

Name

Integer Attribute_exists(Attributes attr,Text name,Integer &no)
Page 172 User Defined Attributes

Chapter 5 4DML Library Calls
Description

Checks to see if an attribute with the name att_name exists in the Attributes attr.

att_name can have a full path name of the attribute. Attribute names are case sensitive.

If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Attribute_delete(Attributes attr,Text att_name)

Name

Integer Attribute_delete(Attributes attr,Text att_name)

Description

Deletes the attribute with the name att_name from the Attributes attr.

A function return value of zero indicates the attribute was deleted.

Attribute_delete(Attributes attr,Integer att_no)

Name

Integer Attribute_delete(Attributes attr,Integer att_no)

Description

Delete the attribute with the attribute number att_no from the Attributes attr.

A function return value of zero indicates the attribute was deleted.

Attribute_delete_all(Attributes attr)

Name

Integer Attribute_delete_all(Attributes attr)

Description

Delete all attributes from the Attributes attr.

A function return value of zero indicates all the attribute were deleted.

Get_number_of_attributes(Attributes attr,Integer &no_atts)

Name

Integer Get_number_of_attributes(Attributes attr,Integer &no_atts)

Description

Get the number of top level attributes in the Attributes attr. The number is returned in no_atts.

A function return value of zero indicates the number is successfully returned.

Get_attribute(Attributes attr,Text att_name,Text &att)
Page 173User Defined Attributes

12d Model Programming Manual
Name

Integer Get_attribute(Attributes attr,Text att_name,Text &att)

Description

From the Attributes attr, get the attribute called att_name and return the attribute value in att.
The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Attributes attr,Text att_name,Integer &att)

Name

Integer Get_attribute(Attributes attr,Text att_name,Integer &att)

Description

From the Attributes attr, get the attribute called att_name and return the attribute value in att.
The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Attributes attr,Text att_name,Real &att)

Name

Integer Get_attribute(Attributes attr,Text att_name,Real &att)

Description

From the Attributes attr, get the attribute called att_name and return the attribute value in att.
The attribute must be of type Real.

If the attribute is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Attributes attr,Text att_name,Uid &att)

Name

Integer Get_attribute(Attributes attr,Text att_name,Uid &att)

Description

From the Attributes attr, get the attribute called att_name and return the attribute value in att.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Page 174 User Defined Attributes

Chapter 5 4DML Library Calls
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Attributes attr,Text att_name,Attributes &att)

Name

Integer Get_attribute(Attributes attr,Text att_name,Attributes &att)

Description

From the Attributes attr, get the attribute called att_name and return the attribute value in att.
The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attributes value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Attributes attr,Integer att_no,Text &att)

Name

Integer Get_attribute(Attributes attr,Integer att_no,Text &att)

Description

From the Attributes attr, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute(Attributes attr,Integer att_no,Integer &att)

Name

Integer Get_attribute(Attributes attr,Integer att_no,Integer &att)

Description

From the Attributes attr, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute(Attributes attr,Integer att_no,Real &att)

Name

Integer Get_attribute(Attributes attr,Integer att_no,Real &att)

Description
Page 175User Defined Attributes

12d Model Programming Manual
From the Attributes attr, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Real.

If the attribute is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute(Attributes attr,Integer att_no,Uid &att)

Name

Integer Get_attribute(Attributes attr,Integer att_no,Uid &att)

Description

From the Attributes attr, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute(Attributes attr,Integer att_no,Attributes &att)

Name

Integer Get_attribute(Attributes attr,Integer att_no,Attributes &att)

Description

From the Attributes attr, get the Attribute with number att_no and return the Attributes value in
att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute_name(Attributes attr,Integer att_no,Text &name)

Name

Integer Get_attribute_name(Attributes attr,Integer att_no,Text &name)

Description

From the Attributes attr, get the attribute with number att_no and return the Text value in name.
The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
Page 176 User Defined Attributes

Chapter 5 4DML Library Calls
number att_no.

Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)

Name

Integer Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)

Description

Get the type of the attribute with the name att_name from the Attribute attr. The type is returned
in att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)

Name

Integer Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)

Description

Get the type of the attribute with the number att_num from the Attribute attr. The type is returned
in att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type is successfully returned.

Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)

Name

Integer Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)

Description

For the Attributes attr, get the length in bytes of the attribute of name att_name. The number of
bytes is returned in att_len.

This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.

Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)

Name

Integer Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)

Description

For the Attributes attr, get the length in bytes of the attribute with number att_no. The number of
bytes is returned in att_len.

This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.
Page 177User Defined Attributes

12d Model Programming Manual
Set_attribute(Attributes attr,Text att_name,Text att)

Name

Integer Set_attribute(Attributes attr,Text att_name,Text att)

Description

For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Text and give it the value
att.
 if the attribute called att_name does exist and it is type Text, then set its value to att.

If the attribute exists and is not of type Text, then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Attributes attr,Text att_name,Integer att)

Name

Integer Set_attribute(Attributes attr,Text att_name,Integer att)

Description

For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
att.
 if the attribute called att_name does exist and it is type Integer, then set its value to att.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Attributes attr,Text att_name,Real att)

Name

Integer Set_attribute(Attributes attr,Text att_name,Real att)

Description

For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Real and give it the value
att.
 if the attribute called att_name does exist and it is type Real, then set its value to att.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Attributes attr,Text att_name,Uid att)

Name

Integer Set_attribute(Attributes attr,Text att_name,Uid att)

Description
Page 178 User Defined Attributes

Chapter 5 4DML Library Calls
For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
att.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Attributes attr,Text att_name,Attributes att)

Name

Integer Set_attribute(Attributes attr,Text att_name,Attributes att)

Description

For the Attributes attr,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Attributes attr,Integer att_no,Text att)

Name

Integer Set_attribute(Attributes attr,Integer att_no,Text att)

Description

For the Attributes attr, if the attribute number att_no exists and it is of type Text, then its value is
set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Text then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_attribute(Attributes attr,Integer att_no,Integer att)

Name

Integer Set_attribute(Attributes attr,Integer att_no,Integer att)

Description

For the Attributes attr, if the attribute number att_no exists and it is of type Integer, then its value
is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Integer then a non-zero return value is
returned.
Page 179User Defined Attributes

12d Model Programming Manual
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_attribute(Attributes attr,Integer att_no,Real att)

Name

Integer Set_attribute(Attributes attr,Integer att_no,Real att)

Description

For the Attributes attr, if the attribute number att_no exists and it is of type Real, then its value is
set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Real then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_attribute(Attributes attr,Integer att_no,Uid att)

Name

Integer Set_attribute(Attributes attr,Integer att_no,Uid att)

Description

For the Attributes attr, if the attribute number att_no exists and it is of type Uid, then its value is
set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_attribute(Attributes attr,Integer att_no,Attributes att)

Name

Integer Set_attribute(Attributes attr,Integer att_no,Attributes att)

Description

For the Attributes attr, if the attribute number att_no exists and it is of type Attributes, then its
value is set to att.

If there is no Attributes with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
Page 180 User Defined Attributes

Chapter 5 4DML Library Calls
Attribute_dump(Attributes attr)

Name

Integer Attribute_dump(Attributes attr)

Description

Write out information about the Attributes attr to the Output Window.

A function return value of zero indicates the function was successful.

Attribute_debug(Attributes attr)

Name

Integer Attribute_debug(Attributes attr)

Description

Write out even more information about the Attributes attr to the Output Window.

A function return value of zero indicates the function was successful.
Page 181User Defined Attributes

12d Model Programming Manual
Folders
Directory_exists(Text folder_name)

Name

Integer Directory_exists(Text folder_name)

Description

Check if a folder of name folder_name exists.

If folder_name is a relative path, the folder is created in the current working folder of the project.

If folder_name is an absolute (starts with say C:, \\, //), then the folder is created in the absolute
path.

A non-zero function return value indicates that the folder was created.

A zero function return value indicates that there is an error and the folder was not created.

Warning - this is the opposite of most 4DML function return values

Get_file_size(Text file_name,Integer &size)

Name

Integer Get_file_size(Text file_name,Integer &size)

Description

Get the size in bytes of the file named file_name and returns the number of bytes in Integer size.
Note that the file needs to be a file of size less than 2 Gigabytes.

A function return value of zero indicates the function was successful.

Directory_create(Text folder_name)

Name

Integer Directory_create(Text folder_name)

Description

Create the folder folder_name in the current working folder (the folder name can not contain any
paths)

Note - Directory_create_recursive will create a folder tree.

A function return value of zero indicates the function was successful.

Directory_create_recursive(Text folder_name)

Name

Integer Directory_create_recursive(Text folder_name)

Description

Create the folder folder_name. The folder name can contain paths and if any of the folders along
the path do not exist, then they will also be created.

If folder_name does not contain any path then the folder is created in the current working folder.

A function return value of zero indicates the function was successful.
Page 182 Folders

Chapter 5 4DML Library Calls
Directory_delete(Text folder_name)

Name

Integer Directory_delete(Text folder_name)

Description

If the folder named folder_name is empty, delete the folder folder_name.

Note - Directory_delete_recursive will delete a non-empty folder and all of its sub-folders.

A function return value of zero indicates the function was successful.

Directory_delete_recursive(Text folder_name)

Name

Integer Directory_delete_recursive(Text folder_name)

Description

Delete the folder named folder_name, and all the sub-folders of folder_name.

A function return value of zero indicates the function was successful.

WARNING Using a folder name of d: will delete the entire d drive.

You have been warned.
Page 183Folders

12d Model Programming Manual
12d Model Program and Folders
Get_program_version_number()

Name

Integer Get_program_version_number()

Description

The function return value is the 12d Model version number.

For example, 10 for 12d Model 10C1c

Get_program_major_version_number()

Name

Integer Get_program_major_version_number()

Description

The function return value is the 12d Model major version number. That is 1 for C1, 2 for C2 etc, 0
for Alpha or Beta.

For example, 1 for 12d Model 10C1c

Get_program_minor_version_number()

Name

Integer Get_program_minor_version_number()

Description

The function return value is the 12d Model minor version number. That is 1 for a, 2 for b, 3 of c
etc.

For example, 3 for 12d Model 10C1c

Get_program_folder_version_number()

Name

Integer Get_program_folder_version_number()

Description

The function return value is the 12d Model folder version number.

For example, 00 in "Program Files\12dModel\10.00

Get_program_build_number()

Name

Integer Get_program_build_number()

Description

The function return value is the 12d Model build number.

This is for internal use only and for minidumps.
Page 184 12d Model Program and Folders

Chapter 5 4DML Library Calls
Get_program_special_build_name()

Name

Text Get_program_special_build_name()

Description

The function return value is a special build description for pre-release versions and it is written
after the 12d Model version information. It is blank for release versions.

Get_program_patch_version_name()

Name

Text Get_program_patch_version_name()

Description

<no description>

Get_program_full_title_name()

Name

Text Get_program_full_title_name()

Description

<no description>

Get_program()

Name

Text Get_program()

Description

The function return value is the full path to where the 12d.exe is on disk.

For example "C:\Program Files\12d\12dmodel\10.00\nt.x86"

Get_program_name()

Name

Text Get_program_name()

Description

The function return value is the name of the 12d Model executable. That is, "12d.exe".

Get_program_folder()

Name

Text Get_program_folder()

Description

The function return value is the full path to the folder where the 12d Model executable (12d.exe)
is on disk.

For example "C:\Program Files\12d\12dmodel\10.00\nt.x86"
Page 18512d Model Program and Folders

12d Model Programming Manual
LJG the folder where 12d.exe is

LJG ?? what is the difference with Get_program(). Or does Get_program() include 12d.exe

Get_program_parent_folder()

Name

Text Get_program_parent_folder()

Description

The function return value is the full path to the folder above where the 12d Model executable
(12d.exe) is on disk.

For example "C:\Program Files\12d\12dmodel\10.00"

Get_project_folder(Text &name)

Name

Integer Get_project_folder(Text &name)

Description

Get the path to the working folder (the folder containing the current project) and return it in name.

A function return value of zero indicates the function was successful.

Get_temporary_directory(Text &folder_name)

Name

Integer Get_temporary_directory(Text &folder_name)

Description

Get the name of the Windows temporary folder %TEMP% and return it as folder_name.

A function return value of zero indicates the function was successful.

Get_temporary_12d_directory(Text &folder_name)

Name

Integer Get_temporary_12d_directory(Text &folder_name)

Description

Get the name of the 12d Model temporary folder "%TEMP%\12d", and return it as folder_name.

A function return value of zero indicates the function was successful.

Get_temporary_project_directory(Text &folder_name)

Name

Integer Get_temporary_project_directory(Text &folder_name)

Description

Get the name of the current 12d Model Project temporary folder "%TEMP%\12d\process-id"
(where process-id is the process id of the current running 12d.exe), and return it as folder_name

A function return value of zero indicates the function was successful.

Note - Every 12d project has a independent temporary folder.
Page 186 12d Model Program and Folders

Chapter 5 4DML Library Calls
Page 18712d Model Program and Folders

12d Model Programming Manual
Project
All the 12d Model information is saved in a Project.

Projects are made up of data in the form of elements in models, and tins, and views to look at
selected data sets from the project.

Projects also have information such as linestyles, textstyles, fonts and colours.

Project_save()

Name

Integer Project_save()

Description

Save the Project to the disk.

A function return value of zero indicates the Project was successfully saved.

Program_exit(Integer ignore_save)

Name

Integer Program_exit(Integer ignore_save)

Description

Exit the 12d Model program.

If ignore_save is non-zero then the project is closed without saving and 12d Model then stops.

If ignore_save is zero then a save of the project is done and 12d Model then stops.

Sleep(Integer milli)

Name

Integer Sleep(Integer milli)

Description

Send 12d Model to sleep for milli milliseconds

A function return value of zero indicates the function was successful.

Set_project_attributes(Attributes att)

Name

Integer Set_project_attributes(Attributes att)

Description

For the Project, set the Attributes to att.

A function return value of zero indicates the Attributes was successfully set.

Get_project_attributes(Attributes &att)

Name

Integer Get_project_attributes(Attributes &att)

Description
Page 188 Project

Chapter 5 4DML Library Calls
For the Project, return the Attributes for the Project as att.

If the Project has no attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Get_project_attribute(Text att_name,Uid &att)

Name

Integer Get_project_attribute(Text att_name,Uid &att)

Description

For the Project, get the attribute called att_name and return the attribute value in uid. The
attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_project_attribute(Text att_name,Attributes &att)

Name

Integer Get_project_attribute(Text att_name,Attributes &att)

Description

For the Project, get the attribute called att_name and return the attribute value in att. The
attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_project_attribute(Integer att_no,Uid &uid)

Name

Integer Get_project_attribute(Integer att_no,Uid &att)

Description

For the Project, get the attribute with number att_no and return the attribute value in uid. The
attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_project_attribute(Integer att_no,Attributes &att)

Name

Integer Get_project_attribute(Integer att_no,Attributes &att)

Description

For the Project, get the attribute with number att_no and return the attribute value in att. The
attribute must be of type Attributes.
Page 189Project

12d Model Programming Manual
If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_project_attribute(Text att_name,Uid uid)

Name

Integer Set_project_attribute(Text att_name,Uid uid)

Description

For the Project,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_project_attribute(Text att_name,Attributes att)

Name

Integer Set_project_attribute(Text att_name,Attributes att)

Description

For the Project,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_project_attribute(Integer att_no,Uid uid)

Name

Integer Set_project_attribute(Integer att_no,Uid uid)

Description

For Project, if the attribute number att_no exists and it is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_project_attribute(Integer att_no,Attributes att)
Page 190 Project

Chapter 5 4DML Library Calls
Name

Integer Set_project_attribute(Integer att_no,Attributes att)

Description

For Project, if the attribute number att_no exists and it is of type Attributes, then its value is set to
att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Project_attribute_exists(Text att_name)

Name

Integer Project_attribute_exists(Text att_name)

Description

Checks to see if a Project attribute with the name att_name exists in current project.

A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Project_attribute_exists(Text name,Integer &no)

Name

Integer Project_attribute_exists(Text name,Integer &no)

Description

Checks to see if a project attribute with the name name exists in current project.

If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Project_attribute_delete(Text att_name)

Name

Integer Project_attribute_delete(Text att_name)

Description

Delete the project attribute with the name att_name in current project.

A function return value of zero indicates the attribute was deleted.

Project_attribute_delete(Integer att_no)

Name
Page 191Project

12d Model Programming Manual
Integer Project_attribute_delete(Integer att_no)

Description

Delete the project attribute with the Integer att_no in current project.

A function return value of zero indicates the attribute was deleted.

Project_attribute_delete_all(Element elt)

Name

Integer Project_attribute_delete_all(Element elt)

Description

Delete all the attributes for Project.

Element elt has nothing to do with this call and is ignored.

A function return value of zero indicates all the attributes were deleted.

Project_attribute_dump()

Name

Integer Project_attribute_dump()

Description

Write out information about the Project attributes to the Output Window.

A function return value of zero indicates the function was successful.

Project_attribute_debug()

Integer Project_attribute_debug()

Description

Write out even more information about the Project attributes to the Output Window.

A function return value of zero indicates the function was successful.

Get_project_number_of_attributes(Integer &no_atts)

Name

Integer Get_project_number_of_attributes(Integer &no_atts)

Description

Get number of attributes Integer no_atts in current project.

A function return value of zero indicates the number is successfully returned.

Get_project_attribute_name(Integer att_no,Text &name)

Name

Integer Get_project_attribute_name(Integer att_no,Text &name)

Description

Get project attribute name Text name with attribute number Integer att_no in current project.

A function return value of zero indicates the name is successfully returned.

Get_project_attribute_length(Integer att_no,Integer &att_len)

Name

Integer Get_project_attribute_length(Integer att_no,Integer &att_len)

Description
Page 192 Project

Chapter 5 4DML Library Calls
Get the length of the project attribute at position att_no.

The project attribute length is returned in att_len.

A function return value of zero indicates the attribute type was successfully returned.

Note

The length is useful for user attributes of type Text and Binary (Blobs).

Get_project_attribute_length(Text att_name,Integer &att_len)

Name

Integer Get_project_attribute_length(Text att_name,Integer &att_len)

Description

Get the length of the project attribute with the name att_name for the current project.

The project attribute length is returned in att_len.

A function return value of zero indicates the attribute type was successfully returned.

Note

The length is useful for user attributes of type Text and Binary (Blobs).

Get_project_attribute_type(Text att_name,Integer &att_type)

Name

Integer Get_project_attribute_type(Text att_name,Integer &att_type)

Description

Get the type of the project attribute with the name att_name from the current project.

The project attribute type is returned in Integer att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_project_attribute_type(Integer att_no,Integer &att_type)

Name

Integer Get_project_attribute_type(Integer att_no,Integer &att_type)

Description

Get the type of the project attribute at position att_no for the current project.

The project attribute type is returned in att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_project_attribute(Text att_name,Real &att)

Name

Integer Get_project_attribute(Text att_name,Real &att)

Description

Get project attribute Real att with attribute name Text att_name in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Text att_name,Real att)
Page 193Project

12d Model Programming Manual
Name

Integer Set_project_attribute(Text att_name,Real att)

Description

Set the project attribute with name att_name to the Real att.

The project attribute must be of type Real

A function return value of zero indicates the attribute was successfully set.

Get_project_attribute(Text att_name,Integer &att)

Name

Integer Get_project_attribute(Text att_name,Integer &att)

Description

Get project attribute Integer att with attribute name Text att_name in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Text att_name,Integer att)

Name

Integer Set_project_attribute(Text att_name,Integer att)

Description

Set the project attribute with name att_name to the Integer att.

The project attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Get_project_attribute(Integer att_no,Text &att)

Name

Integer Get_project_attribute(Integer att_no,Text &att)

Description

Get project attribute Text att with attribute number Integer att_no in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Integer att_no,Text att)

Name

Integer Set_project_attribute(Integer att_no,Text att)

Description

Set the project attribute at position att_no to the Text att.

The project attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.

Get_project_attribute(Integer att_no,Integer &att)

Name

Integer Get_project_attribute(Integer att_no,Integer &att)
Page 194 Project

Chapter 5 4DML Library Calls
Description

Get project attribute Integer att with attribute number Integer att_no in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Integer att_no,Integer att)

Name

Integer Set_project_attribute(Integer att_no,Integer att)

Description

Set the project attribute at position att_no to the Integer att.

The project attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Get_project_attribute(Integer att_no,Real &att)

Name

Integer Get_project_attribute(Integer att_no,Real &att)

Description

Get project attribute Real att with attribute number Integer att_no in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Integer att_no,Real att)

Name

Integer Set_project_attribute(Integer att_no,Real att)

Description

Set the project attribute at position att_no to the Real att.

The project attribute must be of type Real

A function return value of zero indicates the attribute was successfully set.

Get_project_attribute(Text att_name,Text &att)

Name

Integer Get_project_attribute(Text att_name,Text &att)

Description

Get project attribute Text att with attribute name Text att_name in current project.

A function return value of zero indicates the name is successfully returned.

Set_project_attribute(Text att_name,Text att)

Name

Integer Set_project_attribute(Text att_name,Text att)

Description

Set the project attribute with name att_name to the Text att.
Page 195Project

12d Model Programming Manual
The project attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.
Page 196 Project

Chapter 5 4DML Library Calls
Models
The variable type Model is used to refer to 12d Model models.

Model variables act as handles to the actual model so that the model can be easily referred to
and manipulated within a macro.

Model_exists(Text model_name)

Name

Integer Model_exists(Text model_name)

Description

Checks to see if a model with the name model_name exists.

A non-zero function return value indicates a model does exist.

A zero function return value indicates that no model of name model_name exists.

Warning - this is the opposite of most 4DML function return values

Model_exists(Model model)

Name

Integer Model_exists(Model model)

Description

Checks if the Model model is valid (that is, not null).

A non-zero function return value indicates model is not null.

A zero function return value indicates that model is null.

Warning - this is the opposite of most 4DML function return values

Get_project_models(Dynamic_Text &model_names)

Name

Integer Get_project_models(Dynamic_Text &model_names)

Description

Get the names of all the models in the project.

The dynamic array of model names is returned in the Dynamic_Text model_names.

A function return value of zero indicates the model names are returned successfully.

Get_model(Text model_name)

Name

Model Get_model(Text model_name)

Description

Get the Model model with the name model_name.

If the model exists, its handle is returned as the function return value.

If no model of name model_name exists, a null Model is returned as the function return value.
Page 197Models

12d Model Programming Manual
Get_name(Model model,Text &model_name)

Name

Integer Get_name(Model model,Text &model_name)

Description

Get the name of the Model model.

The model name is returned in the Text model_name.

A function return value of zero indicates the model name was successfully returned.

If model is null, the function return value is non-zero.

Get_time_created(Model model,Integer &time)

Name

Integer Get_time_created(Model model,Integer &time)

Description

Get the time that the Model model was created and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Get_time_updated(Model model,Integer &time)

Name

Integer Get_time_updated(Model model,Integer &time)

Description

Get the time that the Model model was last updated and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Set_time_updated(Model model,Integer time)

Name

Integer Set_time_updated(Model model,Integer time)

Description

Set the update time for the Model model to time.

LJG? Units of time?

A function return value of zero indicates the time was successfully set.

Get_id(Model model,Integer &id)

Name

Integer Get_id(Model model,Integer &id)

Description

Get the id of the Model model and return it in id.

A function return value of zero indicates the id was successfully returned.
Page 198 Models

Chapter 5 4DML Library Calls
Get_id(Model model,Uid &id)

Name

Integer Get_id(Model model,Uid &id)

Description

Get the Uid of the Model model and return it in id.

A function return value of zero indicates the Uid was successfully returned.

Get_model(Integer model_id,Model &model)

Name

Integer Get_model(Integer model_id,Model &model)

Description

Get the model in the Project that has the id model_id and return it in model.

If the model does not exist then a non-zero function return value is returned.

A function return value of zero indicates the model was successfully returned.

Get_model(Uid model_id,Model &model)

Name

Integer Get_model(Uid model_id,Model &model)

Description

Get the model in the Project that has the Uid model_id and return it in model.

If the model does not exist then a non-zero function return value is returned.

A function return value of zero indicates the model was successfully returned.

Get_element(Integer model_id,Integer element_id,Element &elt)

Name

Integer Get_element(Integer model_id,Integer element_id,Element &elt)

Description

Get the Element with id element id from the model that has the id model_id and return it in elt.

If the Element does not exist in the model with model_id then a non-zero function return value is
returned.

A function return value of zero indicates the Element was successfully returned.

Get_element(Uid model_id,Uid element_id,Element &elt)

Name

Integer Get_element(Uid model_id,Uid element_id,Element &elt)

Description

Get the Element with Uid element id from the model that has the Uid model_id and return it in
elt.
Page 199Models

12d Model Programming Manual
If the Element does not exist in the model with model_id then a non-zero function return value is
returned.

A function return value of zero indicates the Element was successfully returned.

Create_model(Text model_name)

Name

Model Create_model(Text model_name)

Description

Create a Model with the name model_name.

If the model is created, its handle is returned as the function return value.

If no model can be created, a null Model is returned as the function return value.

Get_model_create(Text model_name)

Name

Model Get_model_create(Text model_name)

Description

Get a handle to the model with name model_name.

If the model exists, its handle is returned as the function return value.

If no such model exists, then a new model with the name model_name is created, and its handle
returned as the function return value.

If no model exists and the creation fails, a null Model is returned as the function return value.

Get_number_of_items(Model model,Integer &num)

Name

Integer Get_number_of_items(Model model,Integer &num)

Description

Get the number of items (Elements) in the Model model.

The number of Elements is returned as the Integer num.

A function return value of zero indicates success.

Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

Name

Integer Get_elements(Model model,Dynamic_Element &de,Integer &total_no)

Description

Get all the Elements from the Model model and add them to the Dynamic_Element array, de.

The total number of Elements in de is returned by total_no.

A function return value of zero indicates success.

Get_extent_x(Model model,Real &xmin,Real &xmax)

Name
Page 200 Models

Chapter 5 4DML Library Calls
Integer Get_extent_x(Model model,Real &xmin,Real &xmax)

Description

Gets the x-extents of the Model model.

The minimum x extent is returned by the Real xmin.

The maximum x extent is returned by the Real xmax.

A function return value of zero indicates the x-extents were returned successfully.

Get_extent_y(Model model,Real &ymin,Real &ymax)

Name

Integer Get_extent_y(Model model,Real &ymin,Real &ymax)

Description

Gets the y-extents of the Model model.

The minimum y extent is returned by the Real ymin.

The maximum y extent is returned by the Real ymax.

A function return value of zero indicates the y-extents were returned successfully.

Get_extent_z(Model model,Real &zmin,Real &zmax)

Name

Integer Get_extent_z(Model model,Real &zmin,Real &zmax)

Description

Gets the z-extents of the Model model.

The minimum z extent is returned by the Real zmin.

The maximum z extent is returned by the Real zmax.

A function return value of zero indicates the z-extents were returned successfully.

Calc_extent(Model model)

Name

Integer Calc_extent(Model model)

Description

Calculate the extents of the Model model. This is necessary when Elements have been deleted
from a model.

A function return value of zero indicates the extent calculation was successful.

Model_duplicate(Model model,Text dup_name)

Name

Integer Model_duplicate(Model model,Text dup_name)

Description

Create a new Model with the name dup_name and add duplicates of all the elements in model to
it.

It is an error if a Model called dup_name already exists.
Page 201Models

12d Model Programming Manual
A function return value of zero indicates the duplication was successful.

Model_rename(Text original_name,Text new_name)

Name

Integer Model_rename(Text original_name,Text new_name)

Description

Change the name of the Model original_name to the new name new_name.

A function return value of zero indicates the rename was successful.

Model_draw(Model model)

Name

Integer Model_draw(Model model)

Description

Draw each element in the Model model for each view that the model is on. The elements are
drawn in their own colour.

A function return value of zero indicates the draw was successful.

Model_draw(Model model,Integer col_num)

Name

Integer Model_draw(Model model,Integer col_num)

Description

Draw, in the colour number col_num, each element in the Model model for each view that the
model is on.

A function return value of zero indicates the draw was successful.

Null(Model model)

Name

Integer Null(Model model)

Description

Set the Model handle model to null. This does not affect the 12d Model model that the handle
pointed to.

A function return value of zero indicates model was successfully nulled.

Model_delete(Model model)

Name

Integer Model_delete(Model model)

Description

Delete from the project and the disk, the 12d Model model pointed to by the Model model. The
handle model is then set to null.

A function return value of zero indicates the model was successfully deleted.
Page 202 Models

Chapter 5 4DML Library Calls
Get_model_attributes(Model model,Attributes &att)

Name

Integer Get_model_attributes(Model model,Attributes &att)

Description

For the Model model, return the Attributes for the Model as att.

If the Model has no Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Set_model_attributes(Model model,Attributes att)

Name

Integer Set_model_attributes(Model model,Attributes att)

Description

For the Model model, set the Attributes for the Model to att.

A function return value of zero indicates the attribute is successfully set.

Get_model_attribute(Model model,Text att_name,Uid &uid)

Name

Integer Get_model_attribute(Model model,Text att_name,Uid &uid)

Description

From the Model model, get the attribute called att_name and return the attribute value in uid.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_model_attribute(Model model,Text att_name,Attributes &att)

Name

Integer Get_model_attribute(Model model,Text att_name,Attributes &att)

Description

From the Model model, get the attribute called att_name from model and return the attribute
value in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - this function is more efficient than getting the Attributes from the Model and then getting
the data from that Attributes.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_model_attribute(Model model,Integer att_no,Uid &uid)

Name
Page 203Models

12d Model Programming Manual
Integer Get_model_attribute(Model model,Integer att_no,Uid &uid)

Description

From the Model model, get the attribute with number att_no and return the attribute value in uid.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_model_attribute(Model model,Integer att_no,Attributes &att)

Name

Integer Get_model_attribute(Model model,Integer att_no,Attributes &att)

Description

From the Model model, get the attribute with number att_no and return the Attribute value in att.
The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_model_attribute(Model model,Text att_name,Uid att)

Name

Integer Set_model_attribute(Model model,Text att_name,Uid att)

Description

For the Model model,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
att.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_model_attribute(Model model,Text att_name,Attributes att)

Name

Integer Set_model_attribute(Model model,Text att_name,Attributes att)

Description

For the Model model,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 204 Models

Chapter 5 4DML Library Calls
Set_model_attribute(Model model,Integer att_no,Uid uid)

Name

Integer Set_model_attribute(Model model,Integer att_no,Uid uid)

Description

For the Model model, if the attribute number att_no exists and it is of type Uid, then its value is
set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_model_attribute(Model model,Integer att_no,Attributes att)

Name

Integer Set_model_attribute(Model model,Integer att_no,Attributes att)

Description

For the Model model, if the attribute number att_no exists and it is of type Attributes, then its
value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Model_attribute_exists(Model model,Text att_name)

Name

 Integer Model_attribute_exists(Model model,Text att_name)

Description

Checks to see if a model attribute with the name att_name exists in the Model model.

A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Model_attribute_exists(Model model,Text name,Integer &no)

Name

Integer Model_attribute_exists(Model model,Text name,Integer &no)

Description

Checks to see if a model attribute with the name name exists in the Model model.
Page 205Models

12d Model Programming Manual
If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Model_attribute_delete(Model model,Text att_name)

Name

Integer Model_attribute_delete(Model model,Text att_name)

Description

Delete the model attribute with the name att_name for Model model.

A function return value of zero indicates the attribute was deleted.

Model_attribute_delete(Model model,Integer att_no)

Name

Integer Model_attribute_delete(Model model,Integer att_no)

Description

Delete the model attribute at the position att_no for Model model.

A function return value of zero indicates the attribute was deleted.

Model_attribute_delete_all(Model model,Element elt)

Name

 Integer Model_attribute_delete_all(Model model,Element elt)

Description

Delete all the model attributes for Model model.

A function return value of zero indicates all the attributes were deleted.

Model_attribute_dump(Model model)

Name

Integer Model_attribute_dump(Model model)

Description

Write out information about the Model attributes to the Output Window.

A function return value of zero indicates the function was successful.

Model_attribute_debug(Model model)

Name

Integer Model_attribute_debug(Model model)

Description

Write out even more information about the Model attributes to the Output Window.
Page 206 Models

Chapter 5 4DML Library Calls
A function return value of zero indicates the function was successful.

Get_model_attribute(Model model,Text att_name,Text &att)

Name

 Integer Get_model_attribute(Model model,Text att_name,Text &att)

Description

Get the data for the model attribute with the name att_name for Model model.

The model attribute must be of type Text and is returned in Text att.

A function return value of zero indicates the attribute was successfully returned.

Get_model_attribute(Model model,Text att_name,Integer &att)

Name

 Integer Get_model_attribute(Model model,Text att_name,Integer &att)

Description

Get the data for the model attribute with the name att_name for Model model.

The model attribute must be of type Integer and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_model_attribute(Model model,Text att_name,Real &att)

Name

 Integer Get_model_attribute(Model model,Text att_name,Real &att)

Description

Get the data for the model attribute with the name att_name for Model model.

The model attribute must be of type Real and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_model_attribute(Model model,Integer att_no,Text &att)

Name

 Integer Get_model_attribute(Model model,Integer att_no,Text &att)

Description

Get the data for the model attribute at the position att_no for Model model.

The model attribute must be of type Text and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_model_attribute(Model model,Integer att_no,Integer &att)

Name

 Integer Get_model_attribute(Model model,Integer att_no,Integer &att)

Description

Get the data for the model attribute at the position att_no for Model model.

The model attribute must be of type Integer and is returned in Integer att.

A function return value of zero indicates the attribute was successfully returned.
Page 207Models

12d Model Programming Manual
Get_model_attribute(Model model,Integer att_no,Real &att)

Name

 Integer Get_model_attribute(Model model,Integer att_no,Real &att)

Description

Get the data for the model attribute at the position att_no for Model model.

The model attribute must be of type Real and is returned in Real att.

A function return value of zero indicates the attribute was successfully returned.

Set_model_attribute(Model model,Integer att_no,Real att)

Name

 Integer Set_model_attribute(Model model,Integer att_no,Real att)

Description

For the Model model, set the model attribute at position att_no to the Real att.

The model attribute must be of type Real

A function return value of zero indicates the attribute was successfully set.

Set_model_attribute(Model model,Integer att_no,Integer att)

Name

 Integer Set_model_attribute(Model model,Integer att_no,Integer att)

Description

For the Model model, set the model attribute at position att_no to the Integer att.

The model attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Set_model_attribute(Model model,Integer att_no,Text att)

Name

 Integer Set_model_attribute(Model model,Integer att_no,Text att)

Description

For the Model model, set the model attribute at position att_no to the Text att.

The model attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.

Set_model_attribute(Model model,Text att_name,Real att)

Name

 Integer Set_model_attribute(Model model,Text att_name,Real att)

Description

For the Model model, set the model attribute with name att_name to the Real att.

The model attribute must be of type Real
Page 208 Models

Chapter 5 4DML Library Calls
A function return value of zero indicates the attribute was successfully set.

Set_model_attribute(Model model,Text att_name,Integer att)

Name

 Integer Set_model_attribute(Model model,Text att_name,Integer att)

Description

For the Model model, set the model attribute with name att_name to the Integer att.

The model attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Set_model_attribute(Model model,Text att_name,Text att)

Name

 Integer Set_model_attribute(Model model,Text att_name,Text att)

Description

For the Model model, set the model attribute with name att_name to the Text att.

The model attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.

Get_model_attribute_name(Model model,Integer att_no,Text &name)

Name

 Integer Get_model_attribute_name(Model model,Integer att_no,Text &name)

Description

Get the name for the model attribute at the position att_no for Model model.

The model attribute name found is returned in Text name.

A function return value of zero indicates the attribute name was successfully returned.

Get_model_attribute_type(Model model,Text att_name,Integer &att_type)

Name

 Integer Get_model_attribute_type(Model model,Text att_name,Integer &att_type)

Description

Get the type of the model attribute with the name att_name from the Model model.

The model attribute type is returned in Integer att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)

Name

 Integer Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)

Description

Get the type of the model attribute at position att_no for the Model model.

The model attribute type is returned in att_type.
Page 209Models

12d Model Programming Manual
For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_model_attribute_length(Model model,Text att_name,Integer &att_len)

Name

 Integer Get_model_attribute_length(Model model,Text att_name,Integer &att_len)

Description

Get the length of the model attribute with the name att_name for Model model.

The model attribute length is returned in att_len.

A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary (Blobs).

Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)

Name

 Integer Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)

Description

Get the length of the model attribute at position att_no for Model model.

The model attribute length is returned in att_len.

A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary (Blobs).

Get_model_number_of_attributes(Model model,Integer &no_atts)

Name

 Integer Get_model_number_of_attributes(Model model,Integer &no_atts)

Description

Get the total number of model attributes for Model model.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the attribute was successfully returned.
Page 210 Models

Chapter 5 4DML Library Calls
Views
The variable type View is used to refer to 12d Model views.

View variables act as handles to the actual view so that the view can be easily referred to and
manipulated within a macro.

View_exists(Text view_name)

Name

Integer View_exists(Text view_name)

Description

Checks to see if a view with the name view_name exists.

A non-zero function return value indicates a view does exist.

A zero function return value indicates value that no view of that name exists.

Warning - this is the opposite of most 4DML function return values

View_exists(View view)

Name

Integer View_exists(View view)

Description

Checks if the View view is valid (that is, not null).

A non-zero function return value indicates view is not null.

A zero function return value indicates that view is null.

Warning - this is the opposite of most 4DML function return values

Get_name(View view,Text &view_name)

Name

Integer Get_name(View view,Text &view_name)

Description

Get the name of the View view.

The view name is returned in the Text view_name.

A function return value of zero indicates the view name was returned successfully.

If view is null, the function return value is non-zero.

Null(View view)

Name

Integer Null(View view)

Description

Set the View handle view to null. This does not affect the 12d Model view that the handle pointed
to.

A function return value of zero indicates view was successfully nulled.
Page 211Views

12d Model Programming Manual
Get_project_views(Dynamic_Text &view_names)

Name

Integer Get_project_views(Dynamic_Text &view_names)

Description

Get the names of all the views in the project.

The dynamic array of view names is returned in the Dynamic_Text view_names.

A function return value of zero indicates the view names were returned successfully.

Get_view(Text view_name)

Name

View Get_view(Text view_name)

Description

Get the View with the name view_name.

If the view exists, its handle is returned as the function return value.

If no view of name view_name, a null View is returned as the function return value.

Get_type(View view,Text &type)

Name

Integer Get_type(View view,Text &type)

Description

Get the type of the View view as the Text type.

The type is

Plan if the view is a plan view
Section section view
Perspective perspective view or Opengl perspective view
Hidden_perspective hidden perspective view.

A function return value of zero indicates that the view type was returned successfully.

Get_type(View view,Integer &view_num)

Name

Integer Get_type(View view,Integer &view_num)

Description

For the view view, view_num returns the type of the view.

view_num = 2010 if view is a PLAN VIEW
view_num = 2011 if view is a SECTION VIEW
view_num = 2012 if view is a PERSP VIEW and OPEN GL 2012
view_num = 2030 if view is a HIDDEN PERSPECTIVE
A function return value of zero indicates the successfully.

Model_get_views(Model model,Dynamic_Text &view_names)

Name

Integer Model_get_views(Model model,Dynamic_Text &view_names)
Page 212 Views

Chapter 5 4DML Library Calls
Description

Get the names of all the views that the Model model is on.

The view names are returned in the Dynamic_Text view_names.

A function return value of zero indicates that the view names were returned successfully.

View_get_models(View view,Dynamic_Text &model_names)

Name

Integer View_get_models(View view,Dynamic_Text &model_names)

Description

Get the names of all the Models on the View view.

The model names are returned in the Dynamic_Text model_names.

A function return value of zero indicates that the model names were returned successfully.

View_add_model(View view,Model model)

Name

Integer View_add_model(View view,Model model)

Description

Add the Model model to the View view.

A function return value of zero indicates that model was successfully added to the view.

View_remove_model(View view,Model model)

Name

Integer View_remove_model(View view,Model model)

Description

Remove the Model model from the View view.

A function return value of zero indicates that model was successfully removed from the view.

View_redraw(View view)

Name

Integer View_redraw(View view)

Description

Redraw the 12d Model View view.

A function return value of zero indicates that the view was successfully redrawn.

View_fit(View view)

Name

Integer View_fit(View view)

Description

Perform a fit on the 12d Model View view.

A function return value of zero indicates that the view was successfully fitted.
Page 213Views

12d Model Programming Manual
View_get_size(View view,Integer &width,Integer &height)

Name

Integer View_get_size(View view,Integer &width,Integer &height)

Description

Find the size in screen units (pixels) of the View view.

The width and height of the view are width and height pixels respectively.

A function return value of zero indicates that the view size was successfully returned.

Calc_extent(View view)

Name

Integer Calc_extent(View view)

Description

Calculate the extents of the View view. This is necessary when Elements have been deleted
from a model on a view.

A function return value of zero indicates the extent calculation was successful.
Page 214 Views

Chapter 5 4DML Library Calls
Tins
The variable type Tin is used to refer to the standard 12d Model tins or triangulations.

Tin variables act as handles to the actual tin so that the tin can be easily referred to and
manipulated within a macro.

Tin_exists(Text tin_name)

Name

Integer Tin_exists(Text tin_name)

Description

Checks to see if a tin with the name tin_name exists.

A non-zero function return value indicates a tin does exist.

A zero function return value indicates that no tin of that name exists.

Warning this is the opposite of most 4DML function return values

Tin_exists(Tin tin)

Name

Integer Tin_exists(Tin tin)

Description

Checks if the Tin tin is valid (that is, not null).

A non-zero function return value indicates that tin is not null.

A zero function return value indicates that tin is null.

Warning this is the opposite of most 4DML function return values

Get_project_tins(Dynamic_Text &tins)

Name

Integer Get_project_tins(Dynamic_Text &tins)

Description

Get the names of all the tins in the project. The names are returned in the Dynamic_Text, tins.

A function return value of zero indicates the tin names were returned successfully.

Get_tin(Text tin_name)

Name

Tin Get_tin(Text tin_name)

Description

Get a Tin handle for the tin with name tin_name.

If the tin exists, the handle to it is returned as the function return value.

If the tin does not exist, a null Tin is returned as the function return value.

Get_name(Tin tin,Text &tin_name)
Page 215Tins

12d Model Programming Manual
Name

Integer Get_name(Tin tin,Text &tin_name)

Description

Get the name of the Tin tin.

The tin name is returned in the Text tin_name.

A function return value of zero indicates success.

If tin is null, the function return value is non-zero.

Tin_models(Tin tin, Dynamic_Text &models_used)

Name

Integer Tin_models(Tin tin, Dynamic_Text &models_used)

Description

Get the names of all the models that were used to create the Tin tin.

The model names are returned in the Dynamic_Text models_used.

A function return value of zero indicates that the view names were returned successfully.

Get_time_created(Tin tin,Integer &time)

Name

Integer Get_time_created(Tin tin,Integer &time)

Description

Get the time that the Tin tin was created and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Get_time_updated(Tin tin,Integer &time)

Name

Integer Get_time_updated(Tin tin,Integer &time)

Description

Get the time that the Tin tin was last updated and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Set_time_updated(Tin tin,Integer time)

Name

Integer Set_time_updated(Tin tin,Integer time)

Description

Set the update time for the Tin tin to time.

LJG? Units of time?

A function return value of zero indicates the time was successfully set.
Page 216 Tins

Chapter 5 4DML Library Calls
Tin_number_of_points(Tin tin,Integer ¬ri)

Name

Integer Tin_number_of_points(Tin tin,Integer ¬ri)

Description

Get the total number of points used in creating the Tin tin.

This value includes duplicate points.

The number of triangles is returned in the Integer notri.

A function return value of zero indicates success.

If tin is null, the function return value is non-zero.

Tin_number_of_triangles(Tin tin,Integer ¬ri)

Name

Integer Tin_number_of_triangles(Tin tin,Integer ¬ri)

Description

Get the number of triangles in the Tin tin.

The number of triangles is returned in the Integer notri.

A function return value of zero indicates success.

If tin is null, the function return value is non-zero.

Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)

Name

Integer Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)

Description

Get the number of duplicate points found whilst creating the Tin tin.

The number of duplicate points is returned in the Integer notri.

A function return value of zero indicates success.

If tin is null, the function return value is non-zero.

Tin_number_of_items(Tin tin,Integer &num_items)

Name

Integer Tin_number_of_items(Tin tin,Integer &num_items)

Description

The number of strings in the tin tin is returned as num_items. Note that if the original string in
the data set to be triangulated had invisible segments (discontinuities) then that string is broken
into two or more strings in the tin.

A function return value of zero indicates that num_items was successfully returned.

Tin_colour(Tin tin,Real x,Real y,Integer &colour)

Name
Page 217Tins

12d Model Programming Manual
Integer Tin_colour(Tin tin,Real x,Real y,Integer &colour)

Description

Get the colour of the tin at the point (x,y)

A function return value of zero indicates success.

Tin_height(Tin tin,Real x,Real y,Real &height)

Name

Integer Tin_height(Tin tin,Real x,Real y,Real &height)

Description

Get the height of the tin at the point (x,y).

If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.

A function return value of zero indicates the height was successfully returned.

Tin_slope(Tin tin,Real x,Real y,Real &slope)

Name

Integer Tin_slope(Tin tin,Real x,Real y,Real &slope)

Description

Get the slope of the tin at the point (x,y).

The units for slope is an angle in radians measured from the horizontal plane.

If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.

A function return value of zero indicates the slope was successfully returned.

Tin_aspect(Tin tin,Real x,Real y,Real &aspect)

Name

Integer Tin_aspect(Tin tin,Real x,Real y,Real &aspect)

Description

Get the aspect of the tin at the point (x,y).

The units for aspect is a bearing in radians. That is, aspect is given as a clockwise angle
measured from the positive y-axis (North).

If (x,y) is outside the tin, then an error has occurred and a non-zero function return value is set.

A function return value of zero indicates the aspect was successfully returned.

Tin_duplicate(Tin tin,Text dup_name)

Name

Integer Tin_duplicate(Tin tin,Text dup_name)

Description

Create a new Tin with name dup_name which is a duplicate the Tin tin.

IT is an error if a Tin called dup_name already exists.

A function return value of zero indicates the duplication was successful.
Page 218 Tins

Chapter 5 4DML Library Calls
Tin_rename(Text original_name,Text new_name)

Name

Integer Tin_rename(Text original_name,Text new_name)

Description

Change the name of the Tin original_name to the new name new_name.

A function return value of zero indicates the rename was successful.

Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)

Name

Integer Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)

Description

Get the boundary polygons for the Tin tin. The polygons are returned in the Dynamic_Element
de with colour colour_for_strings.

A function return value of zero indicates the data was successfully returned.

Tin_delete(Tin tin)

Name

Integer Tin_delete(Tin tin)

Description

Delete the Tin tin from the project and the disk.

A function return value of zero indicates the tin was deleted successfully.

Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)

Name

Integer Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)

Description

Get the (x,y,z) coordinate of np’th point of the tin.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

A function return value of zero indicates the coordinate of the point was successfully returned.

Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)

Name

Integer Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)

Description

Get the three points of nt’th triangle of the tin.

The first point value is returned in Integer p1.

The second point value is returned in Integer p2.

The third point value is returned in Integer p3.
Page 219Tins

12d Model Programming Manual
A function return value of zero indicates the points were successfully returned.

Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2, Integer
&n3)

Name

Integer Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2,Integer &n3)

Description

Get the three neighbour triangles of the nt’th triangle of the tin.

The first triangle neighbour is returned in Integer n1.

The second triangle neighbour is returned in Integer n2.

The third triangle neighbour is returned in Integer n3.

A function return value of zero indicates the triangles were successfully returned.

Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)

Name

Integer Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)

Description

For the Tin tin and the coordinate (x,y), get the tin point number of the vertex of the triangle
closest to (x,y), and returned it in np.

A function return value of zero indicates the function was successful.

Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)

Name

Integer Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)

Description

For the Tin tin and the nth point of tin, get the number of triangles surrounding the point and
return the number in no_triangles.

A function return value of zero indicates the function was successful.

Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer
&no_triangles,Integer triangles[],Integer points[],Integer status[])

Name

Integer Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer
&no_triangles,Integer triangles[],Integer points[],Integer status[])

Description

For the Tin tin and the nth point of tin,

 get the number of triangles surrounding the point and return it as no_triangles
 return the list of triangle numbers in triangles[]
 return the list of all the point numbers of vertices of the triangles that surround the point in
points[] (the number of these is the same as the number of triangle around the point)
LJG ?? return the status of each triangle in triangles[]. status is 0 for a null triangle, 1 for other
triangles.
Page 220 Tins

Chapter 5 4DML Library Calls
Note: max_triangles is the size of the arrays triangles[], points[] and status[]. The number of
triangles surrounding the nth point of a tin is given by Tin_get_triangles_about_point.

A function return value of zero indicates the function was successful.

Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)

Name

Integer Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)

Description

Get the condition of the nth triangle of the tin.

If the value of the flag Inside is

0 not valid triangle.
1 not valid triangle.
2 the triangle is a non-null triangle.

A function return value of zero indicates the flag was successfully returned.

Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer
&p3,Integer &n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real
&x2,Real &y2,Real &z2,Real &x3,Real &y3,Real &z3)

Name

Integer Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer &p3,Integer
&n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real
&y3,Real &z3)

Description

Get the three points and their (x,y,z) data and three neighbour triangles of nth triangle of the tin.

The first point is returned in Integer p1, the (x, y, z) value is returned in x1,y1,z1.

The second point is returned in Integer p2, the (x, y, z) value is returned in x2,y2,z2.

The third point is returned in Integer p3, the x, y, z values are returned in x3,y3,z3.

The first triangle neighbour is returned in Integer n1.

The second triangle neighbour is returned in Integer n2.

The third triangle neighbour is returned in Integer n3.

A function return value of zero indicates the data was successfully returned.

Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)

Name

Integer Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)

Description

Get the triangle of the Tin tin that contains the given coordinate (x,y).

The triangle number is returned in Integer triangle.

A function return value of zero indicates the triangle was successfully returned.
Page 221Tins

12d Model Programming Manual
Draw_triangle(Tin tin,Integer tri,Integer c)

Name

 Integer Draw_triangle(Tin tin,Integer tri,Integer c)

Description

Draw the triangle tri with colour c inside the Tin tin.

A function return value of zero indicates the triangle was successfully drawn.

Draw_triangles_about_point(Tin tin,Integer pt,Integer c)

Name

Integer Draw_triangles_about_point(Tin tin,Integer pt,Integer c)

Description

Draw the triangles about a point pt with colour c inside Tin tin.

A function return value of zero indicates the triangles were successfully drawn.

Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer
preserve,Integer bubbles,Tin &tin)

Name

 Integer Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer preserve,Integer bubbles,Tin
&tin)

Description

Triangulate the data from a list of models Dynamic_Text list.

The tin name is given as Text tin_name, the tin colour is given as Integer colour, the preserve
string option is given by Integer preserve, and the remove bubbles option is given by Integer
bubbles, 1 is on, 0 is off.

A function return value of zero indicates the Tin tin was successfully returned.

Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real
y4,Real z4,Real x5,Real y5,Real z5,Real x6,Real y6,Real z6, Integer &npts_out,Real
xarray_out[],Real yarray_out[],Real zarray_out[])

Name

 Integer Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real y4,Real z4,Real
x5,Real y5,Real z5,Real x6,Real y6,Real z6,Integer &npts_out,Real xarray_out[],Real yarray_out[],Real
zarray_out[])

Description

<no description>

Tin_models(Tin tin,Dynamic_Text &models)

Name

Integer Tin_models(Tin tin,Dynamic_Text &models)

Description

Get the model names models that contains Tin tin.
Page 222 Tins

Chapter 5 4DML Library Calls
Type of models must be Dynamic_Text.

A function return value of zero indicates the models were successfully returned.

Retriangulate(Tin tin)

Name

 Integer Retriangulate(Tin tin)

Description

Retriangulate the Tin tin.

A function return value of zero indicates the Tin tin was successfully returned.

Breakline(Tin tin,Integer p1,Integer p2)

Name

 Integer Breakline(Tin tin,Integer p1,Integer p2)

Description

Add breakline in Tin tin from point 1 p1 to point 2 p2.

A function return value of zero indicates the breakline was successfully added.

Flip_triangles(Tin tin,Integer t1,Integer t2)

Name

 Integer Flip_triangles(Tin tin,Integer t1,Integer t2)

Description

From the triangles t1 and t2 in Tin tin.

A function return value of zero indicates the triangles were successfully flipped.

Set_height(Tin tin,Integer pt,Real ht)

Name

 Integer Set_height(Tin tin,Integer pt,Real ht)

Description

Set the height Real ht for the point pt on the Tin tin.

A function return value of zero indicates the height was successfully set.

Set_supertin(Tin_Box box,Integer mode)

Name

Integer Set_supertin(Tin_Box box,Integer mode)

Description

Null Triangles
Page 223Tins

12d Model Programming Manual
Null(Tin tin)

Name

Integer Null(Tin tin)

Description

Set the Tin handle tin to null. This does not affect the 12d Model tin that the handle pointed to.

A function return value of zero indicates tin was successfully nulled.

Null_triangles(Tin tin,Element poly,Integer mode)

Name

Integer Null_triangles(Tin tin,Element poly,Integer mode)

Description

Set any triangle whose centroid is inside or outside a given polygon to null.

tin is the tin to null and poly is the polygon which restricts the nulling.

If mode is

0 the inside of the polygon is nulled.

1 the outside is nulled.

A function return value of zero indicates there were no errors in the nulling calculations.

Reset_null_triangles(Tin tin,Element poly,Integer mode)

Name

Integer Reset_null_triangles(Tin tin,Element poly,Integer mode)

Description

Set any null triangle whose centroid is inside or outside a given polygon to be a valid triangle.

tin is the tin to reset and poly is the polygon which determines which triangles are to be reset

If mode is

0 the inside of the polygon is reset.

1 the outside is reset.

A function return value of zero indicates there were no errors in the reset calculations.

Reset_null_triangles(Tin tin)

Name

Integer Reset_null_triangles(Tin tin)

Description

Set all the triangles of the tin tin to be valid triangles.

A function return value of zero indicates there were no errors in the reset calculations.

Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)

Name

 Integer Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)
Page 224 Tins

Chapter 5 4DML Library Calls
Description

Refer to reference manual Page 444 “Null by Angle and Length”.

 A function return value of zero indicates the triangle was nulled successfully.
Page 225Tins

12d Model Programming Manual
Colour Triangles

Get_colour(Tin tin,Integer &colour)

Name

Integer Get_colour(Tin tin,Integer &colour)

Description

Get the colour of the Tin tin.

The colour (as a number) is returned as the Integer colour.

A function return value of zero indicates the colour was returned successfully.

Note

There are 4DML functions to convert the colour number to a colour name and vice-

versa.

Set_colour(Tin tin,Integer colour)

Name

Integer Set_colour(Tin tin,Integer colour)

Description

Set the colour of the Tin tin. The colour is given by the Integer colour.

A function return value of zero indicates that the colour was successfully set.

Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)

Name

Integer Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)

Description

Get the colour of the nth triangle of the tin.

The colour value is returned in Integer colour.

A function return value of zero indicates the colour were successfully returned.

Colour_triangles(Tin tin,Integer col_num,Element poly,Integer mode)

Name

Integer Colour_triangles(Tin tin,Integer colour,Element poly,Integer mode)

Description

Colour all the triangles in the Tin tin whose centroids are inside or outside a given polygon to a
specified colour.

The triangulation is tin, the polygon poly and the colour number col_num.

The value of mode determines whether the triangles whose centroids are inside or outside the
polygon are coloured.

If mode equals 0, the triangles inside the polygon are coloured.

If mode equals 1, the triangles outside the polygon are coloured.

A function return value of zero indicates there were no errors in the colour calculations.
Page 226 Tins

Chapter 5 4DML Library Calls
Reset_colour_triangles(Tin tin,Element poly,Integer mode)

Name

Integer Reset_colour_triangles(Tin tin,Element poly,Integer mode)

Description

Set any triangle in the Tin tin whose centroid is inside or outside a given polygon back to the
base tin colour.

The value of mode determines whether the triangles whose centroids are inside or outside the
polygon are set back to the base colour.

If mode equals 0, the triangles inside the polygon are set

If mode equals 1, the triangles outside the polygon are set

A function return value of zero indicates there were no errors in the colour reset calculations.

Reset_colour_triangles(Tin tin)

Name

Integer Reset_colour_triangles(Tin tin)

Description

Set all the triangles in the Tin tin back to the base tin colour.

A function return value of zero indicates success.
Page 227Tins

12d Model Programming Manual
Elements
The variable type Element is used to refer to the standard 12d Model strings and tin entities. That
is, Elements are used as handles to data that can be stored in 12d Model models.

Elements act as handles on the data so that the data can be easily referred to and manipulated
within a macro.

See Types of Elements
See Parts of 12d Elements
See Element Header
See Element Body
See 2d Strings
See 3d Strings
See 4d Strings
See Interface String
See Alignment Strings
See Arc Strings
See Circle Strings
See Text Strings
See Pipeline Strings
See Polyline Strings
See Drainage Strings
See Pipe Strings
See Face Strings
See Plot Frames
See Feature String
See Super String Element

Types of Elements
The different types of Elements are

Element Type Descriptions

Super for a super string - a general string with (x,y,z,radius,text,attributes) at each point

Super_Alignment for a Super Alignment string - a string with separate horizontal and vertical
geometry

Arc for an Arc string - a string of an arc in plan and with a linearly varying z value.
Note that

this is a helix in three dimensional space

Circle for a Circle string - a string of a circle in plan with a constant z value. Note that
this is a

circle in a plane parallel to the (x,y) plane

Feature a circle with a z-value at the centre but only null values on the circumference.

Drainage string for drainage and sewer elements

Interface string with (x,y,z,cut-fill flag) at each point

Text string with text at a point

Tin triangulated irregular network - a triangulation

SuperTin a SuperTin of tins

Plot Frame for a plot frame - an element used for production of plan plots

Pipeline a string with separate horizontal and vertical geometry defined by Intersection
Points

only, and one diameter for the entire string.
Page 228 Elements

Chapter 5 4DML Library Calls
2d for a 2d string - a string with (x,y) at each pt but constant z value.
An old string type replaced by super strings.

3d for a 3d string - a string with (x,y,z) at each point
An old string type replaced by super strings.

4d for a 4d string - a string with (x,y,z,text) at each point
An old string type replaced by super strings.

Pipe for a pipe string - a string with (x,y,z) at each point and a diameter
An old string type replaced by super strings.

Polyline for a polyline string - a string with (x,y,z,radius) at each point
An old string type replaced by super strings.

Alignment for an Alignment string - a string with separate horizontal and vertical geometry
 defined by Intersection Points only.
An old string type replaced by a Super Alignment string.

Note

The Element of type tin is provided because tins (triangulations) can be part of a model. Tins are
normally created using the Triangulation functions and there are special Tin functions for
modifying tin information.

Parts of 12d Elements
All 12d Elements consists of two parts -

(a) header information which exists for all Elements. The header information includes the
Element type, name, colour, style, number of points, start chainage, model and extents.

(b) element-type specific information (the body of the Element) such as the z value for an
Element of type 2d.

The functions for manipulating the header information are given first, followed by the specific
functions for each type of element.

Element Header
When an Element is created, its type is given by the Element creation function.

All new Elements are given the default header information:

id unique id for the Element

model none

colour magenta

name none

chainage 0

style 1

For all Element types, inquiries and modifications to the Element header information can be
made by the following 4DML functions.

Element_exists(Element elt)

Name

Integer Element_exists(Element elt)

Description
Page 229Elements

12d Model Programming Manual
Checks the validity of an Element elt. That is, it checks that elt has not been set to null.

A non-zero function return value indicates elt is not null.

A zero function return value indicates that elt is null.

Get_id(Element elt,Integer &id)

Name

Integer Get_id(Element elt,Integer &id)

Description

Get the unique id of the Element elt and return it in id.

If elt is null or an error occurs, id is set to zero.

A function return value of zero indicates the Element id was successfully returned.

Get_id(Element elt,Uid &id)

Name

Integer Get_id(Element elt,Uid &id)

Description

Get the unique Uid of the Element elt and return it in id.

If elt is null or an error occurs, id is set to zero.

A function return value of zero indicates the Element Uid was successfully returned.

Get_points(Element elt,Integer &numpts)

Name

Integer Get_points(Element elt,Integer &numpts)

Description

Get the number of points in the Element elt.

The number of points is returned as the Integer numpts.

For Elements of type Alignment, Arc and Circle, Get_points gives the number of points when the
Element is approximated using the 12d Model cord-to-arc tolerance.

A function return value of zero indicates the number of points was successfully returned.

Get_colour(Element elt,Integer &colour)

Name

Integer Get_colour(Element elt,Integer &colour)

Description

Get the colour of the Element elt.

The colour (as a number) is returned as the Integer colour.

A function return value of zero indicates the Element colour was successfully returned.

Note

There are 4DML functions to convert the colour number to a colour name and vice-versa.
Page 230 Elements

Chapter 5 4DML Library Calls
Get_breakline(Element elt,Integer &break_type)

Name

Integer Get_breakline(Element elt,Integer &break_type)

Description

Gets the breakline type of the Element elt. The breakline type is used for triangulation purposes
and is returned as the Integer break_type.

The break_type is

0 if elt is used as a point string

1 breakline string

A function return value of zero indicates the breakline type was returned successfully.

Get_type(Element elt,Integer &elt_type)

Name

Integer Get_type(Element elt,Integer &elt_type)

Description

Not yet implemented.

Get the Element type of the Element elt.

The Element type is returned as the Integer elt_type.

A function return value of zero indicates the type was returned successfully.

Get_type(Element elt,Text &elt_type)

Name

Integer Get_type(Element elt,Text &elt_type)

Description

Get the Element type of the Element elt.

The Element type is returned by the Text elt_type.

For the types of elements, go to Types of Elements .

A function return value of zero indicates the type was returned successfully.

Get_name(Element elt,Text &elt_name)

Name

Integer Get_name(Element elt,Text &elt_name)

Description

Get the name of the Element elt.

The name is returned by the Text elt_name.

A function return value of zero indicates the name was returned successfully.

If elt is null, the function return value is non-zero.

Get_style(Element elt,Text &elt_style)

Name
Page 231Elements

12d Model Programming Manual
Integer Get_style(Element elt,Text &elt_style)

Description

Get the line style of the Element elt.

The name of the line style is returned by the Text elt_style.

The style is not used for Elements of type Tin or Text.

A function return value of zero indicates the style was returned successfully.

Get_chainage(Element elt,Real &start_chain)

Name

Integer Get_chainage(Element elt,Real &start_chain)

Description

Get the start chainage of the Element elt.

The start chainage is returned by the Real start_chain.

A function return value of zero indicates the chainage was returned successfully.

Get_end_chainage(Element elt,Real &chainage)

Name

Integer Get_end_chainage(Element elt,Real &chainage)

Description

Get the end chainage of the Element elt.

The end chainage is returned by the Real chainage.

A function return value of zero indicates the chainage was returned successfully.

Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Name

Integer Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Description

Get the (x,y,z) data for the ith point of the string Element elt.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

A function return value of zero indicates the data was successfully returned.

Get_time_created(Element elt,Integer &time)

Name

Integer Get_time_created(Element elt,Integer &time)

Description

Get the time of creation of the Element elt.

The time value is returned in Integer time (seconds since January 1 1970).

A function return value of zero indicates the data was returned successfully.
Page 232 Elements

Chapter 5 4DML Library Calls
Get_time_updated(Element elt,Integer &time)

Name

Integer Get_time_updated(Element elt,Integer &time)

Description

Get the time of the last update of the Element elt.

The time value is returned in Integer time (seconds since January 1 1970).

A function return value of zero indicates the data was returned successfully.

Get_model(Element elt,Model &model)

Name

Integer Get_model(Element elt,Model &model)

Description

Get the model handle of the model containing the Element elt. The model is returned by the
Model model.

A function return value of zero indicates the handle was returned successfully.

Get_tin(Element elt)

Name

Tin Get_tin(Element elt)

Description

If the Element elt is of type Tin, a Tin handle for the tin will be returned.

If the Element elt is of type Tin and the tin exists, a Tin handle to the tin is returned as the
function return value.

If the tin does not exist or the Element is not of type Tin, a null Tin is returned as the function
return value.

Set_colour(Element elt,Integer colour)

Name

Integer Set_colour(Element elt,Integer colour)

Description

Set the colour of the Element elt. The colour is given by the Integer colour.

A function return value of zero indicates that the colour was successfully set.

Notes

(a) For an Interface string, the colour is only used when the string is converted to a different
string type.

(b) There are supplied functions to convert the colour number to a colour name and vice-versa.

Set_breakline(Element elt,Integer break_type)

Name
Page 233Elements

12d Model Programming Manual
Integer Set_breakline(Element elt,Integer break_type)

Description

Sets the breakline type for triangulation purposes for the Element elt.

The breakline type is given as the Integer break_type.

The break_type is

0 if elt is to be used as a point string

1 if elt is to be used as a breakline string

A function return value of zero indicates the breakline type was successfully set.

LJG? what about arcs, circles

Set_name(Element elt,Text elt_name)

Name

Integer Set_name(Element elt,Text elt_name)

Description

Set the name of the Element elt to the Text elt_name.

A function return value of zero indicates the Element name was successfully set.

Note

This will not set the name of an Element of type tin.

Set_style(Element elt,Text elt_style)

Name

Integer Set_style(Element elt,Text elt_style)

Description

Set the line style of the Element elt.

The name of the line style is given by the Text elt_style.

A function return value of zero indicates the style was successfully set.

Set_chainage(Element elt,Real start_chain)

Name

Integer Set_chainage(Element elt,Real start_chain)

Description

Set the start chainage of the Element elt.

The start chainage is given by the Real start_chain.

A function return value of zero indicates the start chainage was successfully set.

Set_time_updated(Element elt,Integer time)

Name

Integer Set_time_updated(Element elt,Integer time)

Description
Page 234 Elements

Chapter 5 4DML Library Calls
Set the time of the last update of the Element elt.

The time value is defined in Integer time.

A function return value of zero indicates the time was updated successfully.

Set_model(Element elt,Model model)

Name

Integer Set_model(Element elt,Model model)

Description

Sets the 12d Model model of the Element elt to be Model model.

If elt is already in a model, then it is moved to the Model model.

If elt is not in a model, then elt is added to the Model model.

A function return value of zero indicates the model was successfully set.

Set_model(Dynamic_Element de,Model model)

Name

Integer Set_model(Dynamic_Element de,Model model)

Description

Sets the Model of all the Elements in the Dynamic_Element de to model.

For each Element elt in the Dynamic_Element, de if elt is already in a model, then it is moved to
the Model model. If elt is not in a model, elt is added to the Model model.

A function return value of zero indicates the models were successfully set.

Integer Null(Element elt)

Name

Integer Null(Element elt)

Description

Set the Element elt to null.

A function return value of zero indicates the Element elt was successfully set to null.

Note

The database item pointed to by the Element elt is not affected in any way.

Get_extent_x(Element elt,Real &xmin,Real &xmax)

Name

Integer Get_extent_x(Element elt,Real &xmin,Real &xmax)

Description

Gets the x-extents of the Element elt.

The minimum x extent is returned by the Real xmin.

The maximum x extent is returned by the Real xmax.

A function return value of zero indicates the x extents were successfully returned.
Page 235Elements

12d Model Programming Manual
Get_extent_y(Element elt,Real &ymin,Real &ymax)

Name

Integer Get_extent_y(Element elt,Real &ymin,Real &ymax)

Description

Gets the y-extents of the Element elt.

The minimum y extent is returned by the Real ymin.

The maximum y extent is returned by the Real ymax.

A function return value of zero indicates the y extents were successfully returned.

Get_extent_z(Element elt,Real &zmin,Real &zmax)

Name

Integer Get_extent_z(Element elt,Real &zmin,Real &zmax)

Description

Gets the z-extents of the Element elt.

The minimum z extent is returned by the Real zmin.

The maximum z extent is returned by the Real zmax.

A function return value of zero indicates the z extents were successfully returned.

Calc_extent(Element elt)

Name

Integer Calc_extent(Element elt)

Description

Calculate the extents of the Element elt.

This is necessary after an Element's body data has been modified.

A function return value of zero indicates the extent calculation was successful.

Element_duplicate(Element elt,Element &dup_elt)

Name

Integer Element_duplicate(Element elt,Element &dup_elt)

Description

Create a duplicate of the Element elt and return it as the Element dup_elt.

A function return value of zero indicates the duplication was successful.

Element_delete(Element elt)

Name

Integer Element_delete(Element elt)

Description

Delete from the 12d Model database the item that the Element elt points to. The Element elt is
then set to null.

A function return value of zero indicates the data base item was deleted successfully.
Page 236 Elements

Chapter 5 4DML Library Calls
Element Attributes

Get_attributes(Element elt,Attributes &att)

Name

Integer Get_attributes(Element elt,Attributes &att)

Description

For the Element elt, return the Attributes for the Element as att.

If the Element has no attribute then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Set_attributes(Element elt,Attributes att)

Name

Integer Set_attributes(Element elt,Attributes att)

Description

For the Element elt, set the Attributes for the Element to att.

A function return value of zero indicates the attribute is successfully set.

Get_attribute(Element elt,Text att_name,Uid &uid)

Name

Integer Get_attribute(Element elt,Text att_name,Uid &uid)

Description

From the Element elt, get the attribute called att_name from elt and return the attribute value in
uid. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - this function is more efficient than getting the Attributes from the Element and then getting
the data from that Attributes.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Element elt,Text att_name,Attributes &att)

Name

Integer Get_attribute(Element elt,Text att_name,Attributes &att)

Description

From the Element elt, get the attribute called att_name from elt and return the attribute value in
att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - this function is more efficient than getting the Attributes from the Element and then getting
the data from that Attributes.
Page 237Elements

12d Model Programming Manual
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_attribute(Element elt,Integer att_no,Uid &uid)

Name

Integer Get_attribute(Element elt,Integer att_no,Uid &uid)

Description

From the Element elt, get the attribute with number att_no and return the attribute value in uid.
The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_attribute(Element elt,Integer att_no,Attributes &att)

Name

Integer Get_attribute(Element elt,Integer att_no,Attributes &att)

Description

From the Element elt, get the attribute with number att_no and return the attribute value in att.
The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_attribute(Element elt,Text att_name,Uid uid)

Name

Integer Set_attribute(Element elt,Text att_name,Uid uid)

Description

For the Element elt,
 if the attribute called att_name does not exist in the element then create it as type Uid and give
it the value uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Element elt,Text att_name,Attributes att)

Name

Integer Set_attribute(Element elt,Text att_name,Attributes att)

Description

For the Element elt,
 if the attribute called att_name does not exist in the element then create it as type Attributes
Page 238 Elements

Chapter 5 4DML Library Calls
and give it the value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_attribute(Element elt,Integer att_no,Uid uid)

Name

Integer Set_attribute(Element elt,Integer att_no,Uid uid)

Description

For the Element elt, if the attribute number att_no exists and it is of type Uid, then its value is set
to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_attribute(Element elt,Integer att_no,Attributes att)

Name

Integer Set_attribute(Element elt,Integer att_no,Attributes att)

Description

For the Element elt, if the attribute number att_no exists and it is of type Attributes, then its value
is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Attribute_exists(Element elt,Text att_name)

Name

Integer Attribute_exists(Element elt,Text att_name)

Description

Checks to see if a user attribute with the name att_name exists in the Element elt.

A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values.

Attribute_exists(Element elt,Text att_name,Integer &att_no)
Page 239Elements

12d Model Programming Manual
Name

Integer Attribute_exists(Element elt,Text att_name,Integer &att_no)

Description

Checks to see if a user attribute with the name att_name exists in the Element elt.

If the attribute exists, its position is returned in Integer att_no.

This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Attribute_delete(Element elt,Text att_name)

Name

Integer Attribute_delete(Element elt,Text att_name)

Description

Delete the user attribute with the name att_name for Element elt.

A function return value of zero indicates the attribute was deleted.

Attribute_delete(Element elt,Integer att_no)

Name

Integer Attribute_delete(Element elt,Integer att_no)

Description

Delete the user attribute at the position att_no for Element elt.

A function return value of zero indicates the attribute was deleted.

Attribute_delete_all(Element elt)

Name

Integer Attribute_delete_all(Element elt)

Description

Delete all the user attributes for Element elt.

A function return value of zero indicates all the attributes were deleted.

Get_number_of_attributes(Element elt,Integer &no_atts)

Name

Integer Get_number_of_attributes(Element elt,Integer &no_atts)

Description

Get the total number of user attributes for Element elt.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the attribute was successfully returned.
Page 240 Elements

Chapter 5 4DML Library Calls
Get_attribute(Element elt,Text att_name,Text &att)

Name

Integer Get_attribute(Element elt,Text att_name,Text &att)

Description

Get the data for the user attribute with the name att_name for Element elt.

The user attribute must be of type Text and is returned in Text att.

A function return value of zero indicates the attribute was successfully returned.

Get_attribute(Element elt,Text att_name,Integer &att)

Name

Integer Get_attribute(Element elt,Text att_name,Integer &att)

Description

Get the data for the user attribute with the name att_name for Element elt.

The user attribute must be of type Integer and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_attribute(Element elt,Text att_name,Real &att)

Name

Integer Get_attribute(Element elt,Text att_name,Real &att)

Description

Get the data for the user attribute with the name att_name for Element elt.

The user attribute must be of type Real and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_attribute(Element elt,Integer att_no,Text &att)

Name

Integer Get_attribute(Element elt,Integer att_no,Text &att)

Description

Get the data for the user attribute at the position att_no for Element elt.

The user attribute must be of type Text and is returned in att.

A function return value of zero indicates the attribute was successfully returned.

Get_attribute(Element elt,Integer att_no,Integer &att)

Name

Integer Get_attribute(Element elt,Integer att_no,Integer &att)

Description

Get the data for the user attribute at the position att_no for Element elt.

The user attribute must be of type Integer and is returned in Integer att.

A function return value of zero indicates the attribute was successfully returned.
Page 241Elements

12d Model Programming Manual
Get_attribute(Element elt,Integer att_no,Real &att)

Name

Integer Get_attribute(Element elt,Integer att_no,Real &att)

Description

Get the data for the user attribute at the position att_no for Element elt.

The user attribute must be of type Real and is returned in Real att.

A function return value of zero indicates the attribute was successfully returned.

Get_attribute_name(Element elt,Integer att_no,Text &name)

Name

Integer Get_attribute_name(Element elt,Integer att_no,Text &name)

Description

Get the name for the user attribute at the position att_no for Element elt.

The user attribute name found is returned in Text name.

A function return value of zero indicates the attribute name was successfully returned.

Get_attribute_type(Element elt,Text att_name,Integer &att_type)

Name

Integer Get_attribute_type(Element elt,Text att_name,Integer &att_type)

Description

Get the type of the user attribute with the name att_name from the Element elt.

The user attribute type is returned in Integer att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_attribute_type(Element elt,Integer att_no,Integer &att_type)

Name

Integer Get_attribute_type(Element elt,Integer att_no,Integer &att_type)

Description

Get the type of the user attribute at position att_no for the Element elt.

The user attribute type is returned in att_type.

For the list of attribute types, go to Data Type Attribute Type .

A function return value of zero indicates the attribute type was successfully returned.

Get_attribute_length(Element elt,Text att_name,Integer &att_len)

Name

Integer Get_attribute_length(Element elt,Text att_name,Integer &att_len)

Description
Page 242 Elements

Chapter 5 4DML Library Calls
Get the length of the user attribute with the name att_name for Element elt.

The user attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.

Get_attribute_length(Element elt,Integer att_no,Integer &att_len)

Name

Integer Get_attribute_length(Element elt,Integer att_no,Integer &att_len)

Description

Get the length of the user attribute at position att_no for Element elt.

The user attribute length is returned in att_len.

A function return value of zero indicates the attribute type was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.

Set_attribute(Element elt,Text att_name,Text att)

Name

Integer Set_attribute(Element elt,Text att_name,Text att)

Description

For the Element elt, set the user attribute with name att_name to the Text att.

The user attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.

Set_attribute(Element elt,Text att_name,Integer att)

Name

Integer Set_attribute(Element elt,Text att_name,Integer att)

Description

For the Element elt, set the user attribute with name att_name to the Integer att.

The user attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Set_attribute(Element elt,Text att_name,Real att)

Name

Integer Set_attribute(Element elt,Text att_name,Real att)

Description

For the Element elt, set the user attribute with name att_name to the Real att.

The user attribute must be of type Real

A function return value of zero indicates the attribute was successfully set.

Set_attribute(Element elt,Integer att_no,Text att)
Page 243Elements

12d Model Programming Manual
Name

Integer Set_attribute(Element elt,Integer att_no,Text att)

Description

For the Element elt, set the user attribute at position att_no to the Text att.

The user attribute must be of type Text

A function return value of zero indicates the attribute was successfully set.

Set_attribute(Element elt,Integer att_no,Integer att)

Name

Integer Set_attribute(Element elt,Integer att_no,Integer att)

Description

For the Element elt, set the user attribute at position att_no to the Integer att.

The user attribute must be of type Integer

A function return value of zero indicates the attribute was successfully set.

Set_attribute(Element elt,Integer att_no,Real att)

Name

Integer Set_attribute(Element elt,Integer att_no,Real att)

Description

For the Element elt, set the user attribute at position att_no to the Real att.

The user attribute must be of type Real

A function return value of zero indicates the attribute was successfully set.

Attribute_dump(Element elt)

Name

Integer Attribute_dump(Element elt)

Description

Write out information about the Element attributes to the Output Window.

A function return value of zero indicates the function was successful.

Attribute_debug(Element elt)

Name

Integer Attribute_debug(Element elt)

Description

Write out even more information about the Element attributes to the Output Window.

A function return value of zero indicates the function was successful.
Page 244 Elements

Chapter 5 4DML Library Calls
Element Body
Strings of type 2d, 3d, 4d and Interface consist of data values given at one or more points in the
string.

For the above types, the associated Element body is created by giving fixed arrays containing
the required information at each point.

Strings of type Alignment, Arc, Circle and Text do not have simple arrays to define them.

2d Strings
A 2d string consists of (x,y) values at each point of the string and a constant height for the entire
string.

The following functions are used to create new 2d strings and make inquiries and modifications
to existing 2d strings.

Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)

Name

Element Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)

Description

Create an Element of type 2d.

The Element has num_pts points with (x,y) values given in the Real arrays x[] and y[].

The height of the string is given by the Real zvalue.

The function return value gives the actual Element created.

If the 2d string could not be created, then the returned Element will be null.

Create_2d(Integer num_pts)

Name

Element Create_2d(Integer num_pts)

Description

Create an Element of type 2d with room for num_pts (x,y) points.

The actual x and y values and the height of the 2d string are set after the string is created.

If the 2d string could not be created, then the returned Element will be null.

Create_2d(Integer num_pts,Element seed)

Name

Element Create_2d(Integer num_pts,Element seed)

Description

Create an Element of type 2d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.

The actual x and y values and the height of the 2d string are set after the string is created.

If the 2d string could not be created, then the returned Element will be null.

Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer
&num_pts)
Page 245Elements

12d Model Programming Manual
Name

Integer Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer &num_pts)

Description

Get the string height and the (x,y) data for the first max_pts points of the 2d Element elt.

The x and y values at each string point are returned in the Real arrays x[] and y[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

The height of the 2d string is returned in the Real zvalue.

If the Element elt is not of type 2d, then num_pts is returned as zero and the function return value
is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer
&num_pts,Integer start_pt)

Name

Integer Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer
&num_pts,Integer start_pt)

Description

For a 2d Element elt, get the string height and the (x,y) data for max_pts points starting at point
number start_pt.

This routine allows the user to return the data from a 2d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y) values at each string point are returned in the Real arrays x[] and y[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

The height of the 2d string is returned in the Real zvalue.

If the Element elt is not of type 2d, then num_pts is set to zero and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Get_2d_data(Element elt,Integer i,Real &x,Real &y)

Name

Integer Get_2d_data(Element elt,Integer i,Real &x,Real &y)
Page 246 Elements

Chapter 5 4DML Library Calls
Description

Get the (x,y) data for the ith point of the string.

The x value is returned in Real x.

The y value is returned in Real y.

A function return value of zero indicates the data was successfully returned.

Get_2d_data(Element elt,Real &z)

Name

Integer Get_2d_data(Element elt,Real &z)

Description

Get the height of the 2d string given by Element elt.

The height of the string is returned in Real z.

A function return value of zero indicates the height was successfully returned.

Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)

Name

Integer Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)

Description

Set the (x,y) data for the first num_pts points of the 2d Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y) values at each string point are given in the Real arrays x[] and y[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type 2d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new 2d Elements - it only modifies existing 2d Elements.

Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)

Name

Integer Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)

Description

For the 2d Element elt, set the (x,y) data for num_pts points starting at point number start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y) values for the string points are given in the Real arrays x[] and y[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts
Page 247Elements

12d Model Programming Manual
If the Element elt is not of type 2d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new 2d Elements but only modify existing 2d Elements.

Set_2d_data(Element elt,Integer i,Real x,Real y)

Name

Integer Set_2d_data(Element elt,Integer i,Real x,Real y)

Description

Set the (x,y) data for the ith point of the string.

The x value is given in Real x.

The y value is given in Real y.

A function return value of zero indicates the data was successfully set.

Set_2d_data(Element elt,Real z)

Name

Integer Set_2d_data(Element elt,Real z)

Description

Modify the height of the 2d Element elt.

The new height is given in the Real z.

A function return value of zero indicates the height was successfully set.

3d Strings
A 3d string consists of (x,y,z) values at each point of the string.

The following functions are used to create new 3d strings and make inquiries and modifications
to existing 3d strings.

Create_3d(Line line)

Name

Element Create_3d(Line line)

Description

Create an Element of type 3d from the Line line.

The created Element will have two points with co-ordinates equal to the end points of the Line
line.

The function return value gives the actual Element created.

If the 3d string could not be created, then the returned Element will be null.

Create_3d(Real x[],Real y[],Real z[],Integer num_pts)
Page 248 Elements

Chapter 5 4DML Library Calls
Name

Element Create_3d(Real x[],Real y[],Real z[],Integer num_pts)

Description

Create an Element of type 3d.

The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].

The function return value gives the actual Element created.

If the 3d string could not be created, then the returned Element will be null.

Create_3d(Integer num_pts)

Name

Element Create_3d(Integer num_pts)

Description

Create an Element of type 3d with room for num_pts (x,y,z) points.

The actual x, y and z values of the 3d string are set after the string is created.

If the 3d string could not be created, then the returned Element will be null.

Create_3d(Integer num_pts,Element seed)

Name

Element Create_3d(Integer num_pts,Element seed)

Description

Create an Element of type 3d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.

The actual x, y and z values of the 3d string are set after the string is created.

If the 3d string could not be created, then the returned Element will be null.

Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts)

Name

Integer Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description

Get the (x,y,z) data for the first max_pts points of the 3d Element elt.

The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type 3d, then num_pts is returned as zero and the function return value
is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.
Page 249Elements

12d Model Programming Manual
Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Name

Integer Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description

For a 3d Element elt, get the (x,y,z) data for max_pts points starting at point number start_pt.

This routine allows the user to return the data from a 3d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type 3d, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Name

Integer Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Description

Get the (x,y,z) data for the ith point of the string.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

A function return value of zero indicates the data was successfully returned.

Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Name

Integer Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description

Set the (x,y,z) data for the first num_pts points of the 3d Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z) values for each string point are given in the Real arrays x[], y[] and z[].

The number of points to be set is given by Integer num_pts
Page 250 Elements

Chapter 5 4DML Library Calls
If the Element elt is not of type 3d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new 3d Elements but only modify existing 3d Elements.

Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
start_pt)

Name

Integer Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description

For the 3d Element elt, set the (x,y,z) data for num_pts points, starting at point number start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y,z) values for the string points are given in the Real arrays x[], y[] and z[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type 3d, then nothing is modified and the function return value is set to
a non-

zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new 3d Elements but only modify existing 3d Elements.

Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)

Name

Integer Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)

Description

Set the (x,y,z) data for the ith point of the string.

The x value is given in Real x.

The y value is given in Real y.

The z value is given in Real z.

A function return value of zero indicates the data was successfully set.

4d Strings
A 4d string consists of (x,y,z,text) values at each point of the string.

All the texts in a 4d string have the same text parameters - text units, size, angle, justification,
offset and rise.
Page 251Elements

12d Model Programming Manual
The size and distances are specified in either world units or pixels and are set by a units_mode
where units_mode equals

0 for pixel units (the default)

1 for world units.

The justification point (default 1) can be one of nine positions defined in relation to the (x,y)
position of the point of the 4d string:

top

3 6 9
left 2 5 8 right

1 4 7

bottom

The angle (default 0) of the base line of the text is measured from the horizontal axis and is in
radians.

The offset distance is measured along the base line of the text (which will be at a given angle)
and the rise distance is measured perpendicular to the base line of the text. The defaults for the
offset and rise distances are zero.

The following functions are used to create new 4d strings and make inquiries and modifications
to existing 4d strings.

Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)

Name

Element Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)

Description

Create an Element of type 4d. The Element has num_pts points with (x,y,z,text) values given in
the Real arrays x[], y[], z[] and Text array t[].

The function return value gives the actual Element created.

If the 4d string could not be created, then the returned Element will be null.

Create_4d(Integer num_pts)

Name

Element Create_4d(Integer num_pts)

Description

Create an Element of type 4d with room for num_pts (x,y,z,text) points.

The actual x, y, z and text values of the 4d string are set after the string is created.

If the 4d string could not be created, then the returned Element will be null.

Create_4d(Integer num_pts,Element seed)

Name

Element Create_4d(Integer num_pts,Element seed)

Description

Create an Element of type 4d with room for num_pts (x,y) points, and set the colour, name, style
etc. of the new string to be the same as those from the Element seed.

The actual x, y, z and text values of the 4d string are set after the string is created.
Page 252 Elements

Chapter 5 4DML Library Calls
If the 4d string could not be created, then the returned Element will be null.

Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts)

Name

Integer Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts)

Description

Get the (x,y,z,text) data for the first max_pts points of the 4d Element elt.

The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Text
array t[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type 4d, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Name

Integer Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Description

For a 4d Element elt, get the (x,y,z,text) data for max_pts points starting at point number
start_pt.

This routine allows the user to return the data from a 4d string in user specified chunks. This is
necessary if the number of points in the string is greater than the size of the arrays available to
contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Text
array t[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type 4d, then num_pts is returned as zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)
Page 253Elements

12d Model Programming Manual
Name

Integer Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)

Description

Get the (x,y,z,text) data for the ith point of the string.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

The text value is returned in Text t.

A function return value of zero indicates the data was successfully returned.

Get_4d_units(Element elt,Integer &units_mode)

Name

Integer Get_4d_units(Element elt,Integer &units_mode)

Description

Get the units used for the text parameters of the 4d Element elt.

The mode is returned as Integer units_mode.

A function return value of zero indicates the data was successfully returned.

Get_4d_size(Element elt,Real &size)

Name

Integer Get_4d_size(Element elt,Real &size)

Description

Get the size of the characters of the 4d text of the Element elt.

The text size is returned as Real size.

A function return value of zero indicates the data was successfully returned.

Get_4d_justify(Element elt,Integer &justify)

Name

Integer Get_4d_justify(Element elt,Integer &justify)

Description

Get the justification used for the text parameters of the 4d Element elt.

The justification is returned as Integer justify.

A function return value of zero indicates the data was successfully returned.

Get_4d_angle(Element elt,Real &angle)

Name

Integer Get_4d_angle(Element elt,Real &angle)

Description

Get the angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d Element elt.
Page 254 Elements

Chapter 5 4DML Library Calls
The angle is returned as Real angle.

A function return value of zero indicates the data was successfully returned.

Get_4d_offset(Element elt,Real &offset)

Name

Integer Get_4d_offset(Element elt,Real &offset)

Description

Get the offset distance of the text to be used for each 4d point (x,y) for the 4d Element elt.

The offset is returned as Real offset.

A function return value of zero indicates the data was successfully returned.

Get_4d_rise(Element elt,Real &rise)

Name

Integer Get_4d_rise(Element elt,Real &rise)

Description

Get the rise distance of the text to be used for each 4d point (x,y) for the 4d Element elt.

The rise is returned as Real rise.

A function return value of zero indicates the data was successfully returned.

Get_4d_ttf_underline(Element elt,Integer &underline)

Name

Integer Get_4d_ttf_underline(Element elt,Integer &underline)

Description

For the Element elt of type 4d, get the underline state and return it in underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates underlined was successfully returned.

Get_4d_ttf_strikeout(Element elt,Integer &strikeout)

Name

Integer Get_4d_ttf_strikeout(Element elt,Integer &strikeout)

Description

For the Element elt of type 4d, get the strikeout state and return it in strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates strikeout was successfully returned.

Get_4d_ttf_italic(Element elt,Integer &italic)

Name
Page 255Elements

12d Model Programming Manual
Integer Get_4d_ttf_italic(Element elt,Integer &italic)

Description

For the Element elt of type 4d, get the italic state and return it in italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates italic was successfully returned.

Get_4d_ttf_weight(Element elt,Integer &weight)

Name

Integer Get_4d_ttf_weight(Element elt,Integer &weight)

Description

For the Element elt of type 4d, get the font weight and return it in weight.

Allowable Weights

The allowable numbers for weight are:

0 = FW_DONTCARE
100 = FW_THIN
200 = FW_EXTRALIGHT
300 = FW_LIGHT
400 = FW_NORMAL
500 = FW_MEDIUM
600 = FW_SEMIBOLD
700 = FW_BOLD
800 = FW_EXTRABOLD
900 = FW_HEAVY

Note that in the distributed file set_ups.h these are defined as:

#define FW_DONTCARE 0
#define FW_THIN 100
#define FW_EXTRALIGHT 200
#define FW_LIGHT 300
#define FW_NORMAL 400
#define FW_MEDIUM 500
#define FW_SEMIBOLD 600
#define FW_BOLD 700
#define FW_EXTRABOLD 800
#define FW_HEAVY 900
#define FW_ULTRALIGHT FW_EXTRALIGHT
#define FW_REGULAR FW_NORMAL
#define FW_DEMIBOLD FW_SEMIBOLD
#define FW_ULTRABOLD FW_EXTRABOLD
#define FW_BLACK FW_HEAVY

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates weight was successfully returned.

Get_4d_height(Element elt,Real &height)
Page 256 Elements

Chapter 5 4DML Library Calls
Name

Integer Get_4d_height(Element elt,Real &height)

Description

Get the height of the characters of the 4d text of the Element elt.

The text height is returned as Real height.

A function return value of zero indicates the data was successfully returned.

Get_4d_slant(Element elt,Real &slant)

Name

Integer Get_4d_slant(Element elt,Real &slant)

Description

Get the slant of the characters of the 4d text of the Element elt.

The text slant is returned as Real slant.

A function return value of zero indicates the data was successfully returned.

Get_4d_x_factor(Element elt,Real &xfact)

Name

Integer Get_4d_x_factor(Element elt,Real &xfact)

Description

Get the x factor of the characters of the 4d text of the Element elt.

The text x factor is returned as Real xfact.

A function return value of zero indicates the data was successfully returned.

Get_4d_style(Element elt,Text &style)

Name

Integer Get_4d_style(Element elt,Text &style)

Description

Get the style of the characters of the 4d text of the Element elt.

The text style is returned as Text style.

A function return value of zero indicates the data was successfully returned.

Get_4d_textstyle_data(Element elt,Textstyle_Data &d)

Name

Integer Get_4d_textstyle_data(Element elt,Textstyle_Data &d)

Description

For the Element elt of type 4d, get the Textstyle_Data for the string and return it as d.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates the Textstyle_Data was successfully returned.
Page 257Elements

12d Model Programming Manual
Set_4d_data(Element elt,Real x[],Real y[],Real z[], Text t[],Integer num_pts)

Name

Integer Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts)

Description

Set the (x,y,z,text) data for the first num_pts points of the 4d Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,text) values at each string point are given in the Real arrays x[], y[], z[] and Text array
t[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type 4d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new 4d Elements but only modify existing 4d Elements.

Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer
start_pt)

Name

Integer Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer start_pt)

Description

For the 4d Element elt, set the (x,y,z,text) data for num_pts points, starting at point number
start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y,z,text) values for the string points are given in the Real arrays x[], y[], z[] and Text array
t[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type 4d, then nothing is modified and the function return value is set to
a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new 4d Elements but only modify existing 4d Elements.

Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)

Name

Integer Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)
Page 258 Elements

Chapter 5 4DML Library Calls
Description

Set the (x,y,z,text) data for the ith point of the string.

The x value is given in Real x.

The y value is given in Real y.

The z value is given in Real z.

The text value is given in Text t.

A function return value of zero indicates the data was successfully set.

Set_4d_units(Element elt,Integer units_mode)

Name

Integer Set_4d_units(Element elt,Integer units_mode)

Description

Set the units used for the text parameters of the 4d Element elt.

The mode is given as Integer units_mode.

A function return value of zero indicates the data was successfully set.

Set_4d_size(Element elt,Real size)

Name

Integer Set_4d_size(Element elt,Real size)

Description

Set the size of the characters of the 4d text of the Element elt.

The text size is given as Real size.

A function return value of zero indicates the data was successfully set.

Set_4d_justify(Element elt,Integer justify)

Name

Integer Set_4d_justify(Element elt,Integer justify)

Description

Set the justification used for the text parameters of the 4d Element elt.

The justification is given as Integer justify.

A function return value of zero indicates the data was successfully set.

Set_4d_angle(Element elt,Real angle)

Name

Integer Set_4d_angle(Element elt,Real angle)

Description

Set the angle of rotation (in radians) about each 4d point (x,y) of the text of the 4d Element elt.

The angle is given as Real angle.

A function return value of zero indicates the data was successfully set.
Page 259Elements

12d Model Programming Manual
Set_4d_offset(Element elt,Real offset)

Name

Integer Set_4d_offset(Element elt,Real offset)

Description

Set the offset distance of the text to be used for each 4d point (x,y) for the 4d Element elt.

The offset is returned as Real offset.

A function return value of zero indicates the data was successfully returned.

Set_4d_rise(Element elt,Real rise)

Name

Integer Set_4d_rise(Element elt,Real rise)

Description

Set the rise distance of the text to be used for each 4d point (x,y) for the 4d Element elt.

The rise is given as Real rise.

A function return value of zero indicates the data was successfully set.

Set_4d_ttf_underline(Element elt,Integer underline)

Name

Integer Set_4d_ttf_underline(Element elt,Integer underline)

Description

For the Element elt of type 4d, set the underline state to underline.

If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates underlined was successfully set.

Set_4d_ttf_strikeout(Element elt,Integer strikeout)

Name

Integer Set_4d_ttf_strikeout(Element elt,Integer strikeout)

Description

For the Element elt of type 4d, set the strikeout state to strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates strikeout was successfully set.

Set_4d_ttf_italic(Element elt,Integer italic)

Name
Page 260 Elements

Chapter 5 4DML Library Calls
Integer Set_4d_ttf_italic(Element elt,Integer italic)

Description

For the Element elt of type 4d, set the italic state to italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates italic was successfully set.

Set_4d_ttf_weight(Element elt,Integer weight)

Name

Integer Set_4d_ttf_weight(Element elt,Integer weight)

Description

For the Element elt of type 4d, set the font weight to weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates weight was successfully set.

Set_4d_height(Element elt,Real height)

Name

Integer Set_4d_height(Element elt,Real height)

Description

Set the height of the characters of the 4d text of the Element elt.

The text height is given as Real height.

A function return value of zero indicates the data was successfully set.

Set_4d_slant(Element elt,Real slant)

Name

Integer Set_4d_slant(Element elt,Real slant)

Description

Set the slant of the characters of the 4d text of the Element elt.

The text slant is given as Real slant.

A function return value of zero indicates the data was successfully set.

Set_4d_x_factor(Element elt,Real xfact)

Name

Integer Set_4d_x_factor(Element elt,Real xfact)

Description

Set the x factor of the characters of the 4d text of the Element elt.

The text x factor is given as Real xfact.

A function return value of zero indicates the data was successfully set.
Page 261Elements

12d Model Programming Manual
Set_4d_style(Element elt,Text style)

Name

Integer Set_4d_style(Element elt,Text style)

Description

Set the style of the characters of the 4d text of the Element elt.

The text style is given as Text style.

A function return value of zero indicates the data was successfully set.

Set_4d_textstyle_data(Element elt,Textstyle_Data d)

Name

Integer Set_4d_textstyle_data(Element elt,Textstyle_Data d)

Description

For the Element elt of type 4d, set the Textstyle_Data to be d.

A non-zero function return value is returned if elt is not of type 4d.

A function return value of zero indicates the Textstyle_Data was successfully set.

Interface String
A Interface string consists of (x,y,z,flag) values at each point of the string where flag is the cut-fill
flag.

If the cut-fill flag is

-2 the surface was not reached

-1 the point was in cut

 0 the point was on the surface

 1 the point was in fill

The following functions are used to create new Interface strings and make inquiries and
modifications to existing Interface strings.

Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)

Name

Element Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)

Description

Create an Element of type Interface.

The Element has num_pts points with (x,y,z,flag) values given in the Real arrays x[], y[], z[] and
Integer array f[].

The function return value gives the actual Element created.

If the Interface string could not be created, then the returned Element will be null.

Create_interface(Integer num_pts)

Name
Page 262 Elements

Chapter 5 4DML Library Calls
Element Create_interface(Integer num_pts)

Description

Create an Element of type Interface with room for num_pts (x,y,z,flag) points.

The actual x, y, z and flag values of the Interface string are set after the string is created.

If the Interface string could not be created, then the returned Element will be null.

Create_interface(Integer num_pts,Element seed)

Name

Element Create_interface(Integer num_pts,Element seed)

Description

Create an Element of type Interface with room for num_pts (x,y,z,flag) points, and set the colour,
name, style etc. of the new string to be the same as those from the Element seed.

The actual x, y, z and flag values of the Interface string are set after the string is created.

If the Interface string could not be created, then the returned Element will be null.

Get_interface_data(Element elt,Real x[],Real y[],Real z[], Integer f[],Integer
max_pts,Integer &num_pts)

Name

Integer Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer
&num_pts)

Description

Get the (x,y,z,flag) data for the first max_pts points of the Interface Element elt.

The (x,y,z,flag) values at each string point are returned in the Real arrays x[], y[], z[] and Integer
array f[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Interface, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)

Name

Integer Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Description

For a Interface Element elt, get the (x,y,z,flag) data for max_pts points starting at the point
number start_pt.

This routine allows the user to return the data from a Interface string in user specified chunks.
This is necessary if the number of points in the string is greater than the size of the arrays
Page 263Elements

12d Model Programming Manual
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than point
one.

The (x,y,z,text) values at each string point are returned in the Real arrays x[], y[], z[] and Integer
array f[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Interface, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)

Name

Integer Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)

Description

Get the (x,y,z,flag) data for the ith point of the string.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

The flag value is returned in Integer f.

A function return value of zero indicates the data was successfully returned.

Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
num_pts)

Name

Integer Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts)

Description

Set the (x,y,z,flag) data for the first num_pts points of the Interface Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,flag) values at each string point are given in the Real arrays x[], y[], z[] and Integer
array f[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type Interface, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new Interface Elements but only modify existing Interface Elements.
Page 264 Elements

Chapter 5 4DML Library Calls
Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer
num_pts,Integer start_pt)

Name

Integer Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts,Integer
start_pt)

Description

For the Interface Element elt, set the (x,y,z,flag) data for num_pts points starting at point number
start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt

 rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y,z,flag) values for the string points are given in the Real arrays x[], y[], z[] and Integer
array f[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type Interface, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new Interface Elements but only modify existing Interface
Elements.

Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)

Name

Integer Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)

Description

Set the (x,y,z,flag) data for the ith point of the string.

The x value is given in Real x.

The y value is given in Real y.

The z value is given in Real z.

The flag value is given in Integer flag.

A function return value of zero indicates the data was successfully set.

Alignment Strings
An Alignment string holds both the horizontal and vertical information needed in defining entities
such as the centre line of a road.

Horizontal intersection points (hips), arcs and spirals are used to define the plan geometry.

Vertical intersection points (vips) and parabolic and circular curves are used to define the vertical
geometry.

The process to define an Alignment string is
Page 265Elements

12d Model Programming Manual
(a) create an Alignment Element

(b) add the horizontal geometry

(c) perform a Calc_alignment on the string

(d) add the vertical geometry

(e) perform a Calc_alignment

For an existing Alignment string, there are functions to get the positions of all critical points (such
as horizontal and vertical tangent points, spiral points, curve centres) for the string.

The functions used to create new Alignment strings and make inquiries and modifications to
existing Alignment strings now follow.

Element Create_align()

Name

Element Create_align()

Description

Create an Element of type Alignment.

The function return value gives the actual Element created.

If the Alignment string could not be created, then the returned Element will be null.

Create_align(Element seed)

Name

Element Create_align(Element seed)

Description

Create an Element of type Alignment, and set the colour, name, style etc. of the new string to be
the same as those from the Element seed.

If the alignment string could not be created, then the returned Element will be null.

Append_hip(Element elt,Real x,Real y)

Name

Integer Append_hip(Element elt,Real x,Real y)

Description

Append a horizontal intersection point (hip) with plan co-ordinates (x,y) to the Element elt

. The radius and spiral lengths are set to zero.

The order in which the hips are appended is taken as the order of the hips in the Alignment
string.

The hips must be appended in order of increasing chainage along the Alignment string.

Append_hip is used to place the first hip as well as the subsequent hips.

A function return value of zero indicates that the hip was successfully appended.

Append_hip(Element elt,Real x,Real y,Real rad)

Name

Integer Append_hip(Element elt,Real x,Real y,Real rad)
Page 266 Elements

Chapter 5 4DML Library Calls
Description

Append a horizontal intersection point (hip) with plan co-ordinates (x,y) and curve radius rad to
the Element elt. The spiral lengths are set to zero.

A zero curve radius indicates that no curve is present.

A function return value of zero indicates that the hip was successfully appended.

Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Name

Integer Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description

Append to the Element elt a horizontal intersection point (hip) with co-ordinates (x,y), curve
radius rad and left and right spirals of length left_spiral and right_spiral respectively.

A zero curve radius indicates that no curve is present.

A zero spiral length indicates that a spiral is not present.

A function return value of zero indicates that the hip was successfully appended.

Get_hip_points(Element elt,Integer &num_pts)

Name

Integer Get_hip_points(Element elt,Integer &num_pts)

Description

Get the number of hips, num_pts, in the Alignment Element elt.

A function return value of zero indicates the number of hip points was successfully returned.

Get_hip_data(Element elt,Integer i,Real &x,Real &y)

Name

Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y)

Description

Get the plan co-ordinates (x,y) of the ith hip point of the Alignment string elt.

A function return value of zero indicates the hip data was successfully returned.

Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)

Name

Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)

Description

Get the plan co-ordinates (x,y) and the curve radius, rad, for the ith hip point of the Alignment
string elt.

If the radius is:

positive, it is a right hand curve
negative, it is a left hand curve.
zero, there is no curve.

A function return value of zero indicates the hip data was successfully returned.
Page 267Elements

12d Model Programming Manual
Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real
&left_spiral,Real &right_spiral)

Name

Integer Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real &left_spiral,Real
&right_spiral)

Description

Get the plan co-ordinates (x,y), the curve radius rad, and the left and right spiral lengths,
left_spiral and right_spiral for the ith hip point of the Alignment Element elt.

If the radius is:

positive, it is a right hand curve
negative, it is a left hand curve.
zero, there is no curve.

A spiral length of zero indicates that there is no spiral.

A function return value of zero indicates the hip data was successfully returned.

Set_hip_data(Element elt,Integer i,Real x,Real y)

Name

Integer Set_hip_data(Element elt,Integer i,Real x,Real y)

Description

Modify the plan co-ordinates (x,y) of the ith hip point of the Alignment string elt. The existing
curve radius and spiral lengths are not altered.

The ith hip point must already exist.

A function return value of zero indicates the hip was successfully set.

Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)

Name

Integer Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)

Description

Modify the plan co-ordinates (x,y) and the curve radius, rad, of the ith hip point of the Alignment
string elt. The spiral lengths are not altered.

The ith hip point must already exist.

A function return value of zero indicates the hip was successfully set.

Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real
right_spiral)

Name

Integer Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description

Modify the plan co-ordinates (x,y), the curve radius rad, and the left and right spiral lengths,
left_spiral and right_spiral for the ith hip point of the Alignment string elt.

The ith hip point must already exist.
Page 268 Elements

Chapter 5 4DML Library Calls
A function return value of zero indicates the hip was successfully set.

Insert_hip(Element elt,Integer i,Real x,Real y)

Name

Integer Insert_hip(Element elt,Integer i,Real x,Real y)

Description

Insert a new hip with plan co-ordinates (x,y) before the existing ith hip point.

The curve radius and spiral lengths are set to zero.

The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.

If i is greater than number of hips, then the new hip is appended to the string.

If i is less than one, then the new hip is prepended to the string.

A function return value of zero indicates the hip was inserted successfully.

Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)

Name

Integer Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)

Description

Insert a new hip with plan co-ordinates (x,y) and curve radius rad before the existing ith hip
point.

The spiral lengths are set to zero.

The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.

If i is greater than number of hips, then the new hip is appended to the string.

If i is less than one, then the new hip is prepended to the string.

A function return value of zero indicates the hip was inserted successfully.

Insert_hip(Element elt,Integer i, Real x,Real y,Real rad,Real left_spiral,Real
right_spiral)

Name

Integer Insert_hip(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)

Description

Insert a new hip with plan co-ordinates (x,y), curve radius rad and left and right spirals of length
left_spiral and right_spiral respectively, before the existing ith hip point.

The inserted hip becomes the ith hip and the position of all subsequent hip's increases by one.

If i is greater than number of hips, then the new hip is appended to the string.

If i is less than one, then the new hip is prepended to the string.

A function return value of zero indicates the hip was inserted successfully.

Delete_hip(Element elt,Integer i)

Name

Integer Delete_hip(Element elt,Integer i)
Page 269Elements

12d Model Programming Manual
Description

Delete the ith hip from the Alignment string elt.

The position of all subsequent hips is decreased by one.

A function return value of zero indicates the hip was successfully deleted.

Get_hip_type(Element elt,Integer hip_no,Text &type)

Name

Integer Get_hip_type(Element elt,Integer hip_no,Text &type)

Description

Get the type of the horizontal intersection point number hip_no for the Alignment string elt.

The Text type has a returned value of

Spiral if there is spiral/s and horizontal curve at the hip.
Curve if there is a horizontal curve with no spirals at the hip.
IP if there are no spirals or horizontal curves at the hip.

A function return value of zero indicates the hip information was successfully returned.

Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y)

Name

Integer Get_hip_geom(Element elt,Integer hip_no,Integer mode,Real &x,Real &y)

Description

Return the (x,y) co-ordinates of the critical horizontal points around the horizontal intersection
point hip_no (i.e. tangent spiral points, spiral curve points etc.) for the Alignment string elt.

The type of critical point (x,y) returned is specified by mode and depends on the type of the hip.

The following table gives the description of the returned co-ordinate (x,y) and whether or not the
mode is applicable for the given HIP type (Y means applicable, N means not applicable).

 HIP Type
Mode Returned co-ordinate HIP Curve Spiral

0 HIP co-ords Y Y Y
1 start tangent N Y TC Y TS
2 end tangent N Y CT Y ST
3 curve centre N Y Y
4 spiral-curve N N Y
5 curve-spiral N N Y

A function return value of zero indicates the hip information was successfully returned and that
the mode was appropriate for the HIP type of the hip hip_no.

Append_vip(Element elt,Real ch,Real ht)

Name

Integer Append_vip(Element elt,Real ch,Real ht)

Description

Append a vertical intersection point (vip) with chainage-height co-ordinates (ch,ht) to the
Element elt. The parabolic curve length is set to zero.

The order in which the vips are appended is taken as the order of the vips in the Alignment string.
Page 270 Elements

Chapter 5 4DML Library Calls
The vips must be appended in order of increasing chainage along the Alignment string.

Append_vip is used to place the first vip as well as the subsequent vips.

A function return value of zero indicates the vip was appended successfully.

Append_vip(Element elt,Real ch,Real ht,Real parabolic)

Name

Integer Append_vip(Element elt,Real ch,Real ht,Real parabolic)

Description

Append to the Element elt a vertical intersection point (vip) with chainage-height co-ordinates
(ch,ht) and a parabolic curve of length parabolic.

A parabolic curve length of zero indicates no curve is present.

A function return value of zero indicates the vip was appended successfully.

Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)

Name

Integer Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)

Description

<no description>

Get_vip_points(Element elt,Integer &num_pts)

Name

Integer Get_vip_points(Element elt,Integer &num_pts)

Description

Get the number of vips, num_pts, in the Alignment string elt.

A function return value of zero indicates the number of vip points was successfully returned.

Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)

Name

Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)

Description

Get the chainage-height co-ordinates (ch,ht) of the ith vip point for the Alignment string elt.

A function return value of zero indicates the vip data was successfully returned.

Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)

Name

Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)

Description

Get the chainage-height co-ordinates (ch,ht) and the parabolic curve length parabolic for the ith
vip point of the Alignment string elt.

A function return value of zero indicates the vip data was successfully returned.
Page 271Elements

12d Model Programming Manual
Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer
&mode)

Name

Integer Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode)

Description

<no description>

Set_vip_data(Element elt,Integer i,Real ch,Real ht)

Name

Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht)

Description

Modify the chainage-height co-ordinates (ch,ht) of the ith vip point for the Alignment string elt.
The existing parabolic curve length is not altered.

The ith vip point must already exist.

A function return value of zero indicates the vip data was successfully set.

Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic)

Name

Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real parabolic)

Description

Modify the chainage-height co-ordinates (ch,ht) and the parabolic curve length parabolic, for the
ith vip point of the Alignment string elt.

The ith vip point must already exist.

A function return value of zero indicates the vip data was successfully set.

Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Name

Integer Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Description

<no description>

Insert_vip(Element elt,Integer i,Real ch,Real ht)

Name

Integer Insert_vip(Element elt,Integer i,Real ch,Real ht)

Description

Insert a new vip with chainage-height co-

ordinates (ch,ht) before the existing ith vip point.

The parabolic curve length is set to zero.

The inserted vip becomes the ith vip and the position of all subsequent vips increases by one.
Page 272 Elements

Chapter 5 4DML Library Calls
If i is greater than number of vips, then the new vip is appended to the string.

If i is less than one, then the new vip is prepended to the string.

A function return value of zero indicates that the vip was successfully inserted.

Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)

Name

Integer Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)

Description

Insert a new vip with chainage-height co-

ordinates (ch,ht) and parabolic length parabolic before the existing ith vip point.

The inserted vip becomes the ith vip and the position of all subsequent vips increases by one.

If i is greater than number of vips, then the new vip is appended to the string.

If i is less than one, then the new vip is prepended to the string.

A function return value of zero indicates that the vip was successfully inserted.

Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Name

Integer Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)

Description

<no description>

Delete_vip(Element elt,Integer i)

Name

Integer Delete_vip(Element elt,Integer i)

Description

Delete the ith vip from the Alignment string elt.

The position of all subsequent vips is decreased by one.

A function return value of zero indicates that the vip was successfully deleted.

Calc_alignment(Element elt)

Name

Integer Calc_alignment(Element elt)

Description

Use all the horizontal and vertical data to calculate the full geometry for the Alignment string.

A Calc_alignment must be done before the Alignment string can be used in 12d Model.

A function return value of zero indicates the geometry of the alignment was successfully
calculated.

Get_vip_type(Element elt,Integer vip_no,Text &type)
Page 273Elements

12d Model Programming Manual
Name

Integer Get_vip_type(Element elt,Integer vip_no,Text &type)

Description

Get the type of the vertical intersection point number vip_no for the Alignment string elt.

The Text type has a returned value of

VC if there is a parabolic curve at the vip.
Curve if there is a circular curve at the vip.
IP if there is no vertical curves at the vip.

A function return value of zero indicates the vip information was successfully returned.

Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real
&height)

Name

Integer Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height)

Description

Return the chainage and height co-ordinates of the critical points (tangent points, curve centre)
for vertical intersection point number vip_no of the Alignment string elt.

The type of critical point (chainage,height) returned is given by mode and depends on the type of
the vip.

The following table gives the description of the returned co-ordinates (chainage,height) and
states whether the mode is applicable or not for the given VIP type (Y means applicable, N
means not applicable).

 VIP Type
Mode Returned co-ordinate VIP VC Curve

0 VIP co-ords Y Y Y

1 start tangent N Y TC Y TC

2 end tangent N Y CT Y CT

3 curve centre N N Y

A function return value of zero indicates that the vip information was successfully returned and
that the mode was appropriate for the VIP type of the vip number vip_no.

Get_hip_id(Element elt,Integer position,Integer &id)

Name

 Integer Get_hip_id(Element elt,Integer position,Integer &id)

Description

Get_vip_id(Element elt,Integer position,Integer &id)

Name

 Integer Get_vip_id(Element elt,Integer position,Integer &id)

Description

Arc Strings
A 12d Model Arc string is similar to the entity Arc in that it is a helix which projects onto an arc in
Page 274 Elements

Chapter 5 4DML Library Calls
the (x,y) plane.

The Element type Arc has a radius and three dimensional co-ordinates for its centre, start and
end points. The radius can be positive or negative.

A positive radius indicates that the direction of travel between the start and end points is in the
clockwise direction (right hand curve).

A negative radius indicates that the direction of travel between the start and end points is in the
anti-clockwise direction (left hand curve).

Unlike the variable of type Arc, the Element arc string has Element header information and can
be added to 12d Model models. Thus arc strings can be drawn on a 12d Model view and stored
in the 12d Model database.

Create_arc(Arc arc)

Name

Element Create_arc(Arc arc)

Description

Create an Element of type Arc from the Arc arc.

The arc string has the same centre, radius, start and end points as the Arc arc.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real
z3)

Name

Element Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)

Description

Create an Element of type Arc through three given points.

The arc string has start point (x1,y1,z1), an intermediate point (x2,y2,z2) on the arc and the end
point (x3,y3,z3).

The centre and radius of the arc will be automatically calculated.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)

Name

Element Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)

Description

Create an Element of type Arc with centre (xc,yc,zc), radius rad, start point (xs,ys,zs) and end
point (xe,ye,ze).

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.
Page 275Elements

12d Model Programming Manual
Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)

Name

Element Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)

Description

Create an Element of type Arc with centre (xc,yc,zc), and radius rad.

The points (xs,ys,zs) and (xe,ye,ze) define the start and end points respectively for the arc. If
either of the points do not lie on the plan circle with centre (xc,yc) and radius rad, then the point
is dropped perpendicularly onto the plan circle to define the (x,y) co-ordinates for the relevant
start or end point.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)

Name

Element Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)

Description

Create an Element of type Arc with centre point (xc,yc,zc), start point (xs,ys,zs) and sweep
angle sweep.

The absolute radius is calculated as the distance between the centre and start point of the arc.
The sign of the radius comes from the sweep angle.

The sweep angle is measured in a clockwise direction from the line joining the centre to the arc
start point. The units for sweep angles are radians.

Hence the sweep angle is measured in radians and a positive value indicates a clockwise
direction and a positive radius.

The end point of the arc will be automatically created.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real
ze,Integer dir)

Name

Element Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir)

Description

Create an Element of type Arc with centre (xc,yc,zc), start point (xs,ys,zs) and end point
(xe,ye,ze).

The absolute radius is calculated as the distance between the centre and start point of the arc.

If dir is positive, the radius is taken to be positive.

If dir is negative, the radius is taken to be negative.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.
Page 276 Elements

Chapter 5 4DML Library Calls
Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)

Name

Element Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)

Description

Create an Element of type Arc with radius rad. The arc starts at the point (xs,ys,zs) with tangent
angle start_angle and total arc length arc_length.

The centre and end points will be automatically created.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)

Name

Element Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)

Description

Create an Element of type Arc with radius rad. The arc starts at the point (xs,ys,zs) with a chord
angle chord_angle and total arc length arc_length.

The centre and end points will be automatically created.

The function return value gives the actual Element created.

If the arc string could not be created, then the returned Element will be null.

Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)

Name

Integer Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)

Description

Get the centre point for Arc string given by Element elt.

The centre of the arc is (xc,yc,zc).

A function return value of zero indicates the centre was successfully returned.

Get_arc_radius(Element elt,Real &rad)

Name

Integer Get_arc_radius(Element elt,Real &rad)

Description

Get the radius for Arc string given by Element elt.

The radius is given by rad.

A function return value of zero indicates the radius was successfully returned.

Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)

Name

Integer Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)

Description
Page 277Elements

12d Model Programming Manual
Get the start point for Arc string given by Element elt.

The start of the arc is (xs,ys,zs).

A function return value of zero indicates that the start point was successfully returned.

Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)

Name

Integer Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)

Description

Get the end point for Arc string given by Element elt.

The end of the arc is (xe,ye,ze).

A function return value of zero indicates that the end point was successfully returned.

Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real
&ys,Real &zs,Real &xe,Real &ye,Real &ze)

Name

Integer Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real &ys,Real
&zs,Real &xe,Real &ye,Real &ze)

Description

Get the data for the Arc string given by Element elt.

The arc has centre (xc,yc,zc), radius rad and start and end points (xs,ys,zs) and (xe,ye,ze)
respectively.

A function return value of zero indicates that the arc date was successfully returned.

Set_arc_centre(Element elt,Real xc,Real yc,Real zc)

Name

Integer Set_arc_centre(Element elt,Real xc,Real yc,Real zc)

Description

Set the centre point of the Arc string given by Element elt to (xc,yc,zc).

The start and end points are also translated by the plan distance between the old and new
centre.

A function return value of zero indicates the centre was successfully modified.

Set_arc_radius(Element elt,Real rad)

Name

Integer Set_arc_radius(Element elt,Real rad)

Description

Set the radius of the Arc string given by Element elt to rad. The new radius must be non-zero.

The start and end points are projected radially so that they still lie on the arc.

A function return value of zero indicates the radius was successfully modified.
Page 278 Elements

Chapter 5 4DML Library Calls
Set_arc_start(Element elt,Real xs,Real ys,Real zs)

Name

Integer Set_arc_start(Element elt,Real xs,Real ys,Real zs)

Description

Set the start point of the Arc string given by Element elt to (xs,ys,zs).

If the start point does not lie on the arc, then the point (xs,ys,zs) is projected radially onto the arc
and the projected point taken as the start point.

A function return value of zero indicates the start point was successfully modified.

Set_arc_end(Element elt,Real xe,Real ye,Real ze)

Name

Integer Set_arc_end(Element elt,Real xe,Real ye,Real ze)

Description

Set the end point of the Arc string given by Element elt to (xe,ye,ze).

If the end point does not lie on the arc, then the point (xe,ye,ze) is projected radially onto the arc
and the projected point taken as the end point.

A function return value of zero indicates the end point was successfully modified.

Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real rad,Real xs,Real ys,Real
zs,Real xe,Real ye,Real ze)

Name

Integer Set_arc_data(Element elt,Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real
ye,Real ze)

Description

Set the data for the Arc string given by Element elt.

The arc is given the centre (xc,yc,zc), radius rad and start and end points (xs,ys,zs) and
(xe,ye,ze) respectively.

A function return value of zero indicates the arc data was successfully set.

Circle Strings
A 12d Model Circle string is a circle in the (x,y) plane with a constant z value (height).

Create_circle(Real xc,Real yc,Real zc,Real rad)

Name

Element Create_circle(Real xc,Real yc,Real zc,Real rad)

Description

Create an Element of type Circle with centre (xc,yc), radius rad and z value (height) zc.

The function return value gives the actual Element created.

If the circle string could not be created, then the returned Element will be null.

Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp)
Page 279Elements

12d Model Programming Manual
Name

Element Create_circle(Real xc,Real yc,Real zc,Real xp,Real yp,Real zp)

Description

Create an Element of type Circle with centre (xc,yc) and point (xp,yp) on the circle.

The height of the circle is zc.

The radius of the circle will be automatically calculated.

The function return value gives the actual Element created.

If the circle string could not be created, then the returned Element will be null.

Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real
z3)

Name

Element Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)

Description

Create an Element of type Circle going through the three points (x1,y1), (x2,y2) and (

x3,y3).

The height of the circle is z1.

The centre and radius of the circle will be automatically created.

The function return value gives the actual Element created.

If the circle string could not be created, then the returned Element will be null.

Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)

Name

Integer Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)

Description

Get the data for the Circle string given by Element elt.

The centre of the circle is (xc,yc,zc), height zc

 and radius rad.

A function return value of zero indicates success.

Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)

Name

Integer Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)

Description

Set the data for the Circle string given by Element elt.

The centre of the circle is set to (xc,yc,zc), the height to zc and the radius to rad.

A function return value of zero indicates success.

Text Strings
Page 280 Elements

Chapter 5 4DML Library Calls
A text string consists of a Text value at a point (x,y).

Text strings have a height which can be measured in either world units or pixels, an angle, a
justification point and an offset distance and rise distance.

The unit for size is be given by a size_mode where size_mode equals

0 for pixel units (the default)
1 for world units

The justification point (default 1) can be one of nine positions defined in relation to the Text of the
text string:

top

3 6 9
left 2 5 8 right

1 4 7

bottom

The angle (default 0) of the base line of the text is measured from the horizontal axis and is in
radians.

The offset distance is measured along the base line of the text (which will be at a given angle)
and the rise distance is measured perpendicular to the base line of the text. The defaults for the
offset and rise distances are zero.

The following functions are used to create new text strings and make inquiries and modifications
to existing text strings.

Create_text(Text text,Real x,Real y,Real size,Integer colour)

Name

Element Create_text(Text text,Real x,Real y,Real size,Integer colour)

Description

Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size and colour colour. The other data is
defaulted.

The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)

Name

Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)

Description

Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size, colour colour and angle ang. The
other data is defaulted.

The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)

Name
Page 281Elements

12d Model Programming Manual
Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)

Description

Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size, colour colour, angle ang and
justification justif. The other data is defaulted.

The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,
Integer size_mode)

Name

Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer
size_mode)

Description

Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size, colour colour, angle ang, justification
justif and size mode size_mode. The other data is defaulted.

The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.

Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer
justif,Integer size_mode,Real offset_distance,Real rise_distance)

Name

Element Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer
size_mode,Real offset_distance,Real rise_distance)

Description

Creates an Element of type Text.

The Element is at position (x,y), has Text text of size size, colour colour, angle ang, justification
justif, size mode size_mode, offset offset_distance and rise rise_distance.

The function return value gives the actual Element created.

If the text string could not be created, then the returned Element will be null.

Get_text_value(Element elt,Text &text)

Name

Integer Get_text_value(Element elt,Text &text)

Description

Get the actual text of the text Element elt.

The text is returned as Text text.

A function return value of zero indicates the data was successfully returned.

Get_text_xy(Element elt,Real &x,Real &y)
Page 282 Elements

Chapter 5 4DML Library Calls
Name

Integer Get_text_xy(Element elt,Real &x,Real &y)

Description

Get the base position of for the text Element elt.

The position is returned as Real (x,y).

A function return value of zero indicates the data was successfully returned.

Get_text_units(Element elt,Integer &units_mode)

Name

Integer Get_text_units(Element elt,Integer &units_mode)

Description

Get the units used for the text parameters of the text Element elt.

The mode is returned as Integer units_mode.

A function return value of zero indicates the data was successfully returned.

Get_text_size(Element elt,Real &size)

Name

Integer Get_text_size(Element elt,Real &size)

Description

Get the size of the characters of the text Element elt.

The text size is returned as Real size.

A function return value of zero indicates the data was successfully returned.

Get_text_justify(Element elt,Integer &justify)

Name

Integer Get_text_justify(Element elt,Integer &justify)

Description

Get the justification used for the text Element elt.

The justification is returned as Integer justify.

A function return value of zero indicates the data was successfully returned.

Get_text_angle(Element elt,Real &ang)

Name

Integer Get_text_angle(Element elt,Real &ang)

Description

Get the angle of rotation (in radians) about the text (x,y) point of the text Element elt and return
the angle as ang.

A function return value of zero indicates the data was successfully returned.
Page 283Elements

12d Model Programming Manual
Get_text_offset(Element elt,Real &offset)

Name

Integer Get_text_offset(Element elt,Real &offset)

Description

Get the offset distance of the text Element elt.

The offset is returned as Real offset.

A function return value of zero indicates the data was successfully returned.

Get_text_rise(Element elt,Real &rise)

Name

Integer Get_text_rise(Element elt,Real &rise)

Description

Get the rise distance of the text Element elt.

The rise is returned as Real rise.

A function return value of zero indicates the data was successfully returned.

Get_text_ttf_underline(Element elt,Integer &underline)

Name

Integer Get_text_ttf_underline(Element elt,Integer &underline)

Description

For the Element elt of type Text, get the underline state and return it in underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates underlined was successfully returned.

Get_text_ttf_strikeout(Element elt,Integer &strikeout)

Name

Integer Get_text_ttf_strikeout(Element elt,Integer &strikeout)

Description

For the Element elt of type Text, get the strikeout state and return it in strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates strikeout was successfully returned.

Get_text_ttf_italic(Element elt,Integer &italic)

Name

Integer Get_text_ttf_italic(Element elt,Integer &italic)

Description
Page 284 Elements

Chapter 5 4DML Library Calls
For the Element elt of type Text, get the italic state and return it in italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates italic was successfully returned.

Get_text_ttf_weight(Element elt,Integer &weight)

Name

Integer Get_text_ttf_weight(Element elt,Integer &weight)

Description

For the Element elt of type Text, get the font weight and return it in weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates weight was successfully returned.

Get_text_height(Element elt,Real &height)

Name

Integer Get_text_height(Element elt,Real &height)

Description

Get the height of the characters of the text Element elt.

The text height is returned as Real height.

A function return value of zero indicates the data was successfully returned.

Get_text_length(Element elt,Real &length)

Name

Integer Get_text_length(Element elt,Real &length)

Description

Get the length of the characters of the text Element elt.

The text length is returned as Real length.

A function return value of zero indicates the data was successfully returned.

Get_text_slant(Element elt,Real &slant)

Name

Integer Get_text_slant(Element elt,Real &slant)

Description

Get the slant of the characters of the text Element elt.

The text slant is returned as Real slant.

A function return value of zero indicates the data was successfully returned.
Page 285Elements

12d Model Programming Manual
Get_text_x_factor(Element elt,Real &xfact)

Name

Integer Get_text_x_factor(Element elt,Real &xfact)

Description

Get the x factor of the characters of the text Element elt.

The text x factor is returned as Real xfact.

A function return value of zero indicates the data was successfully returned.

Get_text_style(Element elt,Text &style)

Name

Integer Get_text_style(Element elt,Text &style)

Description

Get the style of the characters of the text Element elt.

The text style is returned as Text style.

A function return value of zero indicates the data was successfully returned.

Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer
&colour,Real &ang,Integer &justification,Integer &size_mode,Real
&offset_dist,Real &rise_dist)

Name

Integer Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real
&ang,Integer &justification,Integer &size_mode,Real &offset_dist,Real &rise_dist)

Description

Get the values for each of the text parameters.

A function return value of zero indicates that the text data was successfully returned.

Get_text_textstyle_data(Element elt,Textstyle_Data &d)

Name

Integer Get_text_textstyle_data(Element elt,Textstyle_Data &d)

Description

For the Element elt of type Text, get the Textstyle_Data for the string and return it as d.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates the Textstyle_Data was successfully returned.

Set_text_value(Element elt,Text text)

Name

Integer Set_text_value(Element elt,Text text)

Description

Set the actual text of the text Element elt.

The text is given as Text text.

A function return value of zero indicates the data was successfully set.
Page 286 Elements

Chapter 5 4DML Library Calls
Set_text_xy(Element elt,Real x,Real y)

Name

Integer Set_text_xy(Element elt,Real x,Real y)

Description

Set the base position of for the text Element elt.

The position is given as Real (x,y).

A function return value of zero indicates the data was successfully set.

Set_text_units(Element elt,Integer units_mode)

Name

Integer Set_text_units(Element elt,Integer units_mode)

Description

Set the units used for the text parameters of the text Element elt.

The mode is given as Integer units_mode.

A function return value of zero indicates the data was successfully set.

Set_text_size(Element elt,Real size)

Name

Integer Set_text_size(Element elt,Real size)

Description

Set the size of the characters of the text Element elt.

The text size is returned as Real size.

A function return value of zero indicates the data was successfully set.

Set_text_justify(Element elt,Integer justify)

Name

Integer Set_text_justify(Element elt,Integer justify)

Description

Set the justification used for the text Element elt.

The justification is given as Integer justify.

A function return value of zero indicates the data was successfully set.

Set_text_angle(Element elt,Real ang)

Name

Integer Set_text_angle(Element elt,Real ang)

Description

Set the angle of rotation (in radians) about the text (x,y) point of the text Element elt.

The angle is given as Real ang.

A function return value of zero indicates the data was successfully set.
Page 287Elements

12d Model Programming Manual
Set_text_offset(Element elt,Real offset)

Name

Integer Set_text_offset(Element elt,Real offset)

Description

Set the offset distance of the text Element elt.

The offset is given as Real offset.

A function return value of zero indicates the data was successfully set.

Set_text_rise(Element elt,Real rise)

Name

Integer Set_text_rise(Element elt,Real rise)

Description

Set the rise distance of the text Element elt.

The rise is returned as Real rise.

A function return value of zero indicates the data was successfully set.

Set_text_ttf_underline(Element elt,Integer underline)

Name

Integer Set_text_ttf_underline(Element elt,Integer underline)

Description

For the Element elt of type Text, set the underline state to underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates underlined was successfully set.

Set_text_ttf_strikeout(Element elt,Integer strikeout)

Name

Integer Set_text_ttf_strikeout(Element elt,Integer strikeout)

Description

For the Element elt of type Text, set the strikeout state to strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates strikeout was successfully set.

 Set_text_ttf_italic(Element elt,Integer italic)

Name

Integer Set_text_ttf_italic(Element elt,Integer italic)
Page 288 Elements

Chapter 5 4DML Library Calls
Description

For the Element elt of type Text, set the italic state to italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates italic was successfully set.

Set_text_ttf_weight(Element elt,Integer weight)

Name

Integer Set_text_ttf_weight(Element elt,Integer weight)

Description

For the Element elt of type Text, set the font weight to weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates weight was successfully set.

Set_text_height(Element elt,Real height)

Name

Integer Set_text_height(Element elt,Real height)

Description

Set the height of the characters of the text Element elt.

The text height is given as Real height.

A function return value of zero indicates the data was successfully set.

Set_text_slant(Element elt,Real slant)

Name

Integer Set_text_slant(Element elt,Real slant)

Description

Set the slant of the characters of the text Element elt.

The text slant is given as Real slant.

A function return value of zero indicates the data was successfully set.

Set_text_x_factor(Element elt,Real xfact)

Name

Integer Set_text_x_factor(Element elt,Real xfact)

Description

Set the x factor of the characters of the text Element elt.

The text x factor is given as Real xfact.

A function return value of zero indicates the data was successfully set.
Page 289Elements

12d Model Programming Manual
Set_text_style(Element elt,Text style)

Name

Integer Set_text_style(Element elt,Text style)

Description

Set the style of the characters of the text Element elt.

The text style is given as Text style.

A function return value of zero indicates the data was successfully set.

Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real
ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)

Name

Integer Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer
justif,Integer size_mode,Real offset_distance,Real rise_distance)

Description

Set values for each of the text parameters.

A function return value of zero indicates that the text data was successfully set.

Set_text_textstyle_data(Element elt,Textstyle_Data d)

Name

Integer Set_text_textstyle_data(Element elt,Textstyle_Data d)

Description

For the Element elt of type Text, set the Textstyle_Data to be d.

A non-zero function return value is returned if elt is not of type Text.

A function return value of zero indicates the Textstyle_Data was successfully set.

Pipeline Strings

Integer Create_pipeline()

Name

Integer Create_pipeline()

Description

Create a pipeline.

A function return value of zero indicates the pipeline was created successfully.

Create_pipeline(Element seed)

Name

 Integer Create_pipeline(Element seed)

Description

Create an Element of type Pipeline, and set the colour, name, style etc. of the new string to be
the same as those from the Element seed.
Page 290 Elements

Chapter 5 4DML Library Calls
A function return value of zero indicates the pipeline was created successfully.

Get_pipeline_diameter(Element pipeline,Real &diameter)

Name

 Integer Get_pipeline_diameter(Element pipeline,Real &diameter)

Description

Get the diameter from the Element pipeline.

The type of diameter must be Real.

A function return value of zero indicates the diameter was returned successfully.

Set_pipeline_diameter(Element pipeline,Real diameter)

Name

 Integer Set_pipeline_diameter(Element pipeline,Real diameter)

Description

Set the diameter for pipeline.

Type of the diameter must be Real.

A function return value of zero indicates the diameter was successfully set.

Get_pipeline_length(Element pipeline,Real &length)

Name

 Integer Get_pipeline_length(Element pipeline,Real &length)

Description

Get the length from the Element pipeline.

The type of length must be Real.

A function return value of zero indicates the length was returned successfully.

Set_pipeline_length(Element pipeline,Real length)

Name

 Integer Set_pipeline_length(Element pipeline,Real length)

Description

Set the length for pipeline.

Type of the length must be Real.

A function return value of zero indicates the length was successfully set.

Polyline Strings
A polyline string consists of (x,y,z,radius,flag) values at each point of the string.

For a given point, (x,y,z) defines the co-ordinates of the point, and (radius,flag) defines an arc of
radius radius between the point and the and the next point.

The sign of radius defines which side of the line joining the consecutive points that the arc is on
(positive - on the left; negative - on the right) and flag specifies whether the arc is a minor or
Page 291Elements

12d Model Programming Manual
major arc (0 for a minor arc; 1 for a major arc).

The following functions are used to create new polyline strings and make inquiries and
modifications to existing polyline strings.

Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Name

Element Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Description

Create an Element of type polyline.

The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[]

, and arcs between consecutive points given in the Real array r[] and the Integer array f[].

The radius of the arc between the nth and the n+1 point is given by r[n] and the arc is on the right
of the line joining the nth and n+1 point if r[n] is positive, and on the left if r[n] is negative. Hence
the absolute value of r[n] gives the radius of the curve between the nth and n+1 point and the
sign of r[n] defines what side the curve lies on.

The value of f[n] defines whether the arc is a minor or major arc. A value of 0 denotes a minor
arc and 1 a major arc.

The function return value gives the actual Element created.

If the polyline string could not be created, then the returned Element will be null.

Create_polyline(Integer num_pts)

Name

Element Create_polyline(Integer num_pts)

Description

Create an Element of type Polyline with room for num_pts (x,y,z,r,f) points.

The actual x, y, z, r, and f values of the polyline string are set after the string is created.

If the polyline string could not be created, then the returned Element will be null.

Create_polyline(Integer num_pts,Element seed)

Name

Element Create_polyline(Integer num_pts,Element seed)

Description

Create an Element of type Polyline with room for num_pts (x,y,z,r,f) points, and set the colour,
name, style etc. of the new string to be the same as those from the Element seed.

The actual x, y, z, r, and f values of the polyline string are set after the string is created.

If the polyline string could not be created, then the returned Element will be null.

Create_polyline(Segment seg)

Name

Element Create_polyline(Segment seg)

Description

Create an Element of type Polyline from the Segment seg. The segment may be a Line, or Arc.
Page 292 Elements

Chapter 5 4DML Library Calls
The created Element will have two points with co-ordinates equal to the end points of the
Segment seg.

The function return value gives the actual Element created.

If the polyline string could not be created, then the returned Element will be null.

Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts)

Name

Integer Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts)

Description

Get the (x,y,z,r,f) data for the first max_pts points of the polyline Element elt.

The (x,y,z,r,f) values at each string point are returned in the Real arrays x[], y[], z[], r[] and f[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Polyline, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)

Name

Integer Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)

Description

For a polyline Element elt, get the (x,y,z,r,f) data for max_pts points starting at point number
start_pt.

This routine allows the user to return the data from a drainage string in user specified chunks.
This is necessary if the number of points in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y,z,r,f) values at each string point are returned in the Real arrays x[], y[], z[], r[] and f[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Polyline, then num_pts is set to zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note
Page 293Elements

12d Model Programming Manual
A start_pt of one gives the same result as for the previous function.

Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer
&f)

Name

Integer Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)

Description

Get the (x,y,z,r,f) data for the ith point of the Polyline Element elt.

The x value is returned in Real x.

The y value is returned in Real y.

The z value is returned in Real z.

The radius value is returned in Real r.

The minor/major value is returned in Integer f.

A function return value of zero indicates the data was successfully returned.

Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts)

Name

Integer Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Description

Set the (x,y,z,r,f) data for the first num_pts points of the polyline Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,r,f) values for each string point are given in the Real arrays x[], y[], z[], r[] and f[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type Polyline, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new Polyline Elements but only modify existing Polyline Elements.

Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Name

Integer Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Description

For the polyline Element elt, set the (x,y,z,r,f) data for num_pts points, starting at point number
start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.
Page 294 Elements

Chapter 5 4DML Library Calls
The (x,y,z,r,f) values for the string points are given in the Real arrays x[], y[], z[], r[]

 and f[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type Polyline, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new Polyline Elements but only modify existing Polyline
Elements.

Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Name

Integer Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Description

Set the (x,y,z,r,f) data for the ith point of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.
The radius value is given in Real r.
The minor/major value is given in Integer f.

A function return value of zero indicates the data was successfully set.

Drainage Strings
A drainage string is based on a Polyline string for defining its plan geometry but also contains
information about pit locations, pipe invert levels, pipe sizes etc. See the documentation on
Polyline strings for further information about polyline geometry.

Pits can be located anywhere on the string, not just at the polyline vertex points.

The drainage string is used in the Drainage modules (Drainage, Drainage Analysis and Dynamic
Drainage Analysis) and also in the Sewer (Waste Water) module.

The following functions are used to create new drainage strings and make inquiries and
modifications to existing drainage strings.

See Drainage String Functions
See Drainage String Pipes
See Drainage String Pipe Attributes
See Drainage String Pits
See Drainage String Pit Attributes
See Drainage String House Connections - Only Available for the Sewer Module

Drainage String Functions

Create_drainage(Integer num_pts,Integer num_pits)
Page 295Elements

12d Model Programming Manual
Name

Element Create_drainage(Integer num_pts,Integer num_pits)

Description

Create an Element of type Drainage with room for num_pits points and room for Integer num_pits
pits.

The actual data of the drainage string are set after the string is created.

If the drainage string could not be created, then the returned Element will be null.

Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,
Integer num_pits)

Name

Element Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts, Integer
num_pits)

Description

Create an Element of type drainage.

The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[], and
arcs between each point given by the Real array r[] and the Integer array f[] (see Polyline string).

The drainage string also contains Integer num_pits pits.

The function return value gives the actual Element created.

If the drainage string could not be created, then the returned Element will be null.

Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer
f[],Integer max_pts,Integer &num_pts)

Name

Integer Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts)

Description

Get the (x,y,z,r,f) data for the first max_pts points of the drainage Element elt.

The (x,y,z,r,f) values at each string point are returned in the Real arrays x[], y[], z[], r[] and f[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Drainage, then num_pts is returned as zero and the function
return value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts)

Name

Integer Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
Page 296 Elements

Chapter 5 4DML Library Calls
Description

Set the (x,y,z,r,f) data for the first num_pts points of the drainage Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z,r,f) values for each string point are given in the Real arrays x[], y[], z[], r[] and f[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type Drainage, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new Drainage Elements but only modify existing Drainage Elements.

Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer
f[],Integer max_pts,Integer &num_pts,Integer start_pt)

Name

Integer Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts,Integer start_pt)

Description

For a drainage Element elt, get the (x,y,z,r,f) data for max_pts points starting at point number
start_pt.

This routine allows the user to return the data from a drainage string in user specified chunks.
This is necessary if the number of points in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than point
one.

The (x,y,z,r,f) values at each string point are returned in the Real arrays x[], y[], z[], r[] and f[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type Drainage, then num_pts is set to zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Name

Integer Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Description

For the drainage Element elt, set the (x,y,z,r,f) data for num_pts points, starting at point number
start_pt.
Page 297Elements

12d Model Programming Manual
This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y,z,r,f) values for the string points are given in the Real arrays x[], y[], z[], r[] and f[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type Drainage, then nothing is modified and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new Drainage Elements but only modify existing Drainage
Elements.

Get_drainage_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer
&f)

Name

Integer Get_drainage_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)

Description

Get the (x,y,z,r,f) data for the ith point of the Element elt.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.
The radius value is returned in Real r.
The minor/major value is returned in Integer f.
If minor/major is 0, arc < 180.
If minor/major is 1, arc > 180

A function return value of zero indicates the data was successfully returned.

Set_drainage_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Name

Integer Set_drainage_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Description

Set the (x,y,z,r,f) data for the ith point of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.
The radius value is given in Real r.
The minor/major value is given in Integer f. if f = 0, arc < 180 degrees; if f = 1, arc >180 degrees.

A function return value of zero indicates the data was successfully set.

Get_drainage_float(Element elt,Integer &float)

Name
Page 298 Elements

Chapter 5 4DML Library Calls
 Integer Get_drainage_float(Element elt,Integer &float)

Description

Set_drainage_float(Element elt,Integer float)

Name

 Integer Set_drainage_float(Element elt,Integer float)

Description

Get_drainage_ns_tin(Element elt,Tin &tin)

Name

 Integer Get_drainage_ns_tin(Element elt,Tin &tin)

Description

Set_drainage_ns_tin(Element elt,Tin tin)

Name

Integer Set_drainage_ns_tin(Element elt,Tin tin)

Description

Get_drainage_fs_tin(Element elt,Tin &tin)

Name

 Integer Get_drainage_fs_tin(Element elt,Tin &tin)

Description

Set_drainage_fs_tin(Element elt,Tin tin)

Name

 Integer Set_drainage_fs_tin(Element elt,Tin tin)

Description

Get_drainage_outfall_height(Element elt,Real &ht)

Name

Integer Get_drainage_outfall_height(Element elt,Real &ht)

Description

Get the outfall height of the drainage Element elt

The outfall height is returned as Real ht.

A function return value of zero indicates the data was successfully returned.

Set_drainage_outfall_height(Element elt,Real ht)

Name
Page 299Elements

12d Model Programming Manual
Integer Set_drainage_outfall_height(Element elt,Real ht)

Description

Set the outfall height of the drainage Element elt.

The outfall height is given as Real ht.

A function return value of zero indicates the data was successfully set.

Get_drainage_flow(Element elt,Integer &dir)

Name

Integer Get_drainage_flow(Element elt,Integer &dir)

Description

Get the flow direction of the drainage Element elt.

The flow direction is returned as Integer dir.

A function return value of zero indicates the data was successfully returned.

Note

Not implemented (maybe never)

Set_drainage_flow(Element elt,Integer dir)

Name

Integer Set_drainage_flow(Element elt,Integer dir)

Description

Set the flow direction of the drainage Element elt

The flow direction is given as Integer dir.

A function return value of zero indicates the data was successfully set.

Note

Not implemented (maybe never)

Get_drainage_trunk(Element elt,Element &trunk)

Name

 Integer Get_drainage_trunk(Element elt,Element &trunk)

Description
Page 300 Elements

Chapter 5 4DML Library Calls
Drainage String Pipes

Get_drainage_pipe_cover(Element elt,Integer pipe,Real &minc,Real &maxc)

Name

 Integer Get_drainage_pipe_cover(Element elt,Integer pipe,Real &minc,Real &maxc)

Description

Set_drainage_pipe_cover(Element elt,Integer pipe,Real cover)

Name

 Integer Set_drainage_pipe_cover(Element elt,Integer pipe,Real cover)

Description

Get_drainage_pipe_diameter(Element elt,Integer p,Real &diameter)

Name

Integer Get_drainage_pipe_diameter(Element elt,Integer p,Real &diameter)

Description

Get the pipe diameter for the pth pipe of the string Element elt.

The pipe diameter is returned in Real diameter.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_diameter(Element elt,Integer p,Real diameter)

Name

Integer Set_drainage_pipe_diameter(Element elt,Integer p,Real diameter)

Description

Set the pipe diameter for the pth pipe of the string Element elt.

The pipe diameter is given as Real diameter.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_inverts(Element elt,Integer p,Real &lhs,Real &rhs)

Name

Integer Get_drainage_pipe_inverts(Element elt,Integer p,Real &lhs,Real &rhs)

Description

Get the pipe invert levels for the pth pipe of the string Element elt.

The downstream invert level of the pipe is returned in Real lhs.

The upstream invert level of the pipe is returned in Real rhs.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_inverts(Element elt,Integer p,Real lhs,Real rhs)

Name
Page 301Elements

12d Model Programming Manual
Integer Set_drainage_pipe_inverts(Element elt,Integer p,Real lhs,Real rhs)

Description

Set the pipe invert levels for the pth pipe of the string Element elt.

The downstream invert level of the pipe is given as Real lhs.

The upstream invert level of the pipe is given as Real rhs.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_hgls(Element elt,Integer p,Real &lhs,Real &rhs)

Name

Integer Get_drainage_pipe_hgls(Element elt,Integer p,Real &lhs,Real &rhs)

Description

Get the pipe HGL levels for the pth pipe of the string Element elt.

The downstream hgl level of the pipe is returned in Real lhs.

The upstream hgl level of the pipe is returned in Real rhs.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_hgls(Element elt,Integer p,Real lhs,Real rhs)

Name

Integer Set_drainage_pipe_hgls(Element elt,Integer p,Real lhs,Real rhs)

Description

Set the pipe hgl levels for the pth pipe of the string Element elt.

The downstream hgl level of the pipe is given as Real lhs.

The upstream hgl level of the pipe is given as Real rhs.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_name(Element elt,Integer p,Text &name)

Name

Integer Get_drainage_pipe_name(Element elt,Integer p,Text &name)

Description

Get the pipe name for the pth pipe of the string Element elt.

The pipe name is returned in Text name.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_name(Element elt,Integer p,Text name)

Name

Integer Set_drainage_pipe_name(Element elt,Integer p,Text name)

Description

Set the pipe name for the pth pipe of the string Element elt.
Page 302 Elements

Chapter 5 4DML Library Calls
The pipe name is given as Text name.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_type(Element elt,Integer p,Text &type)

Name

Integer Get_drainage_pipe_type(Element elt,Integer p,Text &type)

Description

Get the pipe type for the pth pipe of the string Element elt.

The pipe type is returned in Text type.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_type(Element elt,Integer p,Text type)

Name

Integer Set_drainage_pipe_type(Element elt,Integer p,Text type)

Description

Set the pipe type for the pth pipe of the string Element elt.

The pipe type is given as Text type.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_velocity(Element elt,Integer p,Real &velocity)

Name

Integer Get_drainage_pipe_velocity(Element elt,Integer p,Real &velocity)

Description

Get the flow velocity for the pth pipe of the string Element elt.

The velocity is returned in Real velocity.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_velocity(Element elt,Integer p,Real velocity)

Name

Integer Set_drainage_pipe_velocity(Element elt,Integer p,Real velocity)

Description

Get the pipe flow velocity for the pth pipe of the string Element elt.

The velocity of the pipe is returned in Real velocity.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_flow(Element elt,Integer p,Real &flow)

Name

Integer Get_drainage_pipe_flow(Element elt,Integer p,Real &flow)

Description
Page 303Elements

12d Model Programming Manual
Get the flow volume for the pth pipe of the string Element elt.

The volume is returned in Real velocity.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pipe_flow(Element elt,Integer p,Real flow)

Name

Integer Set_drainage_pipe_flow(Element elt,Integer p,Real flow)

Description

Get the pipe flow volume for the pth pipe of the string Element elt.

The velocity of the pipe is returned in Real flow.

A function return value of zero indicates the data was successfully set.

Get_drainage_pipe_length(Element elt,Integer p,Real &length)

Name

Integer Get_drainage_pipe_length(Element elt,Integer p,Real &length)

Description

Get the pipe length for the pth pipe of the string Element elt.

The length of the pipe is returned in Real length.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pipe_grade(Element elt,Integer p,Real &grade)

Name

Integer Get_drainage_pipe_grade(Element elt,Integer p,Real &grade)

Description

Get the pipe grade for the pth pipe of the string Element elt.

The grade of the pipe is returned in Real grade.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pipe_ns(Element elt,Integer p,Real ch[],Real ht[],Integer
max_pts,Integer &npts)

Name

Integer Get_drainage_pipe_ns(Element elt,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)

Description

For the drainage string elt, get the heights along the pth pipe from the natural surface tin.

Because the pipe is long then there will be more than one height and the heights are returned in
chainage order along the pipe. The heights are returned in the arrays ch (for chainage) and ht.

The maximum number of natural surface points that can be returned is given by max_pts
(usually the size of the arrays).

The actual number of points of natural surface is returned in npts.

A function return value of zero indicates the data was successfully returned.
Page 304 Elements

Chapter 5 4DML Library Calls
Get_drainage_pipe_fs(Element elt,Integer p,Real ch[],Real ht[],Integer
max_pts,Integer &npts)

Name

Integer Get_drainage_pipe_fs(Element elt,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)

Description

For the drainage string elt, get the heights along the pth pipe from the finished surface tin.

Because the pipe is long then there will be more than one height and the heights are returned in
chainage order along the pipe. The heights are returned in the arrays ch (for chainage) and ht.

The maximum number of finished surface points that can be returned is given by max_pts
(usually the size of the arrays).

The actual number of points of finished surface is returned in npts.

A function return value of zero indicates the data was successfully returned.

Get_drainage_number_of_pipe_types(Integer &n)

Name

Integer Get_drainage_number_of_pipe_types(Integer &n)

Description

Get the number of pipe types (classes) from the drainage.4d file and return the number in n.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pipe_type(Integer i,Text &type)

Name

Integer Get_drainage_pipe_type(Integer i,Text &type)

Description

Get the name of the i’th pipe type (class) from the drainage.4d file and return the name in type.

A function return value of zero indicates the data was successfully returned.

LJG ?? type is the name of the ith pipe type

Get_drainage_pipe_roughness(Text type,Real &roughness,Integer
&roughness_type)

Name

Integer Get_drainage_pipe_roughness(Text type,Real &roughness,Integer &roughness_type)

Description

For the pipe type type, return from the drainage.4d file, the roughness in roughness and
roughness type in roughness_type. Roughness type is MANNING (0) or COLEBROOK (1).

If pipe type type does not exist, then a non-zero return value is returned.

A function return value of zero indicates the data was successfully returned.
Page 305Elements

12d Model Programming Manual
Drainage String Pipe Attributes

Get_drainage_pipe_attributes(Element drain,Integer pipe,Attributes &att)

Name

Integer Get_drainage_pipe_attributes(Element elt,Integer pipe,Attributes &att)

Description

For the Element drain, return the Attributes for the pipe number pipe as att.

If the Element is not of type Drainage or the pipe number pipe has no attribute then a non-zero
return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)

Name

Integer Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)

Description

For the Element drain, set the Attributes for the pipe number pipe to att.

If the Element is not of type Drainage then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully set.

Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)

Name

Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)

Description

For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes
 &att)

Name

Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes &att)

Description

For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 306 Elements

Chapter 5 4DML Library Calls
Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)

Name

Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)

Description

For the Element drain get the attribute with number att_no for the pipe number pipe and return
the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,
Attributes &att)

Name

Integer Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Attributes &att)

Description

For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)

Name

Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)

Description

For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,
Attributes att)

Name

Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes att)
Page 307Elements

12d Model Programming Manual
Description

For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)

Name

Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)

Description

For the Element drain and on the pipe number pipe, if the attribute number att_no exists and it
is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,
Attributes att)

Name

Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Attributes att)

Description

For the Element drain and on the pipe number pipe, if the attribute number att_no exists and it
is of type Attributes, then its value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text
&txt)

Name

 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text &txt)

Description

For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in txt. The attribute must be of type Text.
Page 308 Elements

Chapter 5 4DML Library Calls
If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer
&int)

Name

 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer &int)

Description

For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real
&real)

Name

 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real &real)

Description

For the Element drain, get the attribute called att_name for the pipe number pipe and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text
&txt)

Name

 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text &txt)

Description

For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in txt. The attribute must be of type Text.

If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
Page 309Elements

12d Model Programming Manual
Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer
&int)

Name

 Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer &int)

Description

For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real
&real)

Name

Integer Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real &real)

Description

For the Element drain, get the attribute with number att_no for the pipe number pipe and return
the attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Drainage_pipe_attribute_exists(Element drain,Integer pipe,Text att_name)

Name

Integer Drainage_pipe_attribute_exists (Element drain,Integer pipe,Text att_name)

Description

For the Element drain, checks to see if an attribute with the name att_name exists for pipe
number pipe.

A non-zero function return value indicates that an attribute of that name exists.

If the attribute does not exist, or drain is not of type Drainage, or there is no pipe number pipe, a
zero function return value is returned.

Warning this is the opposite of most 4DML function return values.

Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer
&no)

Name

 Integer Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer &no)
Page 310 Elements

Chapter 5 4DML Library Calls
Description

For the Element drain, checks to see if an attribute with the name att_name exists for pipe
number pipe.

If the attribute of that name exists, its attribute number is returned is no.

A non-zero function return value indicates that an attribute of that name exists.

If the attribute does not exist, or drain is not of type Drainage, or there is no pipe number pipe, a
zero function return value is returned.

Warning this is the opposite of most 4DML function return values.

Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)

Name

 Integer Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)

Description

For the Element drain, delete the attribute with the name att_name for pipe number pipe.

If the Element drain is not of type Drainage or drain has no pipe number pipe, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)

Name

 Integer Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)

Description

For the Element drain, delete the attribute with attribute number att_no for pipe number pipe.

If the Element drain is not of type Drainage or drain has no pipe number pipe, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)

Name

 Integer Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)

Description

Delete all the attributes of pipe number pipe of the drainage string drain.

A function return value of zero indicates the function was successful.

Drainage_pipe_attribute_dump (Element drain,Integer pipe)

Name

 Integer Drainage_pipe_attribute_dump (Element drain,Integer pipe)

Description

Write out information to the Output Window about the pipe attributes for pipe number pipe of the
drainage string drain.

A function return value of zero indicates the function was successful.
Page 311Elements

12d Model Programming Manual
Drainage_pipe_attribute_debug (Element elt,Integer pipe)

Name

 Integer Drainage_pipe_attribute_debug (Element elt,Integer pipe)

Description

Write out even more information to the Output Window about the pipe attributes for pipe number
pipe of the drainage string drain.

A function return value of zero indicates the function was successful.

Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer
&no_atts)

Name

Integer Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer &no_atts)

Description

Get the total number of attributes for pipe number pipe of the Element drain.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the number of attributes was successfully returned.

Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text
att_name,Integer &att_len)

Name

 Integer Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text att_name,Integer &att_len)

Description

For pipe number pipe of the Element drain, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.

Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer
att_no,Integer &att_len)

Name

Integer Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer att_no,Integer &att_len)

Description

For pipe number pipe of the Element drain, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for attributes of type Text and Binary.

Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer
att_no,Text &name)

Name
Page 312 Elements

Chapter 5 4DML Library Calls
 Integer Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer att_no,Text &name)

Description

For pipe number pipe of the Element drain, get the name of the attribute number att_no. The
attribute name is returned in name.

A function return value of zero indicates the attribute name was successfully returned.

Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text
att_name,Integer &att_type)

Name

 Integer Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text att_name,Integer &att_type)

Description

For pipe number pipe of the Element drain, get the type of the attribute with name att_name.
The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer
att_no,Integer &att_type

Name

 Integer Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer att_no,Integer &att_type)

Description

For pipe number pipe of the Element drain, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)

Name

 Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)

Description

For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer
int)

Name

Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer int)

Description
Page 313Elements

12d Model Programming Manual
For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)

Name

 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)

Description

For the Element drain and on the pipe number pipe,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
called att_name.

Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)

Name

 Integer Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)

Description

For the Element drain and on the pipe number pipe,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer
int)

Name

 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer int)

Description

For the Element drain and on the pipe number pipe,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.
Page 314 Elements

Chapter 5 4DML Library Calls
If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.

Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)

Name

 Integer Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)

Description

For the Element drain and on the pipe number pipe,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pipe_attribute_type call can be used to get the type of the attribute
number att_no.
Page 315Elements

12d Model Programming Manual
Drainage String Pits

Get_drainage_pit(Element elt,Integer p,Real &x,Real &y,Real &z)

Name

Integer Get_drainage_pit(Element elt,Integer p,Real &x,Real &y,Real &z)

Description

Get the x,y & z for the pth pit of the string Element elt.

The x coordinate of the pit is returned in Real x.

The y coordinate of the pit is returned in Real y.

The z coordinate of the pit is returned in Real z (the cover level).

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit(Element elt,Integer p,Real x,Real y,Real z)

Name

Integer Set_drainage_pit(Element elt,Integer p,Real x,Real y,Real z)

Description

Set the x,y & z for the pth pit of the string Element elt.

The x coordinate of the pit is given as Real x.

The y coordinate of the pit is given as Real y.

The z coordinate of the pit is given as Real z.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_angle(Element elt,Integer p,Real &ang)

Name

Integer Get_drainage_pit_angle(Element elt,Integer p,Real &ang)

Description

Get the angle between pipes for the pth pit of the string Element elt.

The angle between points of the pit is returned in Real ang.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pit_angle (Element elt,Integer pit,Real &ang,Integer trunk)

Name

Integer Get_drainage_pit_angle(Element elt,Integer pit,Real &ang,Integer trunk)

Description

Get_drainage_pit_diameter(Element elt,Integer p,Real &diameter)

Name

Integer Get_drainage_pit_diameter(Element elt,Integer p,Real &diameter)

Description

Get the diameter for the pth pit of the string Element elt.
Page 316 Elements

Chapter 5 4DML Library Calls
The diameter of the pit is returned in Real diameter.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_diameter(Element elt,Integer p,Real diameter)

Name

Integer Set_drainage_pit_diameter(Element elt,Integer p,Real diameter)

Description

Set the diameter for the pth pit of the string Element elt.

The diameter of the pit is given as Real diameter.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_float(Element elt,Integer pit,Integer &float)

Name

 Integer Get_drainage_pit_float(Element elt,Integer pit,Integer &float)

Description

Set_drainage_pit_float(Element elt,Integer pit,Integer float)

Name

 Integer Set_drainage_pit_float(Element elt,Integer pit,Integer float)

Description

Get_drainage_pit_inverts(Element elt,Integer p,Real &lhs,Real &rhs)

Name

Integer Get_drainage_pit_inverts(Element elt,Integer p,Real &lhs,Real &rhs)

Description

Get the invert levels for the pth pit of the string Element elt.

The downstream invert level of the pit is returned in Real lhs.

The upstream invert level of the pit is returned in Real rhs.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_inverts(Element elt,Integer p,Real lhs,Real rhs)

Name

Integer Set_drainage_pit_inverts(Element elt,Integer p,Real lhs,Real rhs)

Description

Set the invert levels for the pth pit of the string Element elt.

The downstream invert level of the pit is given as Real lhs.

The upstream invert level of the pit is given as Real rhs.

A function return value of zero indicates the data was successfully set.
Page 317Elements

12d Model Programming Manual
Get_drainage_pit_hgls(Element elt,Integer p,Real &lhs,Real &rhs)

Name

Integer Get_drainage_pit_hgls(Element elt,Integer p,Real &lhs,Real &rhs)

Description

Get the hgl levels for the pth pit of the string Element elt.

The hgl level of the left side of the pit is returned in Real lhs.

The hgl level of the right side of the pit is returned in Real rhs.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_hgls(Element elt,Integer p,Real lhs,Real rhs)

Name

Integer Set_drainage_pit_hgls(Element elt,Integer p,Real lhs,Real rhs)

Description

Set the hgl levels for the pth pit of the string Element elt.

The hgl level of the left side of the pit is given as Real lhs.

The hgl level of the right side of the pit is given as Real rhs.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_hgl(Element elt,Integer pit,Real &hgl)

Name

Integer Get_drainage_pit_hgl(Element elt,Integer pit,Real &hgl)

Description

Get the hgl level for centre of the pth pit of the string Element elt.

The hgl level of the centre of the pit is returned in Real hgl.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_hgl(Element element,Integer pit,Real hgl)

Name

Integer Set_drainage_pit_hgl(Element element,Integer pit,Real hgl)

Description

Get_drainage_pit_name(Element elt,Integer p,Text &name)

Name

Integer Get_drainage_pit_name(Element elt,Integer p,Text &name)

Description

Get the name for the pth pit of the string Element elt.

The name of the pit is returned in Text name.

A function return value of zero indicates the data was successfully returned.
Page 318 Elements

Chapter 5 4DML Library Calls
Set_drainage_pit_name(Element elt,Integer p,Text name)

Name

Integer Set_drainage_pit_name(Element elt,Integer p,Text name)

Description

Set the name for the pth pit of the string Element elt.

The name of the pit is given as Text name.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_road_chainage(Element elt,Integer p,Real &chainage)

Name

Integer Get_drainage_pit_road_chainage(Element elt,Integer p,Real &chainage)

Description

Get the road chainage for the pth pit of the string Element elt.

The road chainage of the pit is returned in Real chainage.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_road_chainage(Element elt,Integer p,Real chainage)

Name

Integer Set_drainage_pit_road_chainage(Element elt,Integer p,Real chainage)

Description

Set the road chainage for the pth pit of the string Element elt.

The road chainage of the pit is given as Real chainage.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_road_name(Element elt,Integer p,Text &name)

Name

Integer Get_drainage_pit_road_name(Element elt,Integer p,Text &name)

Description

Get the road name for the pth pit of the string Element elt.

The road name of the pit is returned in Text name.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_road_name(Element elt,Integer p,Text name)

Name

Integer Set_drainage_pit_road_name(Element elt,Integer p,Text name)

Description

Set the road name for the pth pit of the string Element elt.

The road name of the pit is given as Text name.

A function return value of zero indicates the data was successfully set.
Page 319Elements

12d Model Programming Manual
Get_drainage_pit_type(Element elt,Integer p,Text &type)

Name

Integer Get_drainage_pit_type(Element elt,Integer p,Text &type)

Description

Get the type for the pth pit of the string Element elt.

The type of the pit is returned in Text type.

A function return value of zero indicates the data was successfully returned.

Set_drainage_pit_type(Element elt,Integer p,Text type)

Name

Integer Set_drainage_pit_type(Element elt,Integer p,Text type)

Description

Set the type for the pth pit of the string Element elt.

The type of the pit is given as Text type.

A function return value of zero indicates the data was successfully set.

Get_drainage_pit_branches(Element elt,Integer pit,Dynamic_Element &branches)

Name

 Integer Get_drainage_pit_branches(Element elt,Integer pit,Dynamic_Element &branches)

Description

Get_drainage_pit_chainage(Element elt,Integer p,Real &chainage)

Name

Integer Get_drainage_pit_chainage(Element elt,Integer p,Real &chainage)

Description

Get the chainage for the pth pit of the string Element elt.

The chainage of the pit is returned in Real chainage.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pit_depth(Element elt,Integer p,Real &depth)

Name

Integer Get_drainage_pit_depth(Element elt,Integer p,Real &depth)

Description

Get the depth of the pth pit of the string Element elt.

The depth of the pit is returned in Real depth.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pit_drop(Element elt,Integer p,Real &drop)
Page 320 Elements

Chapter 5 4DML Library Calls
Name

Integer Get_drainage_pit_drop(Element elt,Integer p,Real &drop)

Description

Get the drop through the pth pit of the string Element elt.

The drop through the pit is returned in Real drop.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pits(Element elt,Integer &npits)

Name

Integer Get_drainage_pits(Element elt,Integer &npits)

Description

Get the number of pits for the string Element elt.

The number of pits is returned in Integer npits.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pit_ns(Element elt,Integer n,Real &ht)

Name

Integer Get_drainage_pit_ns(Element elt,Integer n,Real &ht)

Description

For the drainage string elt, get the height from the natural surface tin at the location of the centre
of the nth pit.

The height of the natural surface is returned in ht.

A function return value of zero indicates the data was successfully returned.

Get_drainage_pit_fs(Element elt,Integer n,Real &ht)

Name

Integer Get_drainage_pit_fs(Element elt,Integer n,Real &ht)

Description

For the drainage string elt, get the height from the finished surface tin at the location of the centre
of the nth pit.

The height of the finished surface is returned in ht.

A function return value of zero indicates the data was successfully returned.

Get_drainage_number_of_manhole_types(Integer &n)

Name

Integer Get_drainage_number_of_manhole_types(Integer &n)

Description

Get the number of manhole (pit) types from the drainage.4d file and return the number in n.

A function return value of zero indicates the data was successfully returned.
Page 321Elements

12d Model Programming Manual
Get_drainage_manhole_type(Integer i,Text &type)

Name

Integer Get_drainage_manhole_type(Integer i,Text &type)

Description

Get the name of the i’th manhole type from the drainage.4d file and return the name in type.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_length(Text type,Real &length)

Name

Integer Get_drainage_manhole_length(Text type,Real &length)

Description

Get the length of the manhole of type type from the drainage.4d file and return the length in
length.

If there is no such manhole type, -1 is returned as the function return value.

If the length does not exist for the manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_width(Text type,Real &width)

Name

Integer Get_drainage_manhole_width(Text type,Real &width)

Description

Get the width of the manhole of type type from the drainage.4d file and return the width in width.

If there is no such manhole type, -1 is returned as the function return value.

If the width does not exist for manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_description(Text type,Text &description)

Name

Integer Get_drainage_manhole_description(Text type,Text &description)

Description

Get the description of the manhole of type type from the drainage.4d file and return the
description in description.

If there is no such manhole type, -1 is returned as the function return value.

If the description does not exist for manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_notes(Text type,Text ¬es)

Name

Integer Get_drainage_manhole_notes(Text type,Text ¬es)

Description
Page 322 Elements

Chapter 5 4DML Library Calls
Get the notes of the manhole of type type from the drainage.4d file and return the notes in
notes.

If there is no such manhole type, -1 is returned as the function return value.

If notes do not exist for manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_group(Text type,Text &group)

Name

Integer Get_drainage_manhole_group(Text type,Text &group)

Description

Get the group of the manhole of type type from the drainage.4d file and return the group in
group.

If there is no such manhole type, -1 is returned as the function return value.

If group does not exist for manhole type type, -2 is returned as the function return value.

A function return value of zero indicates the data was successfully returned.

Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed, Real
&percent,Real &coeff,Real &power)

Name

Integer Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed,Real &percent,Real
&coeff,Real &power)

Description

type is the name of the manhole type.

values from attributes cap_multi, cap_fixed, cap_percent, cap_coeff, cap_power

if undefined, defaults are 1, 0,0,0,1

0 is ok

Get_drainage_number_of_sag_curves(Text type,Integer &n)

Name

Integer Get_drainage_number_of_sag_curves(Text type,Integer &n)

Description

What ever is in drainage.4d.

What is type - manhole type in drainage 4d.

It is the number of sag curves. in drainge.4d cap_curve_sag

0 is ok

Get_drainage_sag_curve_name(Text type,Text &name)

Name

Integer Get_drainage_sag_curve_name(Text type,Text &name)

Description

??maybe there is only one sag curve allowed ??
Page 323Elements

12d Model Programming Manual
0 is ok

Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real
 &percent,Real &coeff,Real &power)

Name

Integer Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real &percent,Real
&coeff,Real &power)

Description

type is the name of the manhole type.

values from attributes cap_multi, cap_fixed, cap_percent, cap_ceoff, cap_power

if undefined, defaults are 1, 0,0,0,1

0 is ok

Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)

Name

Integer Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)

Description

type is the name of the manhole type.

get back the number of coords

0 is ok

Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer
 nmax,Integer &n)

Name

Integer Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer nmax,Integer &n)

Description

type is the name of the manhole type.

get back the coords

Get_drainage_number_of_grade_curves(Text type,Integer &n)

Name

Integer Get_drainage_number_of_grade_curves(Text type,Integer &n)

Description

get number of grade curves

Get_drainage_grade_curve_name(Text type,Integer i,Text &name)

Name

Integer Get_drainage_grade_curve_name(Text type,Integer i,Text &name)

Description

for manhole named type, and ith curve, get name of curve
Page 324 Elements

Chapter 5 4DML Library Calls
Get_drainage_grade_curve_threshold(Text type,Text name,Integer
&by_grade,Real &road_grade,Integer &by_xfall,Real &road_xfall)

Name

Integer Get_drainage_grade_curve_threshold(Text type,Text name,Integer &by_grade,Real
&road_grade,Integer &by_xfall,Real &road_xfall)

Description

for manhole named type, name of name, get road_grade, road_crossfall,

road_grade keyword in darainage.4d. if there then by_grade are set and to be used

road_crossfall keyword in darainage.4d. if there then by_cross are set and to be used.

Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real
&fixed,Real &percent,Real &coeff,Real &power)

Name

Integer Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real &fixed,Real
&percent,Real &coeff,Real &power)

Description

for manhole named type, and for name of name, get cap_ etc,

Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)

Name

Integer Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)

Description

Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real
Qin[],Integer nmax,Integer &n)

Name

Integer Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real Qin[],Integer
nmax,Integer &n)

Description

Get_drainage_manhole_config(Text type,Text &cap_config)

Name

Integer Get_drainage_manhole_config(Text type,Text &cap_config)

Description

for manhole of type type, ca_config is "g" - on grade pit, "s" - ag pit, or "m" manole sealed pit.

if not g, s, m then it returns an error.
Page 325Elements

12d Model Programming Manual
Get_drainage_manhole_diam(Text type,Real &diameter)

Name

Integer Get_drainage_manhole_diam(Text type,Real &diameter)

Description

for manhole type, it sets a diameter.
Page 326 Elements

Chapter 5 4DML Library Calls
Drainage String Pit Attributes

Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer
att_no,Integer &att_len)

Name

 Integer Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer att_no,Integer &att_len)

Description

For pit number pit of the Element drain, get the length (in bytes) of the attribute number att_no.
The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for attributes of type Text and Binary.

Get_drainage_pit_attribute_length(Element drain,Integer pit,Text
att_name,Integer &att_len)

Name

Integer Get_drainage_pit_attribute_length(Element drain,Integer pit,Text att_name,Integer &att_len)

Description

For pit number pit of the Element drain, get the length (in bytes) of the attribute with the name
att_name. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.

Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer
&att_type)

Name

 Integer Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer &att_type)

Description

For pit number pit of the Element drain, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer
&att_type)

Name

 Integer Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer &att_type)

Description

For pit number pit of the Element drain, get the type of the attribute with name att_name. The
attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text
&name)
Page 327Elements

12d Model Programming Manual
Name

Integer Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text &name)

Description

For pit number pit of the Element drain, get the name of the attribute number att_no. The
attribute name is returned in name.

A function return value of zero indicates the attribute name was successfully returned.

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)

Description

For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)

Name

 Integer Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)

Description

For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)

Description

For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in txt. The attribute must be of type Text.

If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute with
attribute number att_no.
Page 328 Elements

Chapter 5 4DML Library Calls
Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)

Name

 Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)

Description

For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Drainage or the attribute is not of type Real then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.

Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer
&no_atts)

Name

 Integer Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer &no_atts)

Description

Get the total number of attributes for pit number pit of the Element drain.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the number of attributes was successfully returned.

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)

Name

 Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)

Description

For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in txt. The attribute must be of type Text.

If the Element is not of type Drainage or the attribute is not of type Text then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.

Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)

Name

 Integer Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)

Description

For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Drainage or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Page 329Elements

12d Model Programming Manual
Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.

Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)

Name

Integer Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)

Description

For the Element drain, return the Attributes for the pit number pit as att.

If the Element is not of type Drainage or the pit number pit has no attribute then a non-zero
return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)

Name

Integer Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)

Description

For the Element drain, set the Attributes for the pit number pit to att.

If the Element is not of type Drainage then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully set.

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)

Description

For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes
&att)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes &att)

Description

For the Element drain, get the attribute called att_name for the pit number pit and return the
attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.
Page 330 Elements

Chapter 5 4DML Library Calls
Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)

Description

For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Drainage or the attribute is not of type Uid then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes
&att)

Name

Integer Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes &att)

Description

For the Element drain, get the attribute with number att_no for the pit number pit and return the
attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Drainage or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)

Name

Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)

Description

For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)

Name

Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)
Page 331Elements

12d Model Programming Manual
Description

For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)

Name

Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)

Description

For the Element drain and on the pit number pit, if the attribute number att_no exists and it is of
type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)

Description

For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)

Description

For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.
Page 332 Elements

Chapter 5 4DML Library Calls
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.

Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)

Description

For the Element drain and on the pit number pit,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute
number att_no.

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)

Description

For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.

Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)

Description

For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.
Page 333Elements

12d Model Programming Manual
Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)

Name

 Integer Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)

Description

For the Element drain and on the pit number pit,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_drainage_pit_attribute_type call can be used to get the type of the attribute called
att_name.

Drainage_pit_attribute_exists(Element drain,Integer pit,Text att_name)

Name

 Integer Drainage_pit_attribute_exists (Element drain,Integer pit,Text att_name)

Description

For the Element drain, checks to see if an attribute with the name att_name exists for pit number
pit.

A non-zero function return value indicates that an attribute of that name exists.

If the attribute does not exist, or drain is not of type Drainage, or there is no pit number pit, a
zero function return value is returned.

Warning - this is the opposite of most 4DML function return values.

Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)

Name

 Integer Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)

Description

For the Element drain, checks to see if an attribute with the name att_name exists for pit number
pit.

If the attribute of that name exists, its attribute number is returned is no.

A non-zero function return value indicates that an attribute of that name exists.

If the attribute does not exist, or drain is not of type Drainage, or there is no pit number pit, a
zero function return value is returned.

Warning - this is the opposite of most 4DML function return values.

Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)

Name

Integer Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)

Description

For the Element drain, delete the attribute with the name att_name for pit number pit.

If the Element drain is not of type Drainage or drain has no pit number pit, then a non-zero
Page 334 Elements

Chapter 5 4DML Library Calls
return code is returned.

A function return value of zero indicates the attribute was deleted.

Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)

Name

 Integer Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)

Description

For the Element drain, delete the attribute with attribute number att_no for pit number pit.

If the Element drain is not of type Drainage or drain has no pit number pit, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Drainage_pit_attribute_delete_all (Element drain,Integer pit)

Name

 Integer Drainage_pit_attribute_delete_all (Element drain,Integer pit)

Description

Delete all the attributes of pit number pit of the drainage string drain.

A function return value of zero indicates the function was successful.

Drainage_pit_attribute_dump (Element drain,Integer pit)

Name

 Integer Drainage_pit_attribute_dump (Element drain,Integer pit)

Description

Write out information to the Output Window about the pit attributes for pit number pit of the
drainage string drain.

A function return value of zero indicates the function was successful.

Drainage_pit_attribute_debug (Element drain,Integer pit)

Name

 Integer Drainage_pit_attribute_debug (Element drain,Integer pit)

Description

Write out even more information to the Output Window about the pit attributes for pit number pit
of the drainage string drain.

A function return value of zero indicates the function was successful.
Page 335Elements

12d Model Programming Manual
Drainage String House Connections - Only Available for the Sewer Module

Get_drainage_hcs(Element elt,Integer &no_hcs)

Name

Integer Get_drainage_hcs(Element elt,Integer &no_hcs)

Description

Get the number of house connections for the string Element elt.

The number of house connection is returned in Integer no_hcs.

A function return value of zero indicates the data was successfully returned.

Get_drainage_hc(Element elt,Integer h,Real &x,Real &y,Real &z)

Name

Integer Get_drainage_hc(Element elt,Integer h,Real &x,Real &y,Real &z)

Description

Get the x,y & z for the hth house connection of the string Element elt.

The x coordinate of the house connection is returned in Real x.

The y coordinate of the house connection is returned in Real y.

The z coordinate of the house connection is returned in Real z.

A function return value of zero indicates the data was successfully returned.

Get_drainage_hc_adopted_level(Element elt,Integer h,Real &level)

Name

Integer Get_drainage_hc_adopted_level(Element elt,Integer h,Real &level)

Description

Get the adopted level for the h’th house connection of the string Element elt.

The adopted level of the house connection is returned in Real level.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_adopted_level(Element elt,Integer hc,Real level)

Name

 Integer Set_drainage_hc_adopted_level(Element elt,Integer hc,Real level)

Description

Get_drainage_hc_bush(Element elt,Integer h,Text &bush)

Name

Integer Get_drainage_hc_bush(Element elt,Integer h,Text &bush)

Description

Get the bush type for the h’th house connection of the string Element elt.

The bush type of the house connection is returned in Text bush.

A function return value of zero indicates the data was successfully returned.
Page 336 Elements

Chapter 5 4DML Library Calls
Set_drainage_hc_bush(Element elt,Integer hc,Text bush)

Name

 Integer Set_drainage_hc_bush(Element elt,Integer hc,Text bush)

Description

Get_drainage_hc_colour(Element elt,Integer h,Integer &colour)

Name

Integer Get_drainage_hc_colour(Element elt,Integer h,Integer &colour)

Description

Get the colour for the h’th house connection of the string Element elt.

The colour of the house connection is returned in Integer colour.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_colour(Element elt,Integer hc,Integer colour)

Name

 Integer Set_drainage_hc_colour(Element elt,Integer hc,Integer colour)

Description

Get_drainage_hc_depth(Element elt,Integer h,Real &depth)

Name

Integer Get_drainage_hc_depth(Element elt,Integer h,Real &depth)

Description

Get the depth for the h’th house connection of the string Element elt.

The depth of the house connection is returned in Real depth.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_depth(Element elt,Integer hc,Real depth)

Name

 Integer Set_drainage_hc_depth(Element elt,Integer hc,Real depth)

Description

Get_drainage_hc_diameter(Element elt,Integer h,Real &diameter)

Name

Integer Get_drainage_hc_diameter(Element elt,Integer h,Real &diameter)

Description

Get the diameter for the h’th house connection of the string Element elt.

The diameter of the house connection is returned in Real diameter.

A function return value of zero indicates the data was successfully returned.
Page 337Elements

12d Model Programming Manual
Set_drainage_hc_diameter(Element elt,Integer hc,Real diameter)

Name

 Integer Set_drainage_hc_diameter(Element elt,Integer hc,Real diameter)

Description

Get_drainage_hc_grade(Element elt,Integer h,Real &grade)

Name

Integer Get_drainage_hc_grade(Element elt,Integer h,Real &grade)

Description

Get the grade for the h’th house connection of the string Element elt.

The grade of the house connection is returned in Real grade.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_grade(Element elt,Integer hc,Real grade)

Name

 Integer Set_drainage_hc_grade(Element elt,Integer hc,Real grade)

Description

Get_drainage_hc_hcb(Element elt,Integer h,Integer &hcb)

Name

Integer Get_drainage_hc_hcb(Element elt,Integer h,Integer &hcb)

Description

Get the hcb for the h’th house connection of the string Element elt.

The hcb of the house connection is returned in Integer hcb.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_hcb(Element elt,Integer hc,Integer hcb)

Name

 Integer Set_drainage_hc_hcb(Element elt,Integer hc,Integer hcb)

Description

Get_drainage_hc_length(Element elt,Integer h,Real &length)

Name

Integer Get_drainage_hc_length(Element elt,Integer h,Real &length)

Description

Get the length for the h’th house connection of the string Element elt.

The length of the house connection is returned in Real length.

A function return value of zero indicates the data was successfully returned.
Page 338 Elements

Chapter 5 4DML Library Calls
Set_drainage_hc_length(Element elt,Integer hc,Real length)

Name

 Integer Set_drainage_hc_length(Element elt,Integer hc,Real length)

Description

Get_drainage_hc_level(Element elt,Integer h,Real &level)

Name

Integer Get_drainage_hc_level(Element elt,Integer h,Real &level)

Description

Get the level for the h’th house connection of the string Element elt.

The level of the house connection is returned in Real level.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_level(Element elt,Integer hc,Real level)

Name

 Integer Set_drainage_hc_level(Element elt,Integer hc,Real level)

Description

Get_drainage_hc_material(Element elt,Integer h,Text &material)

Name

Integer Get_drainage_hc_material(Element elt,Integer h,Text &material)

Description

Get the material for the h’th house connection of the string Element elt.

The material of the house connection is returned in Text material.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_material(Element elt,Integer hc,Text material)

Name

 Integer Set_drainage_hc_material(Element elt,Integer hc,Text material)

Description

Get_drainage_hc_name(Element elt,Integer h,Text &name)

Name

Integer Get_drainage_hc_name(Element elt,Integer h,Text &name)

Description

Get the name for the h’th house connection of the string Element elt.

The name of the house connection is returned in Text name.

A function return value of zero indicates the data was successfully returned.
Page 339Elements

12d Model Programming Manual
Set_drainage_hc_name(Element elt,Integer hc,Text name)

Name

 Integer Set_drainage_hc_name(Element elt,Integer hc,Text name)

Description

Get_drainage_hc_side(Element elt,Integer h,Integer &side)

Name

Integer Get_drainage_hc_side(Element elt,Integer h,Integer &side)

Description

Get the side for the h’th house connection of the string Element elt.

The side of the house connection is returned in Integer side.

A function return value of zero indicates the data was successfully returned.

Note:

When side = -1, the house connection is on the left side of the string.

When side = 1, the house connection is on the right side of the string.

Set_drainage_hc_side(Element elt,Integer hc,Integer side)

Name

 Integer Set_drainage_hc_side(Element elt,Integer hc,Integer side)

Description

Get_drainage_hc_type(Element elt,Integer h,Text &type)

Name

Integer Get_drainage_hc_type(Element elt,Integer h,Text &type)

Description

Get the type for the h’th house connection of the string Element elt.

The type of the house connection is returned in Text type.

A function return value of zero indicates the data was successfully returned.

Set_drainage_hc_type(Element elt,Integer hc,Text type)

Name

 Integer Set_drainage_hc_type(Element elt,Integer hc,Text type)

Description

Get_drainage_hc_chainage(Element elt,Integer h,Real &chainage)

Name

Integer Get_drainage_hc_chainage(Element elt,Integer h,Real &chainage)

Description
Page 340 Elements

Chapter 5 4DML Library Calls
Get the chainage for the h’th house connection of the string Element elt.

The chainage of the house connection is returned in Real chainage.

A function return value of zero indicates the data was successfully returned.

Get_drainage_hc_ip(Element elt,Integer h,Integer &ip)

Name

Integer Get_drainage_hc_ip(Element elt,Integer h,Integer &ip)

Description

Get the intersect point for the h’th house connection of the string Element elt.

The intersection point of the house connection is returned in Integer ip.

A function return value of zero indicates the data was successfully returned.

Pipe Strings
A pipe string consists of (x,y,z) values at each point of the string and a diameter for the entire
string.

The following functions are used to create new pipe strings and make inquiries and modifications
to existing pipe strings.

Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)

Name

Element Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)

Description

Create an Element of type pipe.

The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].

The function return value gives the actual Element created.

If the pipe string could not be created, then the returned Element will be null.

Create_pipe(Integer num_pts)

Name

Element Create_pipe(Integer num_pts)

Description

Create an Element of type pipe with room for num_pts (x,y,z) points.

The actual x, y and z values of the pipe string are set after the string is created.

If the pipe string could not be created, then the returned Element will be null.

Create_pipe(Integer num_pts,Element seed)

Name

Element Create_pipe(Integer num_pts,Element seed)

Description
Page 341Elements

12d Model Programming Manual
Create an Element of type pipe with room for num_pts (x,y) points, and set the colour, name,
style etc. of the new string to be the same as those from the Element seed.

The actual x, y and z values of the pipe string are set after the string is created.

If the pipe string could not be created, then the returned Element will be null.

Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts)

Name

Integer Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description

Get the (x,y,z) data for the first max_pts points of the pipe Element elt.

The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].

The maximum number of points that can be returned is given by max_pts (usually the size of the
arrays). The point data returned starts at the first point and goes up to the minimum of max_pts
and the number of points in the string.

The actual number of points returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type pipe, then num_pts is returned as zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Name

Integer Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description

Set the (x,y,z) data for the first num_pts points of the pipe Element elt.

This function allows the user to modify a large number of points of the string in one call.

The maximum number of points that can be set is given by the number of points in the string.

The (x,y,z) values for each string point are given in the Real arrays x[], y[] and z[].

The number of points to be set is given by Integer num_pts

If the Element elt is not of type pipe, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new pipe Elements but only modify existing pipe Elements.

Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
&num_pts,Integer start_pt)

Name

Integer Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description

For a pipe Element elt, get the (x,y,z) data for max_pts points starting at point number start_pt.
Page 342 Elements

Chapter 5 4DML Library Calls
This routine allows the user to return the data from a pipe string in user specified chunks.

This is necessary if the number of points in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the point data returned starts at point number start_pt rather than
point one.

The (x,y,z) values at each string point are returned in the Real arrays x[], y[] and z[].

The actual number of points returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type pipe, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
start_pt)

Name

Integer Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description

For the pipe Element elt, set the (x,y,z) data for num_pts points, starting at point number
start_pt.

This function allows the user to modify a large number of points of the string in one call starting at
point number start_pt rather than point one.

The maximum number of points that can be set is given by the difference between the number of
points in the string and the value of start_pt.

The (x,y,z) values for the string points are given in the Real arrays x[], y[] and z[].

The number of the first string point to be modified is start_pt.

The total number of points to be set is given by Integer num_pts

If the Element elt is not of type pipe, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new pipe Elements but only modify existing pipe Elements.

Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Name

Integer Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)

Description

Get the (x,y,z) data for the ith point of the string.

The x value is returned in Real x.
Page 343Elements

12d Model Programming Manual
The y value is returned in Real y.

The z value is returned in Real z.

A function return value of zero indicates the data was successfully returned.

Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)

Name

Integer Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)

Description

Set the (x,y,z) data for the ith point of the string.

The x value is given in Real x.

The y value is given in Real y.

The z value is given in Real z.

A function return value of zero indicates the data was successfully set.

Get_pipe_diameter(Element elt,Real &diameter)

Name

Integer Get_pipe_diameter(Element elt,Real &diameter)

Description

Get the pipe diameter of the string Element elt.

The pipe diameter is returned in Real diameter.

A function return value of zero indicates the data was successfully returned.

Set_pipe_diameter(Element elt,Real diameter)

Name

Integer Set_pipe_diameter(Element elt,Real diameter)

Description

Set the pipe diameter of the string Element elt.

The pipe diameter is given as Real diameter.

A function return value of zero indicates the data was successfully set.

Get_pipe_justify(Element elt,Integer &justify)

Name

Integer Get_pipe_justify(Element elt,Integer &justify)

Description

Get the justification used for the pipe Element elt

The justification is returned as Integer justify.

A function return value of zero indicates the data was successfully returned.

Set_pipe_justify(Element elt,Integer justify)
Page 344 Elements

Chapter 5 4DML Library Calls
Name

Integer Set_pipe_justify(Element elt,Integer justify)

Description

Set the justification used for the text parameter of the pipe Element elt.

The justification is given as Integer justify.

A function return value of zero indicates the data was successfully set.

Face Strings
A face string consists of (x,y,z) values at each vertex of the string. The string can be filled with a
colour or a hatch pattern

The following functions are used to create new face strings and make inquiries and modifications
to existing face strings.

Create_face(Real x[],Real y[],Real z[],Integer num_pts)

Name

Element Create_face(Real x[],Real y[],Real z[],Integer num_pts)

Description

The Element has num_pts points with (x,y,z) values given in the Real arrays x[], y[] and z[].

The function return value gives the actual Element created.

If the face string could not be created, then the returned Element will be null.

Create_face(Integer num_npts)

Name

Element Create_face(Integer num_npts)

Description

Create an Element of type face with room for num_pts (x,y,z) points.

The actual x, y and z values of the face string are set after the string is created.

If the face string could not be created, then the returned Element will be null.

Create_face(Integer num_npts,Element seed)

Name

Element Create_face(Integer num_npts,Element seed)

Description

Create an Element of type face with room for num_pts (x,y) points, and set the colour, name,
style etc. of the new string to be the same as those from the Element seed.

The actual x, y and z values of the face string are set after the string is created.

If the face string could not be created, then the returned Element will be null.

Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
 &num_pts)
Page 345Elements

12d Model Programming Manual
Name

Integer Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)

Description

Get the (x,y,z) data for the first max_pts vertices of the face Element elt.

The (x,y,z) values at each string vertex are returned in the Real arrays x[], y[] and z[].

The maximum number of vertices that can be returned is given by max_pts (usually the size of
the arrays). The vertex data returned starts at the first vertex and goes up to the minimum of
max_pts and the number of vertices in the string.

The actual number of vertices returned is returned by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type face, then num_pts is returned as zero and the function return
value is set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer
 &num_pts,Integer start_pt)

Name

Integer Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer
start_pt)

Description

For a face Element elt, get the (x,y,z) data for max_pts vertices starting at vertex number
start_pt.

This routine allows the user to return the data from a face string in user specified chunks.

This is necessary if the number of vertices in the string is greater than the size of the arrays
available to contain the information.

As in the previous function, the maximum number of points that can be returned is given by
max_pts (usually the size of the arrays).

However, for this function, the vertex data returned starts at vertex number start_pt rather than
vertex one.

The (x,y,z) values at each string vertex is returned in the Real arrays x[], y[] and z[].

The actual number of vertices returned is given by Integer num_pts

num_pts <= max_pts

If the Element elt is not of type face, then num_pts is set to zero and the function return value is
set to a non-zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Name

Integer Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)

Description

Set the (x,y,z) data for the first num_pts vertices of the face Element elt.
Page 346 Elements

Chapter 5 4DML Library Calls
This function allows the user to modify a large number of vertices of the string in one call.

The maximum number of vertices that can be set is given by the number of vertices in the string.

The (x,y,z) values for each string vertex is given in the Real arrays x[], y[] and z[].

The number of vertices to be set is given by Integer num_pts

If the Element elt is not of type face, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.

Note

This function can not create new face Elements but only modify existing face Elements.

Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer
 start_pt)

Name

Integer Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)

Description

For the face Element elt, set the (x,y,z) data for num_pts vertices, starting at vertex number
start_pt.

This function allows the user to modify a large number of vertices of the string in one call starting
at vertex number start_pt rather than the first vertex (vertex one).

The maximum number of vertices that can be set is given by the difference between the number
of vertices in the string and the value of start_pt.

The (x,y,z) values for the string vertices are given in the Real arrays x[], y[] and z[].

The number of the first string vertex to be modified is start_pt.

The total number of vertices to be set is given by Integer num_pts

If the Element elt is not of type face, then nothing is modified and the function return value is set
to a non-zero value.

A function return value of zero indicates the data was successfully set.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new face Elements but only modify existing face Elements.

Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Name

Integer Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)

Description

Get the (x,y,z) data for the ith vertex of the string.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.

A function return value of zero indicates the data was successfully returned.

Set_face_data(Element elt,Integer i,Real x,Real y,Real z)
Page 347Elements

12d Model Programming Manual
Name

Integer Set_face_data(Element elt,Integer i,Real x,Real y,Real z)

Description

Set the (x,y,z) data for the ith vertex of the string.

The x value is given in Real x.
The y value is given in Real y.
The z value is given in Real z.

A function return value of zero indicates the data was successfully set.

Get_face_hatch_distance(Element elt,Real &dist)

Name

Integer Get_face_hatch_distance(Element elt,Real &dist)

Description

Get the distance between the hatch lines for the face string elt. The distance is returned as dist

A function return value of zero indicates the data was successfully returned.

Set_face_hatch_distance(Element elt,Real dist)

Name

Integer Set_face_hatch_distance(Element elt,Real dist)

Description

Set the distance between the hatch lines for the face string elt to be dist

The distance is given in world units.

A function return value of zero indicates the data was successfully set.

Get_face_hatch_angle(Element elt,Real &ang)

Name

Integer Get_face_hatch_angle(Element elt,Real &ang)

Description

Get the angle of the hatch lines for the face string elt. The angle is returned as ang.

The angle is given in radians and is measured in the counter-clockwise direction from the x-axis.

A function return value of zero indicates the data was successfully returned.

Set_face_hatch_angle(Element elt,Real ang)

Name

Integer Set_face_hatch_angle(Element elt,Real ang)

Description

Set the angle of the hatch lines for the face string elt to be ang

A function return value of zero indicates the data was successfully set.

Get_face_hatch_colour(Element elt,Integer &colour)
Page 348 Elements

Chapter 5 4DML Library Calls
Name

Integer Get_face_hatch_colour(Element elt,Integer &colour)

Description

Get the colour of the solid fill for the face string elt. The colour number is returned as colour.

A function return value of zero indicates the data was successfully returned.

Set_face_hatch_colour(Element elt,Integer colour)

Name

Integer Set_face_hatch_colour(Element elt,Integer colour)

Description

Set the colour of the solid fill for the face string elt to the colour number colour.

A function return value of zero indicates the data was successfully set.

Get_face_edge_colour(Element elt,Integer &colour)

Name

Integer Get_face_edge_colour(Element elt,Integer &colour)

Description

Get the colour of the edge of the face string elt. The colour number is returned as colour.

A function return value of zero indicates the data was successfully returned.

Set_face_edge_colour(Element elt,Integer colour)

Name

Integer Set_face_edge_colour(Element elt,Integer colour)

Description

Set the colour of the edge of the face string elt to the colour number colour.

A function return value of zero indicates the data was successfully set.

Get_face_hatch_mode(Element elt,Integer &mode)

Name

Integer Get_face_hatch_mode(Element elt,Integer &mode)

Description

Get the mode of the hatch of the face string elt. The value of mode is returned as mode.

If the mode is 1, then the hatch pattern is drawn when the face is on a plan view.
If the mode is 0, then the hatch pattern is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully returned.

Set_face_hatch_mode(Element elt,Integer mode)

Name

Integer Set_face_hatch_mode(Element elt,Integer mode)
Page 349Elements

12d Model Programming Manual
Description

Set the mode of the hatch pattern of the face string elt to the value mode.

If the mode is 1, then the hatch pattern is drawn when the face is on a plan view.
If the mode is 0, then the hatch pattern is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully set.

Get_face_fill_mode(Element elt,Integer &mode)

Name

Integer Get_face_fill_mode(Element elt,Integer &mode)

Description

Get the mode of the fill of the face string elt. The value of mode is returned as mode.

If the mode is 1, then the face is filled with the face colour when the face is on a plan view.
If the mode is 0, then the face is not filled when the face is on a plan view.

A function return value of zero indicates the data was successfully returned.

Set_face_fill_mode(Element elt,Integer mode)

Name

Integer Set_face_fill_mode(Element elt,Integer mode)

Description

Set the mode of the fill of the face string elt to the value mode.

If the mode is 1, then the face is filled with the face colour when the face is on a plan view.
If the mode is 0, then the face is not filled when the face is on a plan view.

A function return value of zero indicates the data was successfully set.

Get_face_edge_mode(Element elt,Integer &mode)

Name

Integer Get_face_edge_mode(Element elt,Integer &mode)

Description

Get the mode of the edge of the face string elt. The value of mode is returned as mode.

If the mode is 1, then the edge is drawn with the edge colour when the face is on a plan view.
If the mode is 0, then the edge is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully returned.

Set_face_edge_mode(Element elt,Integer mode)

Name

Integer Set_face_edge_mode(Element elt,Integer mode)

Description

Set the mode for displaying the edge of the face string elt to the value mode.

If the mode is 1, then the edge is drawn with the edge colour when the face is on a plan view.
If the mode is 0, then the edge is not drawn when the face is on a plan view.

A function return value of zero indicates the data was successfully set.
Page 350 Elements

Chapter 5 4DML Library Calls
Plot Frames
A Plot Frame string consists of data for producing plan plots.

The following functions are used to create new plot frames and make inquiries and modifications
to existing plot frames.

Create_plot_frame(Text name)

Name

Element Create_plot_frame(Text name)

Description

Create an Element of type Plot_Frame.

The function return value gives the actual Element created.

If the plot frame could not be created, then the returned Element will be null.

Get_plot_frame_name(Element elt,Text &name)

Name

Integer Get_plot_frame_name(Element elt,Text &name)

Description

Get the name of the plot frame in Element elt.

The name value is returned in Text name.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_scale(Element elt,Real &scale)

Name

Integer Get_plot_frame_scale(Element elt,Real &scale)

Description

Get the scale of the plot frame in Element elt.

The scale value is returned in Real scale. The value for scale is 1:scale.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_rotation(Element elt,Real &rotation)

Name

Integer Get_plot_frame_rotation(Element elt,Real &rotation)

Description

Get the rotation of the plot frame in Element elt.

The name value is returned in Real rotation. The units for rotation are radians.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_origin(Element elt,Real &x,Real &y)
Page 351Elements

12d Model Programming Manual
Name

Integer Get_plot_frame_origin(Element elt,Real &x,Real &y)

Description

Get the origin of the plot frame in Element elt.

The x origin value is returned in Real x.

The y origin value is returned in Real y.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)

Name

Integer Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)

Description

Get the sheet size of the plot frame in Element elt.

The width value is returned in Real w.

The height value is returned in Real h.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_sheet_size(Element elt,Text &size)

Name

Integer Get_plot_frame_sheet_size(Element elt,Text &size)

Description

Get the sheet size of the plot frame in Element elt.

The sheet size is returned in Text size.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)

Name

Integer Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)

Description

Get the sheet margins of the plot frame in Element elt.

The left margin value is returned in Real l.

The bottom margin value is returned in Real b.

The right margin value is returned in Real r.

The top margin value is returned in Real t.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_text_size(Element elt,Real &text_size)

Name

Integer Get_plot_frame_text_size(Element elt,Real &text_size)
Page 352 Elements

Chapter 5 4DML Library Calls
Description

Get the text size of the plot frame in Element elt.

The text size is returned in Text text_size.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_draw_border(Element elt,Integer &draw_border)

Name

Integer Get_plot_frame_draw_border(Element elt,Integer &draw_border)

Description

Get the draw border of the plot frame in Element elt.

The draw border flag is returned in Integer draw_border.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)

Name

Integer Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)

Description

Get the draw viewport of the plot frame in Element elt.

The draw viewport flag is returned in Integer draw_viewport.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)

Name

Integer Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)

Description

Get the draw title file of the plot frame in Element elt.

The draw title file flag is returned in Integer draw_title.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_colour(Element elt,Integer &colour)

Name

Integer Get_plot_frame_colour(Element elt,Integer &colour)

Description

Get the colour of the plot frame in Element elt.

The colour value is returned Integer colour.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_textstyle(Element elt,Text &textstyle)

Name
Page 353Elements

12d Model Programming Manual
Integer Get_plot_frame_textstyle(Element elt,Text &textstyle)

Description

Get the textstyle of the plot frame in Element elt.

The textstyle value is returned in Text textstyle.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_plotter(Element elt,Integer &plotter)

Name

Integer Get_plot_frame_plotter(Element elt,Integer &plotter)

Description

Get the plotter of the plot frame in Element elt.

The plotter value is returned in Integer plotter.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_plotter_name(Element elt,Text &plotter_name)

Name

Integer Get_plot_frame_plotter_name(Element elt,Text &plotter_name)

Description

Get the plotter name of the plot frame in Element elt.

The plotter name is returned in the Text plotter_name.

A function return value of zero indicates the plotter _name was returned successfully.

Get_plot_frame_plot_file(Element elt,Text &plot_file)

Name

Integer Get_plot_frame_plot_file(Element elt,Text &plot_file)

Description

Get the plot file of the plot frame in Element elt.

The plot file value is returned in Text plot_file.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_title_1(Element elt,Text &title)

Name

Integer Get_plot_frame_title_1(Element elt,Text &title)

Description

Get the first title line of the plot frame in Element elt.

The title line value is returned in Text title.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_title_2(Element elt,Text &title)
Page 354 Elements

Chapter 5 4DML Library Calls
Name

Integer Get_plot_frame_title_2(Element elt,Text &title)

Description

Get the second title line of the plot frame in Element elt.

The title line value is returned in Text title.

A function return value of zero indicates the data was successfully returned.

Get_plot_frame_title_file(Element elt,Text &title_file)

Name

Integer Get_plot_frame_title_file(Element elt,Text &title_file)

Description

Get the title file of the plot frame in Element elt.

The title file value is returned in Text title_file.

A function return value of zero indicates the data was successfully returned.

Set_plot_frame_name(Element elt,Text name)

Name

Integer Set_plot_frame_name(Element elt,Text name)

Description

Set the name of the plot frame in Element elt.

The name value is defined in Text name.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_scale(Element elt,Real scale)

Name

Integer Set_plot_frame_scale(Element elt,Real scale)

Description

Set the scale of the plot frame in Element elt.

The scale value is defined in Real scale.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_rotation(Element elt,Real rotation)

Name

Integer Set_plot_frame_rotation(Element elt,Real rotation)

Description

Set the rotation of the plot frame in Element elt.

The rotation value is defined in Real rotation.

A function return value of zero indicates the data was successfully set.
Page 355Elements

12d Model Programming Manual
Set_plot_frame_origin(Element elt,Real x,Real y)

Name

Integer Set_plot_frame_rotation(Element elt,Real rotation)

Description

Set the rotation of the plot frame in Element elt

The rotation value is defined in Real rotation.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_origin(Element elt,Real x,Real y)

Name

Integer Set_plot_frame_origin(Element elt,Real x,Real y)

Description

Set the origin of the plot frame in Element elt.

The x origin value is defined in Real x.

The y origin value is defined in Real y.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_sheet_size(Element elt,Real w,Real h)

Name

Integer Set_plot_frame_sheet_size(Element elt,Real w,Real h)

Description

Set the sheet size of the plot frame in Element elt.

The width value is defined in Real w.

The height value is defined in Real h.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_sheet_size(Element elt,Text size)

Name

Integer Set_plot_frame_sheet_size(Element elt,Text size)

Description

Set the sheet size of the plot frame in Element elt.

The sheet size is defined in Text size.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)

Name

Integer Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)

Description
Page 356 Elements

Chapter 5 4DML Library Calls
Set the sheet margins of the plot frame in Element elt.

The left margin value is defined in Real l.

The bottom margin value is defined in Real b.

The right margin value is defined in Real r.

The top margin value is defined in Real t.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_text_size(Element elt,Real text_size)

Name

Integer Set_plot_frame_text_size(Element elt,Real text_size)

Description

Set the text size of the plot frame in Element elt.

The text size is defined in Text text_size.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_draw_border(Element elt,Integer draw_border)

Name

Integer Set_plot_frame_draw_border(Element elt,Integer draw_border)

Description

Set the draw border of the plot frame in Element elt.

The draw border flag is defined in Integer draw_border.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)

Name

Integer Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)

Description

Set the draw viewport of the plot frame in Element elt.

The draw viewport flag is defined in Integer draw_viewport.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_draw_title_file(Element elt,Integer draw_title)

Name

Integer Set_plot_frame_draw_title_file(Element elt,Integer draw_title)

Description

Set the draw title file of the plot frame in Element elt.

The draw title file flag is defined in Integer draw_title.

A function return value of zero indicates the data was successfully set.
Page 357Elements

12d Model Programming Manual
Set_plot_frame_colour(Element elt,Integer colour)

Name

Integer Set_plot_frame_colour(Element elt,Integer colour)

Description

Set the colour of the plot frame in Element elt.

The colour value is defined Integer colour.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_textstyle(Element elt,Text textstyle)

Name

Integer Set_plot_frame_textstyle(Element elt,Text textstyle)

Description

Set the textstyle of the plot frame in Element elt.

The textstyle value is defined in Text textstyle

A function return value of zero indicates the data was successfully set.

Set_plot_frame_plotter(Element elt,Integer plotter)

Name

Integer Set_plot_frame_plotter(Element elt,Integer plotter)

Description

Set the plotter of the plot frame in Element elt.

The plotter value is defined in Integer plotter.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_plotter_name(Element elt,Text plotter_name)

Name

Integer Set_plot_frame_plotter_name(Element elt,Text plotter_name)

Description

Set the plotter name of the plot frame in Element elt.

The plotter name is given in the Text plotter_name.

A function return value of zero indicates the plotter name was successfully set.

Set_plot_frame_plot_file(Element elt,Text plot_file)

Name

Integer Set_plot_frame_plot_file(Element elt,Text plot_file)

Description

Set the plot file of the plot frame in Element elt

The plot file value is defined in Text plot_file.

A function return value of zero indicates the data was successfully set.
Page 358 Elements

Chapter 5 4DML Library Calls
Set_plot_frame_title_1(Element elt,Text title_1)

Name

Integer Set_plot_frame_title_1(Element elt,Text title_1)

Description

Set the first title line of the plot frame in Element elt.

The title line value is defined in Text title_1.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_title_2(Element elt,Text title_2)

Name

Integer Set_plot_frame_title_2(Element elt,Text title_2)

Description

Set the second title line of the plot frame in Element elt.

The title line value is defined in Text title_2.

A function return value of zero indicates the data was successfully set.

Set_plot_frame_title_file(Element elt,Text title_file)

Name

Integer Set_plot_frame_title_file(Element elt,Text title_file)

Description

Set the title file of the plot frame in Element elt

The title file value is defined in Text title_file.

A function return value of zero indicates the data was successfully set.

Feature String
A 12d Model Feature string is a circle with a z-value at the centre but only null values on the
circumference.

Create_feature()

Name

Element Create_feature()

Description

Create an Element of type Feature

The function return value gives the actual Element created.

If the feature string could not be created, then the returned Element will be null.

Create_feature(Element seed)
Page 359Elements

12d Model Programming Manual
Name

Element Create_feature(Element seed)

Description

Create an Element of type Feature and set the colour, name, style etc. of the new string to be the
same as those from the Element Seed.

The function return value gives the actual Element created.

If the Feature string could not be created, then the returned Element will be null.

Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)

Name

Element Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)

Description

Create an Element of type Feature with name name, colour colour, centre (xc,yc), radius rad
and z value (height) zc.

The function return value gives the actual Element created.

If the Feature string could not be created, then the returned Element will be null.

Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)

Name

Integer Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)

Description

Get the centre point for Feature string given by Element elt.

The centre of the Feature is (xc,yc,zc).

A function return value of zero indicates the centre was successfully returned.

Set_feature_centre(Element elt,Real xc,Real yc,Real zc)

Name

Integer Set_feature_centre(Element elt,Real xc,Real yc,Real zc)

Description

Set the centre point of the Feature string given by Element elt to (xc,yc,zc).

A function return value of zero indicates the centre was successfully modified.

Get_feature_radius(Element elt,Real &rad)

Name

Integer Get_feature_radius(Element elt,Real &rad)

Description

Get the radius for Feature string given by Element elt and return it in rad.

A function return value of zero indicates the radius was successfully returned.

Set_feature_radius(Element elt,Real rad)
Page 360 Elements

Chapter 5 4DML Library Calls
Name

Integer Set_feature_radius(Element elt,Real rad)

Description

Set the radius of the Feature string given by Element elt to rad. The new radius must be non-
zero.

A function return value of zero indicates the radius was successfully modified.
Page 361Elements

12d Model Programming Manual
Super String Element
See Super String Dimensions and Flags
See Flags and Dimension Combinations

See Super String Functions
See Super String Height Functions
See Super String Segment Colour Functions
See Super String Segment Radius Functions
See Super String Pipe/Culvert Functions
See Super String Vertex Symbol Functions
See Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern Functions
See Super String Hole Functions
See Super String Vertex Text Functions
See Super String Vertex Annotation Functions
See Super String Segment Text Functions
See Super String Segment Annotation Functions
See Super String Tinability Functions
See Super String Point Id Functions
See Super String Segment Geometry Functions
See Super String Extrude Functions
See Super String Vertex Attributes Functions
See Super String Segment Attributes Functions
See Super String Visibility Functions

Super String Dimensions and Flags
The super string is intended as a replacement of the following string types:

 2d, 3d, 4d, interface, face, pipe and polyline.

The super string covers all these string types and many more combinations that were never
allowed for the other strings.

For example, users wanted to be able to have a polyline string but with a pipe diameter, or a 2d
string with text at each vertex. To cover every combination that the users required would mean
thousands of different string types.

The solution is to offer a string that has optional dimensions to cover all of the properties of the
other strings. For example, the super string has two mutually exclusive dimensions called 2d
level and 3d level. This can cover the functionality offered by both the 2d string and the 3d string.

When a dimension does not exist in the super string, there is no storage used and hence a 2d
super string only requires the same memory as a 2d string.

The super string supports over 50 different dimensions, of which only two are mandatory
dimensions (the x & y coordinates). Every other dimension is optional.

Before using any functionality, the super string must be told that a particular dimension is
required and there are function calls to set each dimension (use calls).

The list of dimensions follows below with the names that are defined, and the actual number that
the name has. Either the name or the number can be used in calls requiring a super string
dimension.

Please note that where two dimensions are listed on one line, this means that only one or no
dimension may exist, but not both. (Strictly speaking, they can both exist but the array dimension
takes precedence over the value dimension, and the super string may compress or remove the
value dimension.)

Note - although there are calls to set each of the dimensions individually, it is possible to set
more than one dimension at once using flags (see Flags and Dimension Combinations)
Page 362 Super String Element

Chapter 5 4DML Library Calls
 a

The calls for each dimension are grouped together. There are also general super string creation
and data setting calls documented in Super String Functions and Element Operations .

For information on the Super String Dimensions:

See Height Dimensions
See Segment Radius Dimension
See Pipe/Culvert Dimensions
See Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions
See Hole Dimension
See Text Dimensions
See Text Annotation Dimensions
See Vertex Symbol Dimensions
See User Defined Attributes Dimensions
See Tinability Dimensions
See Visibility Dimensions
See Colour Dimension
See Point Id Dimension
See Vertex Image Dimensions
See Segment Geometry Dimension
See Matrix Dimension
See UID Dimensions
See Att Database Point Dimensions
See Extrude Dimensions
See Att Null Levels Dimensions

See information on setting more than one dimension at once, Flags and Dimension Combinations

For information on the Super String function calls:

See Super String Dimensions and Flags
See Flags and Dimension Combinations
See Super String Functions
See Super String Height Functions
See Super String Segment Colour Functions
See Super String Segment Radius Functions
See Super String Pipe/Culvert Functions
See Super String Vertex Symbol Functions
See Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern Functions
See Super String Hole Functions
See Super String Vertex Text Functions
See Super String Vertex Annotation Functions
See Super String Segment Text Functions
See Super String Segment Annotation Functions
See Super String Tinability Functions
See Super String Point Id Functions
See Super String Segment Geometry Functions
See Super String Extrude Functions
See Super String Vertex Attributes Functions
See Super String Segment Attributes Functions
See Super String Visibility Functions

Height Dimensions

Att_ZCoord_Value 1 or Att_ZCoord_Array 2

If Att_ZCoord_Array is set, then the super string has a z-value for each vertex.
Page 363Super String Element

12d Model Programming Manual
If Att_ZCoord_Value is set and Att_ZCoord_Array not set, then the super string has one z-
value for the entire string.

If neither dimension exists, then the string with no height. That is, it is a string with null height.

See Super String Height Functions

Segment Radius Dimension

Att_Radius_Array 3

Att_Major_Array 4

If Att_Radius_Array is set, then the super string segments can be arcs, and there is an array
to record the radius of the arc for each segment.

If Att_Major_Array is set, then there is an array to record for each segment if the arc is a major
or minor arc.

If neither dimension is set, then all the string segments are straight lines.

NOTE: In the current implementation, the Att_Major_Array is automatically set when
Att_Radius_Array is set.

See Super String Segment Radius Functions

Pipe/Culvert Dimensions

Att_Pipe_Justify 23

If Att_Pipe_Justify is set, then the super string has a justification for the pipe or culvert.

Att_Diameter_Value 5 or Att_Diameter_Array 6

If Att_Diameter_Array is set, then the super string has a diameter for each segment.

If Att_Diameter_Value is set and Att_Diameter_Array not set, then the super string has one
diameter value for the entire string.

Att_Culvert_Value 24 or Att_Culvert_Array 25

If Att_Culvert_Array is set, then the super string has a width and height for each segment.

If Att_Att_Culvert_Value is set and Att_Att_Culvert_Array not set, then the super string has
one width and height for the entire string.

If none of the Pipe/Culvert dimensions exist, then the string has no thickness. Note that you
cannot have both diameter dimensions and culvert dimensions.

Also having the Att_Pipe_Justify dimension by itself will do nothing. If Att_Pipe_Justify does not
exist, the pipe/culvert are centreline based.

See Super String Pipe/Culvert Functions

Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern Dimensions

Att_Solid_Value 28

If Att_Solid_Value is set, then the super string can be filled with a solid colour.

Att_Bitmap_Value 29

If Att_Bitmap_Value is set, then the super string can be filled with a bitmap.

Att_Hatch_Value 27

If Att_Hatch_Value is set, then the super string can be filled with a hatch.

Att_Pattern_Value 33

If Att_Pattern_Value is set, then the super string can be filled with a 12d pattern.

Att_Autocad_Pattern_Value 54
Page 364 Super String Element

Chapter 5 4DML Library Calls
If Att_Autocad_Pattern_Value is set, then the super string can be filled with an AutoCad
pattern.

Note that all the Solid/Bitmap/Hatch/Pattern/Autocad_Pattern dimensions can exist. They are
drawn in the order solid, bitmap, pattern, hatch and then Autocad pattern. Note that because the
bitmap allows for transparency, it is possible to use one bitmap with a variety of different
background colours.

See Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern Functions

Hole Dimension

Att_Hole_Value 26

If Att_Hole_Value is set, then the super string can have zero or more super strings as internal
holes.

So it is possible to have a solid object like a horse shoe where the holes for the nails exist so that
no filling occurs in the nail holes.

Note that the holes themselves may have their own solid/bitmap/hatch dimensions.

Warning, holes may not contain their own holes in the current implementation (that is, only one
level of holes is allowed).

See Super String Hole Functions

Text Dimensions

Att_Vertex_Text_Value 10 or Att_Vertex_Text_Array 7

If Att_Vertex_Array is set, then the super string can have different text at each vertex.

If Att_Vertex_Value is set and Att_Vertex_Array not set, then the super string has the one text
for each vertex of the string.

Att_Segment_Text_Value 22 or Att_Segment_Text_Array 8

If Att_Segment_Array is set, then the super string can have text for each segment.

If Att_Segment_Value is set and Att_Segment_Array not set, then the super string has the
one text for each segment of the string.

Note that it is possible to have text associated with a vertex/segment but it is not visible. To be
able to draw the text, see Text Annotation Dimensions below.

See Super String Segment Text Functions
See Super String Vertex Text Functions

Text Annotation Dimensions

Att_Vertex_World_Annotate 30

Att_Vertex_Paper_Annotate 45

Att_Vertex_Annotate_Value 14 or Att_Vertex_Annotate_Array 15

If Att_Vertex_Annotate_Array is set, then the super string can have a different annotation for
the text at each vertex.

If Att_Vertex_Annotate_Value is set and Att_Vertex_Annotate_Array not set, then the super
string has the one annotation to be used for text on the vertices of the string.

If Att_Vertex_World_Annotate and Att_Vertex_Paper_Annotate do not exist, then the annotated
text is device.

See Super String Vertex Annotation Functions

Att_Segment_World_Annotate 31
Page 365Super String Element

12d Model Programming Manual
Att_Segment_Paper_Annotate 46

Att_Segment_Annotate_Value 20 or Att_Segment_Annotate_Array 21

If Att_Segment_Annotate_Array is set, then the super string can have a different annotation
for the text on each segment.

If Att_Segment_Annotate_Value is set and Att_Segment_Annotate_Array not set, then the
super string has the one annotation to be used for text on the segments of the string.

If Att_Segment_World_Annotate and Att_Segment_Paper_Annotate do not exist, then the
annotated text is device.

See Super String Segment Annotation Functions

Vertex Symbol Dimensions

Att_Symbol_Value 17 or Att_Symbol_Array 18

If Att_Symbol_Array is set, then the super string can have symbols at each vertex.

If Att_Symbol_Value is set and Att_Symbol_Array not set, then the super string has the one
symbol for each vertex of the string.

See Super String Vertex Symbol Functions

User Defined Attributes Dimensions

Att_Vertex_Attribute_Array 16

If Att_Vertex_Attribute_Array is set, then the super string can have a different Attributes at
each vertex.

Att_Segment_Attribute_Array 19

If Att_Segment_Attribute_Array is set, then the super string can have a different Attributes on
each segment

See Super String Vertex Attributes Functions
See Super String Segment Attributes Functions

Tinability Dimensions

Att_Contour_Array 3 This dimension applies for both vertex and segment tinability.

Att_Vertex_Tinable_Value 37 or Att_Vertex_Tinable_Array 38

If Att_VertexTinable_Array is set, then the super string can have a different tinability at each
vertex.

If Att_Vertex_Tinable_Value is set and Att_Vertex_Tinable_Array not set, then the super
string has the one tinability value to be used for all vertices of the string.

Att_Segment_Tinable_Value 39 or Att_Segment_Tinable_Array 40

If Att_Segment_Tinable_Array is set, then the super string can have a different tinability for
each segment.

If Att_Segment_Tinable_Value is set and Att_Segment_Tinable_Array not set, then the super
string has the one tinability value to be used for all segments of the string.

See Super String Tinability Functions

Visibility Dimensions

Att_Visible_Array 12 This dimension applies for both vertex and segment visibility.

Att_Vertex_Visible_Value 41 or Att_Vertex_Visible_Array 42

Att_Segment_Visible_Value 43 or Att_Segment_Visible_Array 44

See Super String Visibility Functions
Page 366 Super String Element

Chapter 5 4DML Library Calls
Colour Dimension

Att_Colour_Array 9 LJG? For a colour for each segment (what about vertex?)

See Super String Segment Colour Functions

Point Id Dimension

Att_Point_Array 11 For a Point id at each vertex

If Att_Point_Array is set, then the super string can have a Point Id at each vertex.

See Super String Point Id Functions

Vertex Image Dimensions

Att_Vertex_Image_Value 51 For an image at each vertex

Att_Vertex_Image_Array 52 For many images at each vertex

See Super String Vertex Image Functions

Segment Geometry Dimension

Att_Geom_Array 32 allow transitions for segments

If Att_Geom_Array is set, then the super string then each segment can be a line, arc or a
transition.

See Super String Segment Geometry Functions

Matrix Dimension

Att_Matrix_Value 53 ?

UID Dimensions

Att_Vertex_UID_Array 35

Att_Segment_UID_Array 36

See Super String Uid Functions

Att Database Point Dimensions

Att_Database_Point_Array 47

Extrude Dimensions

Att_Extrude_Value 48

Att_Interval_Value 50

See Super String Extrude Functions

Att Null Levels Dimensions

// only used internally - not a normal dimension

 Att_Null_Levels_Value 55

For information on setting flags to set more than one dimension at see, see Flags and Dimension
Page 367Super String Element

12d Model Programming Manual
Combinations .

Flags and Dimension Combinations

There is a function call for each dimension to tell the super string to use that particular dimension
and if more than one dimension is required, then simply call each function to set each of the
required dimensions.

It is also possible to set one or many dimensions at once through one call by using a call with
Integer flags.

An Integer is actually made up of 32-bits and each bit can be taken to mean that if the bit is 1
then a particular dimension is to be set (that is used) and 0 if it is not to be set.

So for example, 0 = binary 0 would mean no dimensions are to be used.
 1 = binary 1 would mean only the first dimension is to be used
 2 = binary 10 would mean only the second dimension is used
 3 = binary 11 would mean the first and second dimensions only are used
 4 = binary 100 would mean that only the third dimensions is used
So for the nth dimension to be set, you simply add 2 raised to the power n-1 to the Integer.

Because an Integer is only 32-bits, one Integer can only be used for thirty two (32) dimensions.

A second Integer is required to specify the dimensions 33 to a maximum of 64.

Since there is currently under 64 dimensions, then two Integer flags (flag1, flag2) can be used to
set all the required dimensions on/off in the once call.

The following macros to help create the flags are defined in the include file “Setups.H”, as are all
the Att_ dimension values.

#define concat(a,b) a##b

#define String_Super_Bit(n) (1 << concat(Att_,n)) // for dimensions 1 to 32

#define String_Super_Bit_Ex(n) (1 << concat(Att_,n) - 32) // for dimensions 32 to 64

// So if flag1 holds dimensions 1 to 32 (i.e. ZCoord_Value to Geom_Array)

then the definition

 Integer flags1 = String_Super_Bit(ZCoord_Value) | String_Super_Bit(Radius_Array);

means that flag1 represents having the two dimensions ZCoord_Value and Radius_Array

// If flag2 holds dimensions 32 to 64 (i.e. Pattern_Value to last current dimension)

then the definition

 Integer flags2 = String_Super_Bit_Ex(Pattern_Value) |
String_Super_Bit_Ex(Vertex_Tinable_Array);

means that flag2 represents having the two dimensions Pattern_Value and
Vertex_Tinable_Array

As an code example, the code below defines a super string with independent heights at each
vertex and the ability for arcs on each segment. This is the equivalent of the polyline string.

 Integer flag1 = String_Super_Bit(ZCoord_Array) | String_Super_Bit(Radius_Array);

 Integer flag2 = 0; // no dimensions greater than 32

 Integer npts = 100;

 Element super = Create_super(flag1,flag2,npts);
Page 368 Super String Element

Chapter 5 4DML Library Calls
Super String Functions
The super string can have a variable number of dimensions but it must have at least (x,y) values
for every vertex. As for other string types, there are a number of calls to create and load bulk data
into a super string.

Once a super string is created, the other dimensions can be added using the use calls for that
dimension, and the extra data for that dimension can then be loaded in.

Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts)

Name

Element Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)

Description

Create an Element of type Super with num_pts vertices.

The basic geometry for the super string is supplied by the arrays x (x values), y (y values), z (z
values), r (radius of segments), f (segment is bulged or not).

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.

Note that depending on the flag1 value, the z, r, f arrays may or may not be used, but the arrays
must still be supplied. See Super String Dimensions and Flags for the values that flag1 may
take.

The arrays must be of length num_pts or greater.

The function return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.

For example Integer Create_super(Integer flag1, Integer flag2,Real x[],Real y[],Real z[],Real
r[],Integer f[],Integer num_pts).

Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer
f[],Integer num_pts)

Name

Element Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts)

Description

Create an Element of type Super with num_pts vertices.

The basic geometry for the super string is supplied by the arrays x (x values), y (y values), z (z
values), r (radius of segments), f (segment is bulged or not).

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.

Note that depending on the flag1 value, the z, r, f arrays may or may not be used, but the arrays
must still be supplied. See Super String Dimensions and Flags for the values that flag1 and
flag2 may take.

The arrays must be of length num_pts or greater.

The function return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.
Page 369Super String Element

12d Model Programming Manual
Create_super(Integer flag1,Integer num_pts)

Name

Element Create_super(Integer flag1,Integer num_pts)

Description

Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used. See Super
String Dimensions and Flags for the values that flag1 may take.

The actual values of the arrays are set by other function calls after the string is created.

The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.

For example Integer Create_super(Integer flag1, Integer flag2,Integer num_pts).

Create_super(Integer flag1,Integer flag2,Integer npts)

Name

Element Create_super(Integer flag1,Integer flag2,Integer npts)

Description

create super string with arrays set aside following flag1 and flag 2 (extended dimensions).

Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.

See Super String Dimensions and Flags for the values that flag1 and flag2 may take.

The actual values of the arrays are set by other function calls after the string is created.

The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Create_super(Integer num_pts,Element seed)

Name

Element Create_super(Integer num_pts,Element seed)

Description

Create an Element of type Super with room for num_pts vertices and num_pts-1 segments if
the string is not closed or num_pts segments if the string is closed.

Set the colour, name, style, flags etc. of the new string to be the same as those from the Element
seed. Note that the seed string must also be a super string.

The actual values of the arrays are set after the string is created.

The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Create_super(Integer flag1,Segment seg)
Page 370 Super String Element

Chapter 5 4DML Library Calls
Name

Element Create_super(Integer flag1,Segment seg)

Description

Create an Element of type Super with two vertices if seg is a Line, Arc or Spiral, or one vertex if
seg is a Point. The co-ordinates for the one or two vertices are taken from seg.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used. See Super
String Dimensions and Flags for the values that flag1 may take.

LJG? if seg is an Arc or a Spiral, then what dimensions are set and what values are they given?

The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Note - if dimensions greater than 32 are required, then calls with two flags must be used.

For example Integer Create_super(Integer flag1, Integer flag2,Segment seg).

Create_super(Integer flag1,Integer flag2,Segment seg)

Name

Element Create_super(Integer flag1,Integer flag2,Segment seg)

Description

Create an Element of type Super with two vertices if seg is a Line, Arc or Spiral, or one vertex if
seg is a Point. The co-ordinates for the one or two vertices are taken from seg.

flag1 is used to specify which of the dimensions from 1 to 32 are used/not used.
flag2 is used to specify which of the dimensions from 33 to 64 are used/not used.

See Super String Dimensions and Flags for the values that flag1 and flag2 may take.

LJG? if seg is an Arc or a Spiral, then what dimensions are set and what values are they given?

The return value is an Element handle to the created super string.

If the Super string could not be created, then the returned Element will be null.

Get_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts)

Name

Integer Get_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
max_pts,Integer &num_pts)

Description

Get the (x,y,z,r,f) data for the first max_pts vertices of the super string Element elt.

The (x,y,z,r,f) values at each string vertex are returned in the Real arrays x[], y[],z[],r[] and f[]

(the arrays are x values, y values, z values, radius of segments, f segment is bulged or not).

The maximum number of vertices that can be returned is given by max_pts (usually the size of
the arrays).

The vertex data returned starts at the first vertex and goes up to the minimum of max_pts and the
number of vertices in the string.

The actual number of vertices returned is returned by Integer num_pts

 num_pts <= max_pts

If the Element elt is not of type Super, then num_pts is returned as zero and the function return
value is set to a non-zero value.
Page 371Super String Element

12d Model Programming Manual
A function return value of zero indicates the data was successfully returned.

Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer f[],
Integer max_pts,Integer &num_pts,Integer start_pt)

Name

Integer Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer f[], Integer
max_pts,Integer &num_pts,Integer start_pt)

Description

For a super string Element super, get the (x,y,z,r,f) data for max_pts vertices starting at vertex
number start_pt (the arrays are x values, y values, z values, radius of segments, f segment is
bulged or not).

This routine allows the user to return the data from a super string in user specified chunks. This
is necessary if the number of vertices in the string is greater than the size of the arrays available
to contain the information.

As in the previous function, the maximum number of vertices that can be returned is given by
max_pts

(usually the size of the arrays).

However, for this function, the vertex data returned starts at vertex number start_pt rather than
vertex one.

The (x,y,z,r,f) values at each string vertex are returned in the Real arrays x[], y[],z[],r[] and f[].

The actual number of vertices returned is given by Integer num_pts

num_pts <= max_pts

If the Element super is not of type Super, then num_pts is set to zero and the function return
value is set to a non zero value.

A function return value of zero indicates the data was successfully returned.

Note

A start_pt of one gives the same result as for the previous function.

Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r,
Integer &f)

Name

Integer Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)

Description

Get the (x,y,z,r,f) data for the ith vertex of the super string super.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.
The radius value is returned in Real r.
The bulge flag value is returned in Integer f.

A function return value of zero indicates the data was successfully returned.

Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],
Integer num_pts)

Name

Integer Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[], Integer num_pts)
Page 372 Super String Element

Chapter 5 4DML Library Calls
Description

Set the (x,y,z,r,f) data for the first num_pts vertices of the string Element elt.

This function allows the user to modify a large number of vertices of the string in one call.

The maximum number of vertices that can be set is given by the number of vertices in the string.

The (x,y,z,r,f) values for each string vertex are given in the Real arrays x[], y[],z[],r[] and f[].

The number of vertices to be set is given by Integer num_pts

If the Element elt is not of type Super, then nothing is modified and the function return value is
set to a non zero value.

A function return value of zero indicates the data was set successfully.

Note

This function can not create new super Elements but only modify existing super Elements.

Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer
num_pts,Integer start_pt)

Name

Integer Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,Integer
start_pt)

Description

For the super Element elt, set the (x,y,z,r,f) data for num_pts vertices, starting at vertex number
start_pt.

This function allows the user to modify a large number of vertices of the string in one call starting
at vertex

number start_pt rather than vertex one.

The maximum number of vertices that can be set is given by the difference between the number
of vertices in the string and the value of start_pt.

The (x,y,z,r,f) values for the string vertices are given in the Real arrays x[], y[],z[],r[] and f[].

The number of the first string vertex to be modified is start_pt.

The total number of vertices to be set is given by Integer num_pts

If the Element elt is not of type Super, then nothing is modified and the function return value is
set to a non zero value.

A function return value of zero indicates the data was set successfully.

Notes

(a) A start_pt of one gives the same result as the previous function.

(b) This function can not create new 3d Elements but only modify existing 3d Elements.

Set_super_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Name

 Integer Set_super_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

Description

Set the (x,y,z,r,f) data for the ith vertex of the super Element elt.

The x value is returned in Real x.
The y value is returned in Real y.
The z value is returned in Real z.
Page 373Super String Element

12d Model Programming Manual
The radius value is returned in Real r.
The bulge flag value is returned in Integer f (0 for no bulge, non zero for a bulge).

A function return value of zero indicates the data was successfully set.

Get_super_vertex_coord(Element super,Integer vert,Real &x,Real &y,Real &z)

Name

Integer Get_super_vertex_coord(Element super,Integer vert,Real &x,Real &y,Real &z)

Description

A return value of 0 indicates the function call was successful.

Set_super_vertex_coord(Element super,Integer vert,Real x,Real y,Real z)

Name

Integer Set_super_vertex_coord(Element super,Integer vert,Real x,Real y,Real z)

Description

A return value of 0 indicates the function call was successful.

Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)

Name

Integer Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)

Description

For the Element super of type Super, get the angle of the tangent at the beginning of the
segment leaving vertex number vert. That is, the segment going from vertex vert to vertex
vert+1. Return the angle in ang.

ang is in radians and is measured in a counterclockwise direction from the positive x-axis.

If the super string is closed, the angle will still be valid for the last vertex of the super string and it
is the angle of the closing segment between the last vertex and the first vertex.

If super string is open, the call fails for the last vertex and a non-zero return code is returned.

If the Element super is not of type Super, then a non-zero return code is returned

A function return value of zero indicates the angle was successfully returned.

Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)

Name

Integer Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)

Description

For the Element super of type Super, get the angle of the tangent at the end of the segment
entering vertex number vert. That is, the segment going from vertex vert-1 to vertex vert. Return
the angle in ang.

ang is in radians and is measured in a counterclockwise direction from the positive x-axis.

If the super string is closed, the angle will still be valid for the first vertex of the super string and it
is the angle of the closing segment between the first vertex and the last vertex.

If super string is open, the call fails for the first vertex and a non-zero return code is returned.

If the Element super is not of type Super, then a non-zero return code is returned
Page 374 Super String Element

Chapter 5 4DML Library Calls
A function return value of zero indicates the angle was successfully returned.

Set_super_segment_world_text(Element)

Name

Integer Set_super_segment_world_text(Element)

Description

A return value of 0 indicates the function call was successful.

<no description>

Set_super_segment_device_text(Element)

Name

Integer Set_super_segment_device_text(Element)

Description

A return value of 0 indicates the function call was successful.

<no description>
Page 375Super String Element

12d Model Programming Manual
Super String Height Functions
For definitions of the height dimensions, see Height Dimensions

Get_super_use_2d_level(Element elt,Integer &use)

Name

Integer Get_super_use_2d_level(Element elt,Integer &use)

Description

Query whether the dimension Att_ZCoord_Value exists for the super string elt.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
for information on Height dimensions.

use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_2d_level(Element elt,Integer use)

Name

Integer Set_super_use_2d_level(Element elt,Integer use)

Description

For the super string Element elt, define whether the dimension Att_ZCoord_Value is used.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
for information on Height dimensions.

If use is 1, the dimension is set. If use is 0, the dimension is removed.

Note that if the dimension Att_ZCoord_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_3d_level(Element elt,Integer &use)

Name

Integer Get_super_use_3d_level(Element elt,Integer &use)

Description

Query whether the dimension Att_ZCoord_Array exists for the super string elt.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
for information on Height dimensions.

use is returned as 1 if the dimension exists, or 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_3d_level(Element elt,Integer use)

Name

Integer Set_super_use_3d_level(Element elt,Integer use)

Description

For the super string Element elt, define whether the dimension Att_ZCoord_Array is used.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
Page 376 Super String Element

Chapter 5 4DML Library Calls
for information on Height dimensions.

If use is 1, the dimension is set. If use is 0, the dimension is removed.

Note that if the dimension Att_ZCoord_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_2d_level(Element elt,Real &level)

Name

Integer Get_super_2d_level(Element elt,Real &level)

Description

For the Element elt, if the dimension Att_ZCoord_Value is set, then the z-value for the entire
string is returned in level.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
for information on Height dimensions.

If the Element elt is not of type Super, or the dimension Att_ZCoord_Value is not set, this call
fails and a non zero return value is returned.

A return value of zero indicates the function call was successful.

Set_super_2d_level(Element elt,Real level)

Name

Integer Set_super_2d_level(Element elt,Real level)

Description

For the Element elt of type Super, if the dimension Att_ZCoord_Value is set, then the z-value for
the entire string is set to level.

See Super String Dimensions and Flags for information on dimensions and Height Dimensions
for information on Height dimensions.

 If the Element elt is not of type Super, or the dimension Att_ZCoord_Value is not set, this call
fails and a non zero return value is returned.

A return value of zero indicates the function call was successful.

Super String Segment Colour Functions
For definitions of the Colour dimension, see Colour Dimension

Get_super_use_segment_colour(Element super,Integer &use)

Name

Integer Get_super_use_segment_colour(Element super,Integer &use)

Description

Query whether the dimension Att_Colour_Array exists for the super string. A value for use of 1
indicates the dimension exists.

See Super String Dimensions and Flags for information on dimensions and Colour Dimension
for information on the Colour dimension.

A return value of 0 indicates the function call was successful.
Page 377Super String Element

12d Model Programming Manual
Set_super_use_segment_colour(Element super,Integer use)

Name

Integer Set_super_use_segment_colour(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Colour_Array. A value for use of 1 sets the
dimension and 0 removes it.

See Super String Dimensions and Flags for information on dimensions and Colour Dimension
for information on the Colour dimension.

A return value of 0 indicates the function call was successful.

Get_super_segment_colour(Element super,Integer seg,Integer &colour)

Name

Integer Get_super_segment_colour(Element super,Integer seg,Integer &colour)

Description

For the Element super of type Super, get the colour number for the segment number seg and
return it as colour.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Colour_Array set.

A function return value of zero indicates colour was successfully returned.

Set_super_segment_colour(Element super,Integer seg,Integer colour)

Name

Integer Set_super_segment_colour(Element super,Integer seg,Integer colour)

Description

For the Element super of type Super, set the colour number for the segment number seg to be
colour.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Colour_Array set.

A function return value of zero indicates colour was successfully set.

Super String Segment Radius Functions
For definitions of the Segment Radius dimensions, see Segment Radius Dimension

Get_super_use_segment_radius(Element super,Integer &use)

Name

Integer Get_super_use_segment_radius(Element super,Integer &use)

Description

Query whether the dimension Att_Radius_Array exists for the super string. A value for use of 1
indicates the dimension exists.

See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on the Segment Radius dimension.

A return value of 0 indicates the function call was successful.
Page 378 Super String Element

Chapter 5 4DML Library Calls
Set_super_use_segment_radius(Element super,Integer use)

Name

Integer Set_super_use_segment_radius(Element super,Integer use)

Description

For the super string Element elt, define whether the dimension Att_Radius_Array is used.

See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on Segment Radius dimensions.

If use is 1, the dimension is set. If use is 0, the dimension is removed.

Note that if the dimension Att_Radius_Array is set then the Att_Major_Array is also automatically
set.

A return value of 0 indicates the function call was successful.

Get_super_segment_radius(Element super,Integer seg,Real &rad)

Name

Integer Get_super_segment_radius(Element super,Integer seg,Real &rad)

Description

For the super string super, get the radius of segment number seg and return the radius in rad.

See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on the Segment Radius dimension.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Radius_Array set.

A return value of 0 indicates the function call was successful.

Set_super_segment_radius(Element super,Integer seg,Real rad)

Name

Integer Set_super_segment_radius(Element super,Integer seg,Real rad)

Description

For the super string super, set the radius of segment number seg to the value rad.

See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on the Segment Radius dimension.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Radius_Array set.

A return value of 0 indicates the function call was successful.

Get_super_segment_major(Element super,Integer seg,Integer &major)

Name

Integer Get_super_segment_major(Element super,Integer seg,Integer &major)

Description

For the super string super, get the major value of segment number seg and return the value in
major.
Page 379Super String Element

12d Model Programming Manual
See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on the Segment Radius dimension.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Major_Array set.

A return value of 0 indicates the function call was successful.

Set_super_segment_major(Element super,Integer seg,Integer major)

Name

Integer Set_super_segment_major(Element super,Integer seg,Integer major)

Description

For the super string super, set the major value of segment number seg to the value major.

See Super String Dimensions and Flags for information on dimensions and Segment Radius
Dimension for information on the Segment Radius dimension.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Major_Array set.

A return value of 0 indicates the function call was successful.

Super String Pipe/Culvert Functions
For definitions of the Pipe and Culvert dimensions, see Pipe/Culvert Dimensions
A super string can be a super pipe string or a super culvert string. It can’t be both.

As a super pipe string, it can have either one diameter for all segments of the string, or it can
have different diameters for each segment of the string.

As a super culvert string, it can have either one width and one height for all segments of the
string, or it can have different heights and widths for each segment of the string.

See Super String Pipe/Culvert Justify Functions
See Super String Pipe Functions
See Super String Culvert Functions

Super String Pipe/Culvert Justify Functions

Get_super_use_pipe_justify(Element super,Integer &use)

Name

Integer Get_super_use_pipe_justify(Element super,Integer &use)

Description

Query whether the dimension Att_Pipe_Justify exists for the Element super of type Super.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

use is returned as 1 if the dimension exists
use is returned as 0 if the dimension doesn’t exist.

Note: the same justification flag is used whether the super string is a pipe or a culvert.

A return value of 0 indicates the function call was successful.

Set_super_use_pipe_justify(Element super,Integer use)
Page 380 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Set_super_use_pipe_justify(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Pipe_Justify is used.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If use is 1, the dimension is set. That is, the pipe or culvert super string has a justification
defined.

If use is 0, the dimension is removed.

Note: the same justification flag is used whether the super string is a pipe or a culvert.

A return value of 0 indicates the function call was successful.

Get_super_pipe_justify(Element super,Integer &justify)

Name

Integer Get_super_pipe_justify(Element super,Integer &justify)

Description

For the Element super of type Super which is a pipe or culvert string (i.e. Att_Diameter_Value,
Att_Diameter_Array, Att_Culvert_Value or Att_Culvert_Array has been set), get the pipe/culvert
justification and return it in justify.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or a correct dimension is not allocated, this call fails
and a non-zero function value is returned.

A return value of 0 indicates the function call was successful

Integer Set_super_pipe_justify(Element super,Integer justify)

Name

Integer Set_super_pipe_justify(Element super,Integer justify)

Description

For the Element super of type Super which is a pipe or culvert string (i.e. Att_Diameter_Value,
Att_Diameter_Array, Att_Culvert_Value or Att_Culvert_Array has been set), set the pipe/culvert
justification to justify.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or a correct dimension is not allocated, this call fails
and a non-zero function value is returned.

A return value of 0 indicates the function call was successful

Super String Pipe Functions

Get_super_use_diameter(Element elt,Integer &use) for V9

Get_super_use_pipe(Element elt,Integer &use) for V10 onwards
Page 381Super String Element

12d Model Programming Manual
Name

Integer Get_super_use_diameter(Element elt,Integer &use)

Integer Get_super_use_pipe(Element elt,Integer &use)

Description

This function has the new name for V10 onwards. The old call will still work.

Query whether the dimension Att_Diameter_Value exists for the super string elt.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

use is returned as 1 if the dimension exists
use is returned as 0 if the dimension doesn’t exist, or if it is a variable pipe string (i.e. a
Att_Diameter_Array exists).

A return value of 0 indicates the function call was successful.

Note - if it is a constant pipe string (Att_Diameter_Value exists) and a variable pipe string
(Att_Diameter_Array exists) then the variable pipe takes precedence.

Set_super_use_diameter(Element elt,Integer use) for V9

Set_super_use_pipe(Element elt,Integer use) for V10 onwards

Name

Integer Set_super_use_diameter(Element elt,Integer use)

Integer Set_super_use_pipe(Element elt,Integer use)

Description

This function has the new name for V10 onwards. The old call will still work.

For the super string Element elt, define whether the dimension Att_Diameter_Value is used.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If use is 1, the dimension is set That is, the pipe has one diameter for the entire string (i.e. a
constant pipe).
If use is 0, the dimension is removed.

Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_diameter(Element elt,Integer &use) for V9

Get_super_use_segment_pipe(Element elt,Integer &use) for V10 onward

Name

Integer Get_super_use_segment_diameter (Element elt,Integer &use)

Integer Get_super_use_segment_pipe (Element elt,Integer &use)

Description

This function has the new name for V10 onwards. The old call will still work.

Query whether the dimension Att_Diameter_Array exists for the super string elt.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist, or it has a constant diameter (i.e.
Att_Diameter_Value exists).
Page 382 Super String Element

Chapter 5 4DML Library Calls
A return value of 0 indicates the function call was successful.

Set_super_use_segment_diameter(Element elt,Integer use) for V9

Set_super_use_segment_pipe(Element elt,Integer use) for V10 onwards

Name

Integer Set_super_use_segment_diameter(Element elt,Integer use)

Integer Set_super_use_segment_pipe(Element elt,Integer use)

Description

This function has the new name for V10 onwards. The old call will still work.

For the super string Element elt, define whether the dimension Att_Diameter_Array is used.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If use is 1, the dimension is set. That is, each pipe segment can have a different diameter.
If use is 0, the dimension is removed.

Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_diameter(Element super,Real &diameter) for V9

Get_super_pipe(Element super,Real &diameter) for V10 onwards

Name

Integer Get_super_diameter(Element super,Real &diameter)

Integer Get_super_pipe(Element super,Real &diameter)

Description

This function has the new name for V10 onwards. The old call will still work.

For the Element super of type Super which is a constant diameter pipe string (i.e.
Att_Diameter_Value has been set), get the pipe diameter and return it in diameter.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful

Note - Get_super_use_pipe can be called to make sure it is constant diameter pipe string.

Set_super_diameter(Element elt,Real diameter) for V9

Set_super_pipe(Element elt,Real diameter) for V10 and above

Name

Integer Set_super_diameter (Element elt,Real diameter)

Integer Set_super_pipe (Element elt,Real diameter)

Description

This function has the new name for V10 onwards. The old call will still work.
Page 383Super String Element

12d Model Programming Manual
For the Element super of type Super which is a constant diameter pipe string (i.e. the dimension
flag Att_Diameter_Value has been set), set the diameter to diameter.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful.

Note - Get_super_use_pipe can be called to make sure it is constant diameter pipe string.

Get_super_segment_diameter(Element elt,Integer seg,Real &diameter) for V9

Get_super_segment_pipe(Element elt,Integer seg,Real &diameter) for V10 onward

Name

Integer Get_super_segment_diameter(Element elt,Integer seg,Real &diameter)

Integer Get_super_segment_pipe(Element elt,Integer seg,Real &diameter)

Description

This function has the new name for V10 onwards. The old call will still work.

For the super Element elt, get the pipe diameter for segment number seg and return it in
diameter.

For V10, if elt is not a variable pipe string then a non zero return value is returned.
For V10,a return value of 0 indicates the function call was successful

For V9, the return code is always 0.

Note - for V9, no error code is set if the string in not a variable pipe string. That needs to checked
using the Get_super_use_pipe calls.

Set_super_segment_diameter(Element elt,Integer seg,Real diameter) for V9

Set_super_segment_pipe(Element elt,Integer seg,Real diameter) for V10 onwards

Name

Integer Set_super_segment_diameter(Element elt,Integer seg,Real diameter)

Integer Set_super_segment_pipe(Element elt,Integer seg,Real diameter)

Description

This function has the new name for V10 onwards. The old call will still work.

For the super Element elt, set the pipe diameter for segment number seg to diameter.

For V10, if elt is not a variable pipe string then a non zero return value is returned.
For V10,a return value of 0 indicates the function call was successful

For V9, the return code is always 0.

Note - for V9, no error code is set if the string in not a variable pipe string. That needs to checked
using the Get_super_use_pipe calls.

Super String Culvert Functions

Get_super_use_culvert(Element super,Integer &use)
Page 384 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Get_super_use_culvert(Element super,Integer &use)

Description

Query whether the dimension Att_Culvert_Value exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_culvert(Element super,Integer use)

Name

Integer Set_super_use_culvert(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Culvert_Value.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

A value for use of 1 sets the dimension and 0 removes it.

Note if any other pipe/culvert dimensions exist (besides Att_Pipe_Justify), this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_culvert(Element super,Integer &use)

Name

Integer Get_super_use_segment_culvert(Element super,Integer &use)

Description

Query whether the dimension Att_Culvert_Array exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_culvert(Element super,Integer use)

Name

Integer Set_super_use_segment_culvert(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Culvert_Array.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

A value for use of 1 sets the dimension and 0 removes it. Note if any other pipe/culvert
dimensions exist (besides Att_Pipe_Justify), this call is ignored.

A return value of 0 indicates the function call was successful.
Page 385Super String Element

12d Model Programming Manual
Get_super_culvert(Element super,Real &w,Real &h)

Name

Integer Get_super_culvert(Element super,Real &w,Real &h)

Description

For the Element super of type Super which is a constant width and height culvert string (i.e.the
dimension flag Att_Culvert_Value has been set), get the culvert width and height and return them
in w and h respectively.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful

Note - Get_super_use_culvert can be called to make sure it is constant culvert string.

Set_super_culvert(Element super,Real w,Real h)

Name

Integer Set_super_culvert(Element super,Real w,Real h)

Description

For the Element super of type Super which is a constant width and height culvert string (i.e.the
dimension flag Att_Culvert_Value has been set), set the culvert width to w and the height to h.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful.

Note - Get_super_use_culvert can be called to make sure it is a constant culvert string.

Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)

Name

Integer Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)

Description

For the Element super of type Super which has culvert widths and heights for each
segment(i.e.the dimension flag Att_Culvert_Array has been set), get the culvert width and height
for segment number seg and return them in w and h respectively.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful.

Note - Get_super_use_segment_culvert can be called to make sure it is variable segment
culvert string.

Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)
Page 386 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)

Description

For the Element super of type Super which has culvert widths and heights for each
segment(i.e.the dimension flag Att_Culvert_Array has been set), set the culvert width and height
for segment number seg to be w and h respectively.

See Super String Dimensions and Flags for information on dimensions and Pipe/Culvert
Dimensions for information on the Pipe/Culvert dimensions.

If the Element super is not of type Super, or the dimension is not allocated, this call fails and a
non-zero function value is returned.

A return value of 0 indicates the function call was successful.

Note - Get_super_use_segment_culvert can be called to make sure it is variable segment
culvert string.

Super String Vertex Symbol Functions
For definitions of the Vertex Symbols dimensions, see Vertex Symbol Dimensions

Symbols can be placed on vertices of a super string.

The displayed symbol is defined by

(a) the position of the super string vertex

(b) the symbol name

(c) angle of rotation of the symbol

(d) defining what is known as the symbol justification point in relation to the vertex

For symbols, the symbol justification point and the angle of the symbol are defined by:

(a) the symbol justification point is given as an x offset and a y offset from the vertex

(b) the angle of the symbol is given as a counter clockwise angle of rotation (measured from
the x-axis) about the symbol justification point.

.position of

the position of the
symbol justification point

angle

x offset and y offset
from the vertex

super string
vertex

is defined by the

Symbol

x offset y
o

ffs
e

t

The vertex and justification point only coincide if the x offset and y offset values are both zero.

Get_super_use_symbol(Element super,Integer &use)

Name

Integer Get_super_use_symbol(Element super,Integer &use)

Description
Page 387Super String Element

12d Model Programming Manual
Query whether the dimension Att_Symbol_Value exists for the Element super of type Super.

See Super String Dimensions and Flags for information on dimensions and Vertex Symbol
Dimensions for information on the Vertex Symbol dimensions.

use is returned as 1 if the dimension exists. That is, the super string has one symbol for all
vertices.

use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_symbol(Element super,Integer use)

Name

Integer Set_super_use_symbol(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Symbol_Value is used.

See Super String Dimensions and Flags for information on dimensions and Vertex Symbol
Dimensions for information on the Vertex Symbol dimensions.

If use is 1, the dimension is set. That is, the super string has one symbol for all vertices.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_symbol(Element super,Integer &use)

Name

Integer Get_super_use_vertex_symbol(Element super,Integer &use)

Description

Query whether the dimension Att_Symbol_Array exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Vertex Symbol
Dimensions for information on the Vertex Symbol dimensions.

A value for use of 1 indicates the dimension exists. That is, the super string has a different
symbol on each vertex.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_symbol(Element super,Integer use)

Name

Integer Set_super_use_vertex_symbol(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Symbol_Array is used.

See Super String Dimensions and Flags for information on dimensions and Vertex Symbol
Dimensions for information on the Vertex Symbol dimensions.

If use is 1, the dimension is set. That is, the super string has a different symbol on each vertex.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)
Page 388 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)

Description

For the super Element super, return as col the colour number of the symbol on vertex number
vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)

Name

Integer Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)

Description

For the super Element super, set the colour number of the symbol from the vertex number vert
to be col.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real
&y_offset)

Name

Integer Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real &y_offset)

Description

For the super Element super, return as y_offset the y offset of the symbol from the vertex
number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)

Name

Integer Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)

Description

For the super Element super, set the y offset of the symbol from the vertex number vert to be
y_offset.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real
&x_offset)

Name

 Integer Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real &x_offset)

Description

For the super Element super, return as x_offset the x offset of the symbol from vertex number
vert.

A return value of 0 indicates the function call was successful.
Page 389Super String Element

12d Model Programming Manual
Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)

Name

Integer Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)

Description

For the super Element super, set the x offset of the symbol from vertex number vert to be
x_offset.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)

Name

Integer Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)

Description

For the super Element super, return the angle of rotation in angle of the symbol on vertex
number vert. angle is in radians and is measured counterclockwise from the x-axis.

A return value of 0 indicates the function call was successful.

Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)

Name

Integer Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)

Description

For the super Element super, set the angle of rotation of the symbol on vertex number vert to
ang. ang is in radians and is measured counterclockwise from the x-axis.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_size(Element super,Integer vert,Real &s)

Name

Integer Get_super_vertex_symbol_size(Element super,Integer vert,Real &s)

Description

For the super Element super, return as s the size of the symbol on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_symbol_size(Element super,Integer vert,Real s)

Name

Integer Set_super_vertex_symbol_size(Element super,Integer vert,Real s)

Description

For the super Element super, set the size of the symbol on vertex number vert to be s.

A return value of 0 indicates the function call was successful.

Get_super_vertex_symbol_style(Element super,Integer vert,Text &sym)

Name
Page 390 Super String Element

Chapter 5 4DML Library Calls
Integer Get_super_vertex_symbol_style(Element super,Integer vert,Text &s)

Description

For the super Element super, return the name of the symbol on vertex number vert in Text sym.

A return value of 0 indicates the function call was successful.

Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)

Name

Integer Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)

Description

For the super Element super, set the symbol on vertex number vert to be the symbol style
named sym.

A return value of 0 indicates the function call was successful.

Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern
Functions

For definitions of the Solid, Bitmap, Hatch and Fill dimensions, see Solid/Bitmap/Hatch/ Fill/Pattern/
ACAD Pattern Dimensions

See Super String Hatch Functions
See Super String Solid Functions
See Super String Bitmap Functions
See Super String Patterns Functions
See Super String ACAD Patterns Functions

Super String Hatch Functions

Set_super_use_hatch(Element super,Integer use)

Name

Integer Set_super_use_hatch(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Hatch_Value is used. See
Super String Dimensions and Flags for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have 2 angle hatching.
If use is 0, the dimension is removed. If the string had hatching then the hatching will be
removed.

A return value of 0 indicates the function call was successful.

Get_super_use_hatch(Element super,Integer &use)

Name

Integer Get_super_use_hatch(Element super,Integer &use)

Description

Query whether the dimension Att_Hatch_Value exists for the super string super. See Super
String Dimensions and Flags for information on dimensions.
Page 391Super String Element

12d Model Programming Manual
use is returned as 1 if the dimension exists and hatching is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)

Name

Integer Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)

Description

For the super Element super, set the colour of the first hatch lines to the Integer colour col_1and
the colour of the second hatch lines to the Integer colour col_2.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)

Name

Integer Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)

Description

For the super Element super, return the colour of the first hatch lines as col_1 and the colour of
the second hatch lines as col_2.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)

Name

Integer Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)

Description

For the super Element super, set the angle of the first hatch lines to the angle ang_1 and the
angle of the second hatch lines to the angle ang_2. The angles are in radians and measured
counterclockwise from the x-axis.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)

Name

Integer Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)

Description

For the super Element super, return the angle of the first hatch lines as ang_1 and the angle of
the second hatch lines as ang_2. The angles are in radians and measured counterclockwise
from the x-axis.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
Page 392 Super String Element

Chapter 5 4DML Library Calls
Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)

Name

Integer Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)

Description

For the super Element super, set the distance between the first hatch lines to the dist_1 and the
distance between the second hatch lines of dist_2. The units for dist_1 and dist_2 are given by
other calls.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)

Name

Integer Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)

Description

For the super Element super, return the distance of the first hatch lines as dist_1 and the
distance of the second hatch lines as dist_2. The units for dist_1 and dist_2 are given by other
calls.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_hatch_origin(Element super,Real x,Real y)

Name

Integer Set_super_hatch_origin(Element super,Real x,Real y)

Description

For the super Element super, both sets of hatch lines go through the point (x,y). The units for x
and y are given by other calls.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_hatch_origin(Element super,Real &x,Real &y)

Name

Integer Get_super_hatch_origin(Element super,Real &x,Real &y)

Description

For the super Element super, return the origin that both sets of hatch lines go through as (x,y).
The units for x and y are given by other calls.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_hatch_device(Element super)

Name

Integer Set_super_hatch_device(Element super)
Page 393Super String Element

12d Model Programming Manual
Description

For the super Element super, set the units for the hatch spacing and the hatch origin to be
device units.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_hatch_world(Element super)

Name

Integer Set_super_hatch_world(Element super)

Description

For the super Element super, set the units for the hatch spacing and the hatch origin to be world
units.

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_hatch_type(Element super,Integer type)

Name

Integer Set_super_hatch_type(Element super,Integer type)

Description

For the super Element super, set the units for the hatch spacing and the hatch origin to be:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_hatch_type(Element super,Integer &type)

Name

Integer Get_super_hatch_type(Element super,Integer &type)

Description

For the super Element super, get the units for the hatch spacing and the hatch origin. The units
are returned as type and the values are:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If hatching is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Super String Solid Functions

Set_super_use_solid(Element super,Integer use)

Name

Integer Set_super_use_solid(Element super,Integer use)
Page 394 Super String Element

Chapter 5 4DML Library Calls
Description

For the super string Element super, define whether the dimension Att_Solid_Value is used. See
Super String Dimensions and Flags for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have solid fill.
If use is 0, the dimension is removed. If the string had solid fill then the solid fill will be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_solid(Element super,Integer &use)

Name

Integer Get_super_use_solid(Element super,Integer &use)

Description

Query whether the dimension Att_Solid_Value exists for the super string super. See Super String
Dimensions and Flags for information on dimensions.

use is returned as 1 if the dimension exists and solid fill is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_solid_colour(Element super,Integer colour)

Name

Integer Set_super_solid_colour(Element super,Integer colour)

Description

For the super Element super, set the colour of the solid fill to the colour number colour.

If solid fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_solid_colour(Element super,Integer &colour)

Name

Integer Get_super_solid_colour(Element super,Integer &colour)

Description

For the super Element super, get the colour number of the solid fill and return it in colour.

If solid fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Super String Bitmap Functions

Set_super_use_bitmap(Element super,Integer use)

Name

Integer Set_super_use_bitmap(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Bitmap_Value is used.
See Super String Dimensions and Flags for information on dimensions.
Page 395Super String Element

12d Model Programming Manual
If use is 1, the dimension is set. That is, the super string can have bitmap fill.
If use is 0, the dimension is removed. If the string had a bitmap fill then the bitmap fill will be
removed.

A return value of 0 indicates the function call was successful.

Get_super_use_bitmap(Element super,Integer &use)

Name

Integer Get_super_use_bitmap(Element super,Integer &use)

Description

Query whether the dimension Att_Bitmap_Value exists for the super string super. See Super
String Dimensions and Flags for information on dimensions.

use is returned as 1 if the dimension exists and bitmap fill is enabled for the string.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

 Set_super_bitmap(Element super,Text filename)

Name

Integer Set_super_bitmap(Element super,Text filename)

Description

For the super Element super, set the bitmap to be the image in the file of name filename.

The image can be bmps or ??.

If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_bitmap(Element super,Text &filename)

Name

Integer Get_super_bitmap(Element super,Text &filename)

Description

For the super Element super, get the file name of the bitmap fill and return it in filename.

If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_origin(Element super,Real x,Real y)

Name

Integer Set_super_bitmap_origin(Element super,Real x,Real y)

Description

For the super Element super, the left hand corner of the bitmap is placed at the point (x,y). The
units for x and y are given in other functions.

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.
Page 396 Super String Element

Chapter 5 4DML Library Calls
Get_super_bitmap_origin(Element super,Real &x,Real &y)

Name

Integer Get_super_bitmap_origin(Element super,Real &x,Real &y)

Description

For the super Element super, return the (x,y) point of the left hand corner of the bitmap. The
units for x and y are given in other functions.

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_transparent(Element super,Integer colour)

Name

Integer Set_super_bitmap_transparent(Element super,Integer colour)

Description

For the super Element super, set the colour with colour number colour to be transparent in the
bitmap.

If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_bitmap_transparent(Element super,Integer &colour)

Name

Integer Get_super_bitmap_transparent(Element super,Integer &colour)

Description

For the super Element super, get the transparency colour and return it in colour.

If bitmap fill is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_device(Element super)

Name

Integer Set_super_bitmap_device(Element super)

Description

For the super Element super, set the units for the bitmap width and height to be device units.

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_world(Element super)

Name

Integer Set_super_bitmap_world(Element super)

Description

For the super Element super, set the units for the width and height of the bitmap to be world
units.
Page 397Super String Element

12d Model Programming Manual
If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_type(Element super,Integer type)

Name

Integer Set_super_bitmap_type(Element super,Integer type)

Description

For the super Element super, set the units for the width and height of the bitmap to be:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_bitmap_type(Element super,Integer &type)

Name

Integer Get_super_bitmap_type(Element super,Integer &type)

Description

For the super Element super, get the units for width and height of the bitmap. The units are
returned as type and the values are:

 if type = 0 then device units
 if type = 1 then world units
 if type = 2 then paper units

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Set_super_bitmap_angle(Element super,Real ang)

Name

Integer Set_super_bitmap_angle(Element super,Real ang)

Description

For the super Element super, set the angle to rotate the bitmap to be ang. The angle is in
radians and measured counterclockwise from the x-axis

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_bitmap_angle(Element super,Real &ang)

Name

Integer Get_super_bitmap_angle(Element super,Real &ang)

Description

For the super Element super, get the angle of rotation of bitmap and return it in ang. The angle is
in radians and measured counterclockwise from the x-axis

If bitmap is not enabled for super, then a non-zero return code is returned.
Page 398 Super String Element

Chapter 5 4DML Library Calls
A return value of 0 indicates the function call was successful.

Set_super_bitmap_size(Element super,Real w,Real h)

Name

Integer Set_super_bitmap_size(Element super,Real w,Real h)

Description

For the super Element super, scale the bitmap to have the width w and height h in the units set
in other bitmap calls.

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Get_super_bitmap_size(Element super,Real &w,Real &h)

Name

Integer Get_super_bitmap_size(Element super,Real &w,Real &h)

Description

For the super Element super, get the width and height that the bitmap was scaled to. The width
is returned in w and the height in h. The units have been set in other bitmap calls.

If bitmap is not enabled for super, then a non-zero return code is returned.

A return value of 0 indicates the function call was successful.

Super String Patterns Functions

For definitions of the Pattern dimension, see Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern
Dimensions

Set_super_use_pattern(Element super,Integer use)

Name

Integer Set_super_use_pattern(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Pattern_Value is used.
See “Super String Dimensions and Flags” for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have a pattern.
If use is 0, the dimension is removed. If the string had a pattern then the pattern will be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_pattern(Element super,Integer &use)

Name

Integer Get_super_use_pattern(Element super,Integer &use)

Description

Query whether the dimension Att_Pattern_Value exists for the super string super. See “Super
String Dimensions and Flags” for information on dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.
Page 399Super String Element

12d Model Programming Manual
A return value of 0 indicates the function call was successful.

Super String ACAD Patterns Functions

For definitions of the ACAD Pattern dimension, see Solid/Bitmap/Hatch/ Fill/Pattern/ACAD Pattern
Dimensions

Set_super_use_acad_pattern(Element super,Integer use)

Name

Integer Set_super_use_acad_pattern(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Autocad_Pattern_Value is
used. See “Super String Dimensions and Flags” for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have an Autocad pattern.
If use is 0, the dimension is removed. If the string had an Autocad pattern then the Autocad
pattern will be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_acad_pattern(Element super,Integer &use)

Name

Integer Get_super_use_acad_pattern(Element super,Integer &use)

Description

Query whether the dimension Att_Autocad_Pattern_Value exists for the super string super. See
“Super String Dimensions and Flags” for information on dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Super String Hole Functions
For definitions of the Hole dimension, see Hole Dimension

Set_super_use_hole(Element super,Integer use)

Name

Integer Set_super_use_hole(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Hole_Value is used. See
Super String Dimensions and Flags for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have holes.
If use is 0, the dimension is removed. If the string had holes then the holes will be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_hole(Element super,Integer &use)
Page 400 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Get_super_use_hole(Element super,Integer &use)

Description

Query whether the dimension Att_Hole_Value exists for the super string super.

See Super String Dimensions and Flags for information on dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Get_super_holes(Element super,Integer &no_holes)

Name

Integer Get_super_holes(Element super,Integer &no_holes)

Description

For the Element super of type Super, the number of holes for the super string is returned as
no_holes.

If holes are not enabled for the super string then a non-zero return code is returned and
no_holes is set to 0.

A return value of 0 indicates the function call was successful.

Super_get_hole(Element super,Integer hole_no,Element &hole)

Name

Integer Super_get_hole(Element super,Integer hole_no,Element &hole)

Description

For the Element super of type Super, the holes number hole_no is returned as the super
Element hole.

If hole needs to be used in 12d Model and added to a model, then the Element hole must be
copied and added to the model.

If hole_no is less than zero or greater than the number of holes in super, then a non-zero return
code is returned. The Element hole is then undefined.

A return value of 0 indicates the function call was successful.

Super_add_hole(Element super,Element hole)

Name

Integer Super_add_hole (Element super,Element hole)

Description

Add the Element hole as a hole to the super Element super.

The operation will fail if super already belongs to a model and a non-zero return value returned.
So if an existing string in a model is to be used as a hole, the string must be copied and the copy
used as the hole.

A return value of zero indicates the function call was successful.

Super_delete_hole(Element super,Element hole)
Page 401Super String Element

12d Model Programming Manual
Name

Integer Super_delete_hole(Element super,Element hole)

Description

If Super_get_hole is used to get the hole hole from the Element super then this option can be
used to delete hole from super.

A return value of zero indicates the function call was successful.

Super_delete_hole(Element super,Integer hole_no)

Name

Integer Super_delete_hole(Element super,Integer hole_no)

Description

Delete the hole number hole_no from the Element super.

 If there is no hole hole_no, the operation will fail and a non-zero return value is returned.

A return value of zero indicates the function call was successful.

Super_delete_all_holes(Element super)

Name

Integer Super_delete_all_holes(Element super)

Description

Delete all the holes from the Element super.

A return value of 0 indicates the function call was successful.

Super String Vertex Text Functions
For definitions of the Vertex Text dimensions, see Text Dimensions

Super String Vertex text refers to the text at a super string vertex.

For vertex text, the text justification point and the direction of the text are defined by:

(a) the direction of the text is given as a counter clockwise angle of rotation (measured from the
x-axis) about the vertex

(b) the justification point is given as an offset from the vertex along the line through the vertex
with the direction of the text, and a perpendicular distance (called the raise) from that offset
point to the justification point.
Page 402 Super String Element

Chapter 5 4DML Library Calls
Fred

.
position of
text vertex

the position of the
text justification
point for vertex text

angle

offset raise angle, offset and raise
from the vertexor super string

vertex

is defined by the

Vertex Text

line giving the direction
of the text

The vertex and justification point only coincide if the offset and raise values are both zero.

Set_super_vertex_world_text(Element super)

Name

Integer Set_super_vertex_world_text(Element)

Description

Tell the super string whether to use the dimension Att_Vertex_World_Annotate.

A return value of 0 indicates the function call was successful.

<no description>

Set_super_vertex_device_text(Element super)

Name

Integer Set_super_vertex_device_text(Element)

Description

A return value of 0 indicates the function call was successful.

<no description>

Get_super_use_vertex_text_value(Element super,Integer &use)

Name

Integer Get_super_use_vertex_text_value(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Text_Value exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_text_value(Element super,Integer use)

Name

Integer Set_super_use_vertex_text_value(Element super,Integer use)

Description
Page 403Super String Element

12d Model Programming Manual
Tell the super string whether to use, or not use, the dimension Att_Vertex_Text_Value. If
Att_Vertex_Text_Value is used, then there is one text for all the string vertices.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 sets the dimension and 0 removes it.

Note if the dimension Att_Vertex_Text_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_text_array(Element super,Integer &use)

Name

Integer Get_super_use_vertex_text_array(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Text_Array exists for the super string

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_text_array(Element super,Integer use)

Name

Integer Set_super_use_vertex_text_array(Element super,Integer use)

Description

Tell the super string whether to use, or not use, the dimension Att_Segment_Text_Array. If
Att_Vertex_Text_Array is used, then there can be a different text for each string vertex.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 sets the dimension and 0 removes it.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text(Element super,Integer vert,Text &txt)

Name

Integer Get_super_vertex_text(Element super,Integer vert,Text &txt)

Description

For the super Element super, return in txt the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text(Element super,Integer vert,Text txt)

Name

Integer Set_super_vertex_text(Element super,Integer vert,Text txt)

Description

For the super Element super, set the text at vertex number vert to be txt.
Page 404 Super String Element

Chapter 5 4DML Library Calls
A return value of 0 indicates the function call was successful.

Get_super_vertex_text_type(Element super,Integer &type)

Name

Integer Get_super_vertex_text_type(Element super,Integer &type)

Description

A return value of 0 indicates the function call was successful.

<no description>

Set_super_vertex_text_type(Element super,Integer type)

Name

Integer Set_super_vertex_text_type(Element super,Integer type)

Description

A return value of 0 indicates the function call was successful.

<no description>

Get_super_vertex_text_justify(Element super,Integer vert,Integer &j)

Name

Integer Get_super_vertex_text_justify(Element super,Integer vert,Integer &j)

Description

A return value of 0 indicates the function call was successful.

<no description>

Set_super_vertex_text_justify(Element super,Integer vert,Integer j)

Name

Integer Set_super_vertex_text_justify(Element super,Integer vert,Integer j)

Description

A return value of 0 indicates the function call was successful.

<no description>

Get_super_vertex_text_offset_width(Element super,Integer vert,Real &off)

Name

Integer Get_super_vertex_text_offset_width(Element super,Integer vert,Real &off)

Description

For the super Element super, return as off the offset of the text from vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_offset_width(Element super,Integer vert,Real off)

Name
Page 405Super String Element

12d Model Programming Manual
Integer Set_super_vertex_text_offset_width(Element super,Integer vert,Real o)

Description

For the super Element super, set the offset of the text from vertex number vert to off.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_offset_height(Element super,Integer vert,Real &ra)

Name

Integer Get_super_vertex_text_offset_height(Element super,Integer vert,Real &ra)

Description

For the super Element super, return as ra the raise of the text from vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_offset_height(Element super,Integer vert,Real ra)

Name

Integer Set_super_vertex_text_offset_height(Element super,Integer vert,Real ra)

Description

For the super Element super, set the raise of the text from vertex number vert to ra.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)

Name

Integer Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)

Description

For the super Element super, return as col the colour number of the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_colour(Element super,Integer vert,Integer col)

Name

Integer Set_super_vertex_text_colour(Element super,Integer vert,Integer col)

Description

For the super Element super, set the colour number of the text on the vertex number vert to be
col.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)

Name

Integer Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)

Description

For the super Element super, return the angle of rotation in ang of the text on vertex number
vert. ang is in radians and is measured counterclockwise from the x-axis.
Page 406 Super String Element

Chapter 5 4DML Library Calls
A return value of 0 indicates the function call was successful.

Set_super_vertex_text_angle(Element super,Integer vert,Real ang)

Name

Integer Set_super_vertex_text_angle(Element super,Integer vert,Real ang)

Description

For the super Element super, set the angle of rotation of the text on vertex number vert to ang.
ang is in radians and is measured counterclockwise from the x-axis.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_size(Element super,Integer vert,Real &s)

Name

Integer Get_super_vertex_text_size(Element super,Integer vert,Real &s)

Description

For the super Element super, return as s the size of the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_size(Element super,Integer vert,Real s)

Name

Integer Set_super_vertex_text_size(Element super,Integer vert,Real s)

Description

For the super Element super, set the size of the text on vertex number vert to s.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_x_factor(Element super,Integer vert,Real &xf)

Name

Integer Get_super_vertex_text_x_factor(Element super,Integer vert,Real &x)

Description

For the super Element super, return as xf the x factor of the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)

Name

Integer Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)

Description

For the super Element super, set the x factor of the text on vertex number vert to xf.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_slant(Element super,Integer vert,Real &sl)
Page 407Super String Element

12d Model Programming Manual
Name

Integer Get_super_vertex_text_slant(Element super,Integer vert,Real &s)

Description

For the super Element super, return as sl the slant of the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_slant(Element super,Integer vert,Real sl)

Name

Integer Set_super_vertex_text_slant(Element super,Integer vert,Real sl)

Description

For the super Element super, set the slant of the text on vertex number vert to sl.

A return value of 0 indicates the function call was successful.

Get_super_vertex_text_style(Element super,Integer vert,Text &ts)

Name

Integer Get_super_vertex_text_style(Element super,Integer vert,Text &ts)

Description

For the super Element super, return as ts the textstyle of the text on vertex number vert.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_style(Element super,Integer vert,Text ts)

Name

Integer Set_super_vertex_text_style(Element super,Integer vert,Text ts)

Description

For the super Element super, set the textstyle of the text on vertex number vert to ts.

A return value of 0 indicates the function call was successful.

Set_super_vertex_text_ttf_underline(Element super,Integer vert,Integer underline)

 Name

Integer Set_super_vertex_text_ttf_underline(Element super super,Integer vert,Integer underline)

Description

For the Element super of type Super, set the underline state for the vertex number vert to be
underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates underline was successfully set.

Get_super_vertex_text_ttf_underline(Element super,Integer vert,
Page 408 Super String Element

Chapter 5 4DML Library Calls
 Integer &underline)

Name

Integer Get_super_vertex_text_ttf_underline(Element super,Integer vert,Integer &underline)

Description

For the Element super of type Super, get the underline state for the vertex number vert and
return it as underline.

If underline = 1, then for a true type font the text will be underlined.
If underline = 0, then text will not be underlined.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates underline was successfully returned.

Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)

Name

Integer Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)

Description

For the Element super of type Super, set the strikeout state for the vertex number vert to be
strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates strikeout was successfully set.

Get_super_vertex_text_ttf_strikeout(Element super,Integer vert,
 Integer &strikeout)

Name

Integer Get_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer &strikeout)

Description

For the Element super of type Super, get the strikeout state for the vertex number vert and
return it as strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.
If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates strikeout was successfully returned.

Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)

Name

Integer Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)

Description

For the Element super of type Super, set the italic state for the vertex number vert to be italic.

If italic = 1, then for a true type font the text will be italic.
Page 409Super String Element

12d Model Programming Manual
If italic = 0, then text will not be italic.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates italic was successfully set.

Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)

Name

Integer Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)

Description

For the Element super of type Super, get the italic state for the vertex number vert and return it
as italic.

If italic = 1, then for a true type font the text will be italic.
If italic = 0, then text will not be italic.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates italic was successfully returned.

Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)

Name

Integer Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)

Description

For the Element super of type Super, set the weight for the vertex number vert to be weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates weight was successfully set.

Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)

Name

Integer Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)

Description

For the Element super of type Super, get the weight for the vertex number vert and return it as
weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Array set.

A function return value of zero indicates weight was successfully returned.

Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)

Name

Integer Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)

Description
Page 410 Super String Element

Chapter 5 4DML Library Calls
For the Element super of type Super, set the Textstyle_Data for the vertex number vert to be d.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Value set.

A function return value of zero indicates the Textstyle_Data was successfully set.

Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)

Name

Integer Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)

Description

For the Element super of type Super, get the Textstyle_Data for the vertex number vert and
return it as d.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Vertex_Text_Value set.

A function return value of zero indicates the Textstyle_Data was successfully returned.

Super String Vertex Annotation Functions
For definitions of the Vertex Annotation dimensions, see Text Annotation Dimensions

Get_super_use_vertex_annotation_value(Element super,Integer &use)

Name

Integer Get_super_use_vertex_annotation_value(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Annotate_Value exists for the super string. A value for
use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_annotation_value(Element super,Integer use)

Name

Integer Set_super_use_vertex_annotation_value(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Vertex_Annotate_Value. A value for use
of 1 sets the dimension and 0 removes it. Note if the dimension Att_Vertex_Annotate_Array
exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_annotation_array(Element super,Integer &use)

Name

Integer Get_super_use_vertex_annotation_array(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Annotate_Array exists for the super string. A value for
use of 1 indicates the dimension exists.
Page 411Super String Element

12d Model Programming Manual
A return value of 0 indicates the function call was successful.

Set_super_use_vertex_annotation_array(Element super,Integer use)

Name

Integer Set_super_use_vertex_annotation_array(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Vertex_Annotate_Array. A value for use of
1 sets the dimension and 0 removes it. Note if the dimension Att_Vertex_Annotate_Value exists,
this call is ignored.

A return value of 0 indicates the function call was successful.

Super String Segment Text Functions
For definitions of the Segment Text dimension, see Text Dimensions

Segment text is a special type of text that can only be placed on the segment of a super string.
Unlike text at a vertex, the segment for segment text has a direction and mostly the text is
required to be parallel, or related to the segment direction.

For segment text, the text justification point and the direction of the text are defined by:

(a) the direction of the text is given as a counter clockwise angle of rotation, measured from the
segment, about the centre of the segment

(b) the justification point is given as an offset from the centre of the segment along the line
through the centre of the segment with the direction of the text, and a perpendicular
distance (called the raise) from that offset point to the justification point.

.

super string vertices

angle

off
se

t

raise .
.

.

. the position of the
text justification
point for segment text

angle, offset and raise
from the centre of

is defined by the

the super string segment

centre of the segment

Segment Text

Fred

line giving the direction
of the text

The direction of the text is parallel to the segment if the angle is zero.

Note that these definitions are relative to the segment and if the vertex segment in any way, then
the text also moves with it.

Get_super_use_segment_text_value(Element super,Integer &use)

Name

Integer Get_super_use_segment_text_value(Element super,Integer &use)
Page 412 Super String Element

Chapter 5 4DML Library Calls
Description

Query whether the dimension Att_Segment_Text_Value exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_text_value(Element super,Integer use)

Name

Integer Set_super_use_segment_text_value(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Segment_Text_Value. If
Att_Segment_Value_Array is used then there is one text for all the segments of the super string.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 sets the dimension and 0 removes it.

Note if the dimension Att_Segment_Text_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_text_array(Element element,Integer &use)

Name

Integer Get_super_use_segment_text_array(Element element,Integer &use)

Description

Query whether the dimension Att_Segment_Text_Array exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_text_array(Element super,Integer use)

Name

Integer Set_super_use_segment_text_array(Element super,Integer use)

Description

Tell the super string whether to use, or not use, the dimension Att_Segment_Text_Array. If
Att_Segment_Text_Array is used then there can be different text on every segment of the super
string.

See Super String Dimensions and Flags for information on dimensions and Text Dimensions for
information on the Text dimensions.

A value for use of 1 sets the dimension and 0 removes it.

A return value of 0 indicates the function call was successful.

Get_super_segment_text(Element super,Integer seg,Text &text)
Page 413Super String Element

12d Model Programming Manual
Name

Integer Get_super_segment_text(Element super,Integer seg,Text &text)

Description

For the super Element super, return in txt the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text(Element super,Integer seg,Text text)

Name

Integer Set_super_segment_text(Element super,Integer seg,Text text)

Description

For the super Element super, set the text at segment number seg to be txt.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_type(Element super,Integer &type)

Name

Integer Get_super_segment_text_type(Element super,Integer &type)

Description

A return value of 0 indicates the function call was successful.

<no description>

Set_super_segment_text_type(Element super,Integer type)

Name

Integer Set_super_segment_text_type(Element super,Integer type)

Description

A return value of 0 indicates the function call was successful.

<no description>

Get_super_segment_text_justify(Element super,Integer seg,Integer &j)

Name

Integer Get_super_segment_text_justify(Element super,Integer seg,Integer &j)

Description

A return value of 0 indicates the function call was successful.

<no description>

Set_super_segment_text_justify(Element super,Integer seg,Integer j)

Name

Integer Set_super_segment_text_justify(Element super,Integer seg,Integer j)

Description

A return value of 0 indicates the function call was successful.
Page 414 Super String Element

Chapter 5 4DML Library Calls
<no description>

Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)

Name

Integer Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)

Description

For the super Element super, return as off the offset of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_offset_width(Element super,Integer seg,Real off)

Name

Integer Set_super_segment_text_offset_width(Element super,Integer seg,Real o)ff

Description

For the super Element super, set the offset of the text on segment number seg to off.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_offset_height(Element super,Integer seg,Real &ra)

Name

Integer Get_super_segment_text_offset_height(Element super,Integer seg,Real &ra)

Description

For the super Element super, return as ra the raise of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_offset_height(Element super,Integer seg,Real ra)

Name

Integer Set_super_segment_text_offset_height(Element super,Integer seg,Real ra)

Description

For the super Element super, set the raise of the text on segment number seg to ra.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_colour(Element super,Integer seg,Integer &col)

Name

Integer Get_super_segment_text_colour(Element super,Integer seg,Integer &col)

Description

For the super Element super, return as col the colour number of the text on segment number
seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_colour(Element super,Integer seg,Integer col)
Page 415Super String Element

12d Model Programming Manual
Name

Integer Set_super_segment_text_colour(Element super,Integer seg,Integer col)

Description

For the super Element super, set the colour number of the text on segment number seg to col.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_angle(Element super,Integer seg,Real &ang)

Name

Integer Get_super_segment_text_angle(Element super,Integer seg,Real &ang)

Description

For the super Element super, return the angle of rotation in ang of the text on segment number
seg. ang is measured in radians and is measured counterclockwise from the direction of the
segment.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_angle(Element super,Integer seg,Real ang)

Name

Integer Set_super_segment_text_angle(Element super,Integer seg,Real ang)

Description

For the super Element super, set the angle of rotation of the text on segment number seg to
ang. ang is measured in radians and is measured counterclockwise from the direction of the
segment.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_size(Element super,Integer seg,Real &s)

Name

Integer Get_super_segment_text_size(Element super,Integer seg,Real &s)

Description

For the super Element super, return as s the size of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_size(Element super,Integer seg,Real s)

Name

Integer Set_super_segment_text_size(Element super,Integer seg,Real s)

Description

For the super Element super, set the size of the text on segment number seg to s.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)

Name
Page 416 Super String Element

Chapter 5 4DML Library Calls
Integer Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)

Description

For the super Element super, return as xf the x factor of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)

Name

Integer Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)

Description

For the super Element super, set the x factor of the text on segment number seg to xf.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_slant(Element super,Integer seg,Real &sl)

Name

Integer Get_super_segment_text_slant(Element super,Integer seg,Real &sl)

Description

For the super Element super, return as sl the slant of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_slant(Element super,Integer seg,Real sl)

Name

Integer Set_super_segment_text_slant(Element super,Integer seg,Real sl)

Description

For the super Element super, set the slant of the text on segment number seg to sl.

A return value of 0 indicates the function call was successful.

Get_super_segment_text_style(Element super,Integer seg,Text &ts)

Name

Integer Get_super_segment_text_style(Element super,Integer seg,Text &ts)

Description

For the super Element super, return as ts the textstyle of the text on segment number seg.

A return value of 0 indicates the function call was successful.

Set_super_segment_text_style(Element super,Integer seg,Text ts)

Name

Integer Set_super_segment_text_style(Element super,Integer seg,Text ts)

Description

For the super Element super, set the textstyle of the text on segment number seg to ts.

A return value of 0 indicates the function call was successful.
Page 417Super String Element

12d Model Programming Manual
Set_super_segment_text_ttf_underline(Element super,Integer seg,
 Integer underline)

Name

Integer Set_super_segment_text_ttf_underline(Element super,Integer seg,Integer underline)

Description

For the Element super of type Super, set the underline state for the segment number seg to be
underline.

If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates underline was successfully set.

Get_super_segment_text_ttf_underline(Element super,Integer seg,
 Integer &underline)

Name

Integer Get_super_segment_text_ttf_underline(Element super,Integer seg,Integer &underline)

Description

For the Element super of type Super, get the underline state for the segment number seg and
return it as underline.

If underline = 1, then for a true type font the text will be underlined.

If underline = 0, then text will not be underlined.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates underline was successfully returned.

Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)

Name

Integer Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)

Description

For the Element super of type Super, set the strikeout state for the segment number seg to be
strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.

If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates strikeout was successfully set.

Get_super_segment_text_ttf_strikeout(Element super,Integer seg,
 Integer &strikeout)

Name
Page 418 Super String Element

Chapter 5 4DML Library Calls
Integer Get_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer &strikeout)

Description

For the Element super of type Super, get the strikeout state for the segment number seg and
return it as strikeout.

If strikeout = 1, then for a true type font the text will be strikeout.

If strikeout = 0, then text will not be strikeout.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates strikeout was successfully returned.

Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)

Name

Integer Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)

Description

For the Element super of type Super, set the italic state for the segment number seg to be italic.

If italic = 1, then for a true type font the text will be italic.

If italic = 0, then text will not be italic.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates italic was successfully set.

Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)

Name

Integer Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)

Description

For the Element super of type Super, get the italic state for the segment number seg and return
it as italic.

If italic = 1, then for a true type font the text will be italic.

If italic = 0, then text will not be italic.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates italic was successfully returned.

Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)

Name

Integer Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)

Description

For the Element super of type Super, set the weight for the segment number seg to be weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates weight was successfully set.
Page 419Super String Element

12d Model Programming Manual
Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)

Name

Integer Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)

Description

For the Element super of type Super, get the weight for the segment number seg and return it
as weight.

For the list of allowable weights, go to Allowable Weights

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Array set.

A function return value of zero indicates weight was successfully returned.

Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)

Name

Integer Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)

Description

For the Element super of type Super, set the Textstyle_Data for the segment number seg to be
d.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Value set.

A function return value of zero indicates the Textstyle_Data was successfully set.

Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)

Name

Integer Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)

Description

For the Element super of type Super, get the Textstyle_Data for the segment number seg and
return it as d.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Segment_Text_Value set.

A function return value of zero indicates the Textstyle_Data was successfully returned.

Super String Segment Annotation Functions
For definitions of the Segment Annotation dimensions, see Text Annotation Dimensions

Get_super_use_segment_annotation_value(Element super,Integer &use)

Name

Integer Get_super_use_segment_annotation_value(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Annotate_Value exists for the super string. A value
for use of 1 indicates the dimension exists.
Page 420 Super String Element

Chapter 5 4DML Library Calls
A return value of 0 indicates the function call was successful.

Set_super_use_segment_annotation_value(Element super,Integer use)

Name

Integer Set_super_use_segment_annotation_value(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Segment_Annotate_Value. A value for
use of 1 sets the dimension and 0 removes it. Note if the dimension
Att_Segment_Annotate_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_annotation_array(Element super,Integer &use)

Name

 Integer Get_super_use_segment_annotation_array(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Annotate_Array exists for the super string. A value
for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_annotation_array(Element super,Integer use)

Name

Integer Set_super_use_segment_annotation_array(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Segment_Annotate_Array. A value for use
of 1 sets the dimension and 0 removes it. Note if the dimension Att_Segment_Annotate_Value
exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Super String Tinability Functions
For definitions of the Tinability dimension, see Tinability Dimensions

See Super String Combined Tinability
See Super String Vertex Tinability
See Super String Segment Tinability

Super String Combined Tinability

Get_super_use_tinability(Element super,Integer &use)

Name

Integer Get_super_use_tinability(Element super,Integer &use)

Description
Page 421Super String Element

12d Model Programming Manual
Query whether the dimension Att_Contour_Array exists for the super string.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_tinability(Element super,Integer use)

Name

Integer Set_super_use_tinability(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Contour_Array.

A value for use of 1 sets the dimension and 0 removes it.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A return value of 0 indicates the function call was successful.

Super String Vertex Tinability

Set_super_use_vertex_tinability_value(Element super,Integer use)

Name

Integer Set_super_use_vertex_tinability_value(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Vertex_Tinable_Value is
used. If Att_Vertex_Tinable_Value is set then the tinability is the same for all vertices in super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

If use is 1, the dimension is set and the tinability is the same for all vertices.
If use is 0, the dimension is removed.

Note that if the dimension Att_Vertex_Tinable_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_tinability_value(Element super,Integer &use)

Name

Integer Get_super_use_vertex_tinability_value(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Tinable_Value exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
Page 422 Super String Element

Chapter 5 4DML Library Calls
Set_super_use_vertex_tinability_array(Element super,Integer use)

Name

Integer Set_super_use_vertex_tinability_array(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Vertex_Tinable_Array is
used. If Att_Vertex_Tinable_Array is set then there can be a different tinability defined for each
vertex in super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

If use is 1, the dimension is set and the tinability is different for each vertex.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_tinability_array(Element super,Integer &use)

Name

Integer Get_super_use_vertex_tinability_array(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Tinable_Array exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)

Name

Integer Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)

Description

For the Element super (which must be of type Super), get the tinability value for vertex number
vert and return it in the Integer tinability.

If tinability is 1, the vertex is tinable.
If tinability is 0, the vertex is not tinable.

If the Element super is not of type Super, or Att_Vertex_Tinable_Array is not set for super, then
a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A return value of 0 indicates the function call was successful.

Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)

Name

Integer Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)

Description

For the Element super (which must be of type Super), set the tinability value for vertex number
Page 423Super String Element

12d Model Programming Manual
vert to the value tinability.

If tinability is 1, the vertex is tinable.
If tinability is 0, the vertex is not tinable.

If the Element super is not of type Super, or Att_Vertex_Tinable_Array is not set for super, then
a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A return value of 0 indicates the function call was successful.

Super String Segment Tinability

Set_super_use_segment_tinability_value(Element super,Integer use)

Name

Integer Set_super_use_segment_tinability_value(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Segment_Tinable_Value is
used. If Att_Segment_Tinable_Value is set then the tinability is the same for all vertices in super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

If use is 1, the dimension is set and the tinability is the same for all segments.
If use is 0, the dimension is removed.

Note that if the dimension Att_Segment_Tinable_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_tinability_value(Element super,Integer &use)

Name

Integer Get_super_use_segment_tinability_value(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Tinable_Value exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_tinability_array(Element super,Integer use)

Name

Integer Set_super_use_segment_tinability_array(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Segment_Tinable_Array is
used. If Att_Segment_Tinable_Array is set then there can be a different tinability defined for each
segment in super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
Page 424 Super String Element

Chapter 5 4DML Library Calls
for information on the Tinablility dimensions.

If use is 1, the dimension is set and the tinability is different for each segment.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_tinability_array(Element super,Integer &use)

Name

Integer Get_super_use_segment_tinability_array(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Tinable_Array exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)

Name

Integer Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)

Description

For the Element super (which must be of type Super), get the tinability value for segment
number seg and return it in the Integer tinability.

If tinability is 1, the segment is tinable.
If tinability is 0, the segment is not tinable.

If the Element super is not of type Super, or Att_Segment_Tinable_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A return value of 0 indicates the function call was successful.

Set_super_segment_tinability(Element super,Integer seg,Integer tinability)

Name

Integer Set_super_segment_tinability(Element super,Integer seg,Integer tinability)

Description

For the Element super (which must be of type Super), set the tinability value for segment
number seg to the value tinability.

If tinability is 1, the segment is tinable.
If tinability is 0, the segment is not tinable.

If the Element super is not of type Super, or Att_Segment_Tinable_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Tinability Dimensions
for information on the Tinablility dimensions.

A return value of 0 indicates the function call was successful.
Page 425Super String Element

12d Model Programming Manual
Super String Point Id Functions
For definitions of the Point Id dimension, see Point Id Dimension

Get_super_use_vertex_point_number(Element super,Integer &use)

Name

Integer Get_super_use_vertex_point_number(Element super,Integer &use)

Description

Query whether the dimension Att_Point_Array exists for the super string. If Att_Point_Array
exists, the string can have Point Ids for each vertex.

A value for use of 1 indicates the dimension exists.

See Super String Dimensions and Flags for information on dimensions and Point Id Dimension
for information on the Point Id dimension.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_point_number(Element super,Integer use)

Name

Integer Set_super_use_vertex_point_number(Element super,Integer use)

Description

Tell the super string whether to use, or not use, the dimension Att_Point_Array.

A value for use of 1 sets the dimension and 0 removes it.

See Super String Dimensions and Flags for information on dimensions and Point Id Dimension
for information on the Point Id dimension.

A return value of 0 indicates the function call was successful.

Get_super_vertex_point_number(Element super,Integer vert,Integer
&point_number)

Name

Integer Get_super_vertex_point_number(Element super,Integer vert,Integer &point_number)

Description

From the Element super which must be of type Super, get the Point Id for vertex number vert
and return it in the Integer point_number.

If the Element super is not of type Super, or the dimension Att_Point_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Point Id Dimension
for information on the Point Id dimension.

Note - in earlier versions of 12d Model (pre v6), point id’s were only integers. This was extended
to being a text when surveying equipment allowed non-integer point ids.

A function return value of zero indicates the point id was successfully returned.
Page 426 Super String Element

Chapter 5 4DML Library Calls
Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)

Name

Integer Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)

Description

From the Element super which must be of type Super, get the Point Id for vertex number vert
and return it in the Text point_id.

If the Element super is not of type Super, or the dimension Att_Point_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Point Id Dimension
for information on the Point Id dimension.

A function return value of zero indicates the point id was successfully returned.

Set_super_vertex_point_number(Element super,Integer vert,Integer
point_number)

Name

 Integer Set_super_vertex_point_number(Element super,Integer vert,Integer point_number)

Description

For the Element super which must be of type Super, set the Point Id for vertex number vert to
the have the text value of the integer point_number.

If the Element super is not of type Super, then a non-zero return code is returned.

LJG? what happens if the correct dimension is not set? Is it automatically done?

Note - in earlier versions of 12d Model (pre v6), point id’s were only integers. This was extended
to being a text when surveying equipment allowed non-integer point ids.

A function return value of zero indicates the point id was successfully set.

Set_super_vertex_point_number(Element super,Integer vert,Text point_id

Name

Integer Set_super_vertex_point_number(Element super,Integer vert,Text point_id)

Description

For the Element super which must be of type Super, set the Point Id for vertex number vert to
the text point_id.

If the Element super is not of type Super, then a non-zero return code is returned.

LJG? what happens if the correct dimension is not set? Is it automatically done?

A function return value of zero indicates the point id was successfully set.

Super String Segment Geometry Functions
For definitions of the Segment Geometry dimension, see Segment Geometry Dimension
Page 427Super String Element

12d Model Programming Manual
Set_super_use_segment_geometry(Element super,Integer use)

Name

Integer Set_super_use_segment_geometry(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Geom_Array is used.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

If use is 1, the dimension is set. That is, the segments of the super string are not just straights
but of type Segments (which can be straights, arcs or transitions).

If use is 0, the dimension is removed. If the string had Segments for segments then they will be
removed.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_geometry(Element super,Integer &use)

Name

Integer Get_super_use_segment_geometry(Element super,Integer &use)

Description

Query whether the dimension Att_Geom_Array exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

 use is returned as 1 if the dimension exists. That is, the segments of the super string are not
just straights but of type Segments (which can be straights, arcs or transitions).

 use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)

Name

Integer Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)

Description

For the Element super of type Super, set the segment number seg to be be the transition trans.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

A function return value of zero indicates the transition was successfully set.

Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)

Name

Integer Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)

Description

For the Element super of type Super, get the Spiral for the segment number seg and return it as
trans.
Page 428 Super String Element

Chapter 5 4DML Library Calls
A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set, or if the segment is not a Spiral.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

A function return value of zero indicates the Spiral was successfully returned.

Set_super_segment_geometry(Element elt,Integer seg,Segment geom)

Name

Integer Set_super_segment_geometry(Element elt,Integer seg,Segment geom)

Description

For the Element super of type Super, set the segment number seg to be be the Segment geom.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

A function return value of zero indicates the segment was successfully set.

Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)

Name

Integer Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)

Description

For the Element super of type Super, get the Segment for the segment number seg and return it
as geom.

A non-zero function return value is returned if super is not of type Super, or if super does not
have the dimension Att_Geom_Array set.

See Super String Dimensions and Flags for information on dimensions and Segment Geometry
Dimension for information on the Segment Geometry dimension.

A function return value of zero indicates the Spiral was successfully returned.

Super String Extrude Functions
For definitions of the Extrude dimensions, see Extrude Dimensions

Set_super_use_extrude(Element super,Integer use)

Name

Integer Set_super_use_extrude(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Extrude_Value is used. If
Att_Extrude_Value is set then an extrusion on the super string is allowed.

See Super String Dimensions and Flags for information on dimensions and Extrude Dimensions
for information on the Extrude dimensions.

If use is 1, the dimension is set and an extrusion is allowed.
If use is 0, the dimension is removed.
Page 429Super String Element

12d Model Programming Manual
A return value of 0 indicates the function call was successful.

Get_super_use_extrude(Element super,Integer &use)

Name

Integer Get_super_use_extrude(Element super,Integer &use)

Description

Query whether the dimension Att_Extrude_Value exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Extrude Dimensions
for information on the Extrude dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_extrude(Element super,Element elt)

Name

Integer Set_super_extrude(Element super,Element elt)

Description

For the Element super of type Super which has the dimension Att_Extrude_Value set, set elt to
be the Element that defines the 2d profile that is extruded along super.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set.

See Super String Dimensions and Flags for information on dimensions and Extrude Dimensions
for information on the Extrude dimensions.

A function return value of zero indicates the elt was successfully set.

Get_super_extrude(Element super,Element &elt)

Name

Integer Get_super_extrude(Element super,Element &elt)

Description

For the Element super of type Super and has the dimension Att_Extrude_Value set, get the
Element elt that defines the 2d profile that is extruded along super.

A non-zero function return value is returned if super is not of type Super, or if the Dimension
Att_Extrude_Value is not set.

See Super String Dimensions and Flags for information on dimensions and Extrude Dimensions
for information on the Extrude dimensions.

A function return value of zero indicates the elt was successfully returned.

Super String Vertex Attributes Functions
For definitions of the Vertex Attributes dimensions, see User Defined Attributes Dimensions

Get_super_use_vertex_attribute(Element super,Integer &use)
Page 430 Super String Element

Chapter 5 4DML Library Calls
Name

Integer Get_super_use_vertex_attribute(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Attribute_Array exists for the super string. If
Att_Vertex_Attribute_Array exists then there can be an Attributes for each vertex.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_attribute(Element super,Integer use)

Name

Integer Set_super_use_vertex_attribute(Element super,Integer use)

Description

Tell the super string whether to use. or not use, the dimension Att_Vertex_Attribute_Array.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A value for use of 1 sets the dimension and 0 removes it.

A return value of 0 indicates the function call was successful.

Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)

Name

Integer Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)

Description

For the Element super, return the Attributes for the vertex number vert as att.

If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, or the
vertex number vert has no Attributes, then a non-zero return value is returned.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A function return value of zero indicates the attribute is successfully returned.

Set_super_vertex_attributes(Element super,Integer vert,Attributes att)

Name

Integer Set_super_vertex_attributes(Element super,Integer vert,Attributes att)

Description

For the Element super, set the Attributes for the vertex number vert to att.

If the Element is not of type Super, or the dimension Att_Vertex_Attribute_Array is not set, then a
non-zero return value is returned.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A function return value of zero indicates the attribute is successfully set.
Page 431Super String Element

12d Model Programming Manual
Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)

Description

For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes
&att)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes &att)

Description

For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Super or the attribute is not of type Attributes then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)

Name

Integer Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)

Description

For the Element super, get the attribute with number att_no for the vertex number vert and
return the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes
&att)

Name

Integer Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes &att)

Description

For the Element super, get the attribute with number att_no for the vertex number vert and
return the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Super or the attribute is not of type Attributes then a non-zero return
value is returned.
Page 432 Super String Element

Chapter 5 4DML Library Calls
A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)

Name

Integer Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)

Description

For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)

Name

Integer Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)

Description

For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)

Name

Integer Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)

Description

For the Element super and on the vertex number vert, if the attribute number att_no exists and
it is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)
Page 433Super String Element

12d Model Programming Manual
Name

Integer Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)

Description

For the Element super and on the vertex number vert, if the attribute number att_no exists and
it is of type Attributes, then its value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Super_vertex_attribute_exists(Element elt,Integer vert,Text name,Integer &no)

Name

Integer Super_vertex_attribute_exists(Element elt,Integer vert,Text name,Integer &no)

Description

<no description>

Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)

Name

Integer Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)

Description

Checks to see if for vertex number vert, an attribute of name att_name exists.

A non-zero function return value indicates the attribute exists.

A zero function return value indicates the attribute does not exist.

Warning - this is the opposite to most 4DML function return values

Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)

Name

Integer Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)

Description

For the Element super, delete the attribute with attribute number att_no for vertex number vert.

If the Element super is not of type Super or super has no vertex number vert, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)

Name

Integer Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)

Description

For the Element super, delete the attribute with the name att_name for vertex number vert.
Page 434 Super String Element

Chapter 5 4DML Library Calls
If the Element super is not of type Super or super has vertex number vert, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Super_vertex_attribute_delete_all(Element super,Integer vert)

Name

Integer Super_vertex_attribute_delete_all(Element super,Integer vert)

Description

Delete all the attributes of vertex number vert of the super string super.

A function return value of zero indicates the function was successful.

Super_vertex_attribute_dump(Element super,Integer vert)

Name

Integer Super_vertex_attribute_dump(Element super,Integer vert)

Description

Write out information to the Output Window about the vertex attributes for vertex number vert of
the super string super.

A function return value of zero indicates the function was successful.

Super_vertex_attribute_debug(Element super,Integer vert)

Name

Integer Super_vertex_attribute_debug(Element super,Integer vert)

Description

Write out even more information to the Output Window about the vertex attributes for vertex
number vert of the super string super.

A function return value of zero indicates the function was successful.

Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer
&no_atts)

Name

Integer Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer &no_atts)

Description

Get the total number of attributes for vertex number vert of the Element super.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the number of attributes was successfully returned.

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)

Description
Page 435Super String Element

12d Model Programming Manual
For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in txt. The attribute must be of type Text.

If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer
&int)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer &int)

Description

For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in int. The attribute must be of type Integer.

If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)

Description

For the Element super, get the attribute called att_name for the vertex number vert and return
the attribute value in real. The attribute must be of type Real.

If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)

Description

For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in txt. The attribute must be of type Text.

If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer
Page 436 Super String Element

Chapter 5 4DML Library Calls
&int)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer &int)

Description

For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in int. The attribute must be of type Integer.

If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)

Name

Integer Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)

Description

For the Element super, get the attribute number att_no for the vertex number vert and return the
attribute value in real. The attribute must be of type Real.

If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text
&txt)

Name

Integer Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text &txt)

Description

For vertex number vert of the Element super, get the name of the attribute number att_no. The
attribute name is returned in txt.

A function return value of zero indicates the attribute name was successfully returned.

Get_super_vertex_attribute_length(Element super,Integer vert,Text
att_name,Integer &att_len)

Name

Integer Get_super_vertex_attribute_length(Element super,Integer vert,Text att_name,Integer &att_len)

Description

For vertex number vert of the Element super, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.
Page 437Super String Element

12d Model Programming Manual
Get_super_vertex_attribute_length(Element super,Integer vert,Integer
att_no,Integer &att_len)

Name

Integer Get_super_vertex_attribute_length(Element super,Integer vert,Integer att_no,Integer &att_len)

Description

For vertex number vert of the Element super, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for attributes of type Text and Binary.

Get_super_vertex_attribute_type(Element super,Integer vert,Text
att_name,Integer &att_type)

Name

 Integer Get_super_vertex_attribute_type(Element super,Integer vert,Text att_name,Integer &att_type)

Description

For vertex number vert of the Element super, get the type of the attribute with name att_name.
The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_super_vertex_attribute_type(Element super,Integer vert,Integer
att_no,Integer &att_type)

Name

 Integer Get_super_vertex_attribute_type(Element super,Integer vert,Integer att_no,Integer &att_type)

Description

For vertex number vert of the Element super, get the type of the attribute with attribute number
att_no. The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)

Name

Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)

Description

For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)

Name
Page 438 Super String Element

Chapter 5 4DML Library Calls
Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)

Description

For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)

Name

Integer Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)

Description

For the Element super and on the vertex number vert,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)

Name

Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)

Description

For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)

Name

Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)

Description

For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.
Page 439Super String Element

12d Model Programming Manual
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)

Name

Integer Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)

Description

For the Element super and on the vertex number vert,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Super String Segment Attributes Functions
For definitions of the Segment Attributes dimensions, see User Defined Attributes Dimensions

Get_super_use_segment_attribute(Element super,Integer &use)

Name

Integer Get_super_use_segment_attribute(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Attribute_Array exists for the super string. If the
dimension Att_Segment_Attribute_Array exists then there can be an Attributes on each segment.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_attribute(Element super,Integer use)

Name

Integer Set_super_use_segment_attribute(Element super,Integer use)

Description

Tell the super string whether to use the dimension Att_Segment_Attribute_Array.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A value for use of 1 sets the dimension and 0 removes it.

A return value of 0 indicates the function call was successful.

Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)

Name
Page 440 Super String Element

Chapter 5 4DML Library Calls
Integer Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)

Description

For the Element super, return the Attributes for the segment number seg as att.

If the Element is not of type Super, or Att_Segment_Attribute_Array dimension is not set, or the
segment number seg has no attribute then a non-zero return value is returned.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A function return value of zero indicates the attribute is successfully returned.

Set_super_segment_attributes(Element elt,Integer seg,Attributes att)

Name

Integer Set_super_segment_attributes(Element elt,Integer seg,Attributes att)

Description

For the Element super, set the Attributes for the segment number seg to att.

If the Element is not of type Super, or Att_Segment_Attribute_Array dimension is not set, then a
non-zero return value is returned.

See Super String Dimensions and Flags for information on dimensions and User Defined
Attributes Dimensions for information on the Attributes dimensions.

A function return value of zero indicates the attribute is successfully set.

Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)

Name

Integer Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)

Description

For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_segment_attribute(Element super,Integer seg,Text att_name,
Attributes &att)

Name

Integer Get_super_segment_attribute(Element super,Integer seg,Text att_name,Attributes &att)

Description

For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Super or the attribute is not of type Attributes then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 441Super String Element

12d Model Programming Manual
Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)

Name

Integer Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)

Description

For the Element super, get the attribute with number att_no for the segment number seg and
return the attribute value in uid. The attribute must be of type Uid.

If the Element is not of type Super or the attribute is not of type Uid then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_super_segment_attribute(Element super,Integer seg,Integer att_no,
 Attributes &att)

Name

Integer Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes &att)

Description

For the Element super, get the attribute with number att_no for the segment number seg and
return the attribute value in att. The attribute must be of type Attributes.

If the Element is not of type Super or the attribute is not of type Attributes then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)

Name

Integer Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)

Description

For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to uid.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_segment_attribute(Element super,Integer seg,Text att_name,
 Attributes att)

Name

Integer Set_super_segment_attribute(Element super,Integer seg,Text att_name,Attributes att)
Page 442 Super String Element

Chapter 5 4DML Library Calls
Description

For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)

Name

Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)

Description

For the Element super and on the segment number seg, if the attribute number att_no exists
and it is of type Uid, then its value is set to uid.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes
att)

Name

Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes att)

Description

For the Element super and on the segment number seg, if the attribute number att_no exists
and it is of type Attributes, then its value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)

Name

Integer Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)

Description

<no description>

A return value of 0 indicates the function call was successful.
Page 443Super String Element

12d Model Programming Manual
Super_segment_attribute_exists(Element elt,Integer seg,Text name,Integer &no)

Name

Integer Super_segment_attribute_exists(Element elt,Integer seg,Text name,Integer &no)

Description

<no description>

A return value of 0 indicates the function call was successful.

Super_segment_attribute_delete (Element super,Integer seg,Text att_name)

Name

Integer Super_segment_attribute_delete (Element super,Integer seg,Text att_name)

Description

For the Element super, delete the attribute with the name att_name for segment number seg.

If the Element super is not of type Super or super has no segment number seg, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)

Name

Integer Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)

Description

For the Element super, delete the attribute with attribute number att_no for segment number
seg.

If the Element super is not of type Super or super has no segment number seg, then a non-zero
return code is returned.

A function return value of zero indicates the attribute was deleted.

Super_segment_attribute_delete_all (Element super,Integer seg)

Name

Integer Super_segment_attribute_delete_all (Element super,Integer seg)

Description

Delete all the attributes of segment number seg of the super string super.

A function return value of zero indicates the function was successful.

Super_segment_attribute_dump (Element super,Integer seg)

Name

Integer Super_segment_attribute_dump (Element super,Integer seg)

Description

Write out information to the Output Window about the segment attributes for segment number
seg of the super string super.

A function return value of zero indicates the function was successful.
Page 444 Super String Element

Chapter 5 4DML Library Calls
Super_segment_attribute_debug (Element super,Integer seg)

Name

Integer Super_segment_attribute_debug (Element super,Integer seg)

Description

Write out even more information to the Output Window about the segment attributes for segment
number seg of the super string super.

A function return value of zero indicates the function was successful.

Get_super_segment_number_of_attributes(Element super,Integer seg,Integer
&no_atts)

Name

Integer Get_super_segment_number_of_attributes(Element elt,Integer seg,Integer &no_atts)

Description

Get the total number of attributes for segment number seg of the Element super.

The total number of attributes is returned in Integer no_atts.

A function return value of zero indicates the number of attributes was successfully returned.

A return value of 0 indicates the function call was successful.

Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text
&text)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text &text)

Description

For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in text. The attribute must be of type Text.

If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer
&int)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer &int)

Description

For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in int. The attribute must be of type Integer.

If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 445Super String Element

12d Model Programming Manual
Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real
&real)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real &real)

Description

For the Element super, get the attribute called att_name for the segment number seg and return
the attribute value in real. The attribute must be of type Real.

If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)

Description

For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in txt. The attribute must be of type Text.

If the Element is not of type Super or the attribute is not of type Text then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer
&int)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer &int)

Description

For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in int. The attribute must be of type Integer.

If the Element is not of type Super or the attribute is not of type Integer then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real
&real)

Name

Integer Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real &real)

Description

For the Element super, get the attribute number att_no for the segment number seg and return
the attribute value in real. The attribute must be of type Real.
Page 446 Super String Element

Chapter 5 4DML Library Calls
If the Element is not of type Super or the attribute is not of type Real then a non-zero return value
is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Get_super_segment_attribute_name (Element super,Integer seg,Integer
att_no,Text &txt)

Name

 Integer Get_super_segment_attribute_name (Element super,Integer seg,Integer att_no,Text &txt)

Description

For segment number seg of the Element super, get the name of the attribute number att_no.
The attribute name is returned in txt.

A function return value of zero indicates the attribute name was successfully returned.

Get_super_segment_attribute_type (Element super,Integer seg,Text
att_name,Integer &att_type)

Name

Integer Get_super_segment_attribute_type (Element super,Integer seg,Text att_name,Integer &att_type)

Description

For segment number seg of the Element super, get the type of the attribute with name
att_name. The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_super_segment_attribute_type (Element super,Integer seg,Integer
att_no,Integer &att_type)

Name

Integer Get_super_segment_attribute_type (Element super,Integer seg,Integer att_no,Integer &att_type)

Description

For segment number seg of the Element super, get the type of the attribute with attribute
number att_no. The attribute type is returned in att_type.

A function return value of zero indicates the attribute type was successfully returned.

Get_super_segment_attribute_length(Element super,Integer seg,Text
att_name,Integer &att_len)

Name

Integer Get_super_segment_attribute_length(Element super,Integer seg,Text att_name,Integer &att_len)

Description

For segment number seg of the Element super, get the length (in bytes) of the attribute with the
name att_name. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for user attributes of type Text and Binary.
Page 447Super String Element

12d Model Programming Manual
Get_super_segment_attribute_length(Element super,Integer seg,Integer
att_no,Integer &att_len)

Name

 Integer Get_super_segment_attribute_length(Element super,Integer seg,Integer att_no,Integer &att_len)

Description

For segment number seg of the Element super, get the length (in bytes) of the attribute number
att_no. The attribute length is returned in att_len.

A function return value of zero indicates the attribute length was successfully returned.

Note - the length is useful for attributes of type Text and Binary.

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)

Name

Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)

Description

For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer in)

Name

Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer int)

Description

For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)

Name

Integer Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)

Description

For the Element super and on the segment number seg,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.
Page 448 Super String Element

Chapter 5 4DML Library Calls
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)

Name

Integer Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)

Description

For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Text and give it the
value txt.
 if the attribute with number att_no does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer in)

Name

Integer Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer int)

Description

For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Integer and give it the
value int.
 if the attribute with number att_no does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)

Name

Integer Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)

Description

For the Element super and on the segment number seg,
 if the attribute with number att_no does not exist then create it as type Real and give it the
value real.
 if the attribute with number att_no does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute number att_no.

Super String Uid Functions
Page 449Super String Element

12d Model Programming Manual
For definitions of the Visibility dimensions, see UID Dimensions

See Super String Vertex Uid
See Super String Segment Uid

Super String Vertex Uid

Set_super_use_vertex_uid(Element elt,Integer use)

Name

Integer Set_super_use_vertex_uid(Element elt,Integer use)

Description

Allows another dimension. Used in functions to allow backtracking. For experienced 12d staff
only.

Used in survey data reduction and in underlying super string in super alignments.

Super String Segment Uid

Super String Vertex Image Functions
For definitions of the Visibility dimensions, see Vertex Image Dimensions

Set_super_use_vertex_image_value(Element super,Integer use)

Name

Integer Set_super_use_vertex_image_value(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Vertex_Image_Value is
used. See “Super String Dimensions and Flags” for information on dimensions.

If use is 1, the dimension is set. That is, the super string can have an image attached to each
vertex (it can be a different image at each vertex).

If use is 0, the dimension is removed. If the string had images then the images will be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_image_value(Element super,Integer &use)

Name

Integer Get_super_use_vertex_image_value(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Image_Value exists for the super string super. See
“Super String Dimensions and Flags” for information on dimensions.

use is returned as 1 if the dimension exists.
Page 450 Super String Element

Chapter 5 4DML Library Calls
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_vertex_image_array(Element super,Integer use)

Name

Integer Set_super_use_vertex_image_array(Element super,Integer use)

Description

For the super string Element super, define whether the dimension Att_Vertex_Image_Array
exists for the super string super. See “Super String Dimensions and Flags” for information on
dimensions.

If use is 1, the dimension is set. That is, each super string vertex can have a number of images
attached to it.

If use is 0, the dimension is removed. If the super string vertex had images then the images will
be removed.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_image_array(Element super,Integer &use)

Name

Integer Get_super_use_vertex_image_array(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Image_Array exists for the super string super. See
“Super String Dimensions and Flags” for information on dimensions.

use is returned as 1 if the dimension exists. That is, each super string vertex can have a number
of images attached to it.

use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Super String Visibility Functions
For definitions of the Visibility dimensions, see Visibility Dimensions

See Super String Combined Visibility
See Super String Vertex Visibility
See Super String Segment Visibility

Super String Combined Visibility

Get_super_use_visibility(Element super,Integer &use)

Name

Integer Get_super_use_visibility(Element super,Integer &use)

Description

Query whether the dimension Att_Visible_Array exists for the super string.
Page 451Super String Element

12d Model Programming Manual
See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A value for use of 1 indicates the dimension exists.

A return value of 0 indicates the function call was successful.

Set_super_use_visibility(Element super,Integer use)

Name

Integer Set_super_use_visibility(Element super,Integer use)

Description

Tell the super string whether to use, or not use, the dimension Att_Visible_Array.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A value for use of 1 sets the dimension and 0 removes it.

A return value of 0 indicates the function call was successful.

Super String Vertex Visibility

Set_super_use_vertex_visibility_value(Element super,Integer use)

Name

Integer Set_super_use_vertex_visibility_value(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Vertex_Visible_Value is
used. If Att_Vertex_Visible_Value is set then there is one visibility value for all vertices in super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

If Att_Vertex_Visible_Value is set then the visibility is the same for all vertices in super.

If use is 1, the dimension is set and the visibility is the same for all vertices.

If use is 0, the dimension is removed.

Note that if the dimension Att_Vertex_Visible_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_visibility_value(Element super,Integer &use)

Name

Integer Get_super_use_vertex_visibility_value(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Visible_Value exists for the super string super. If
Att_Vertex_Visible_Value is set then there is one visibility value for all vertices in super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

use is returned as 1 if the dimension exists.

use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.
Page 452 Super String Element

Chapter 5 4DML Library Calls
Set_super_use_vertex_visibility_array(Element super,Integer use)

Name

Integer Set_super_use_vertex_visibility_array(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Vertex_Visible_Array is
used. If Att_Vertex_Visible_Array is set then there can be a different visibility defined for each
vertex in super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

If use is 1, the dimension is set and the visibility is different for each vertex.

If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_use_vertex_visibility_array(Element super,Integer &use)

Name

Integer Get_super_use_vertex_visibility_array(Element super,Integer &use)

Description

Query whether the dimension Att_Vertex_Visible_Array exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)

Name

Integer Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)

Description

For the Element super (which must be of type Super), get the visibility value for vertex number
vert and return it in the Integer visibility.

If visibility is 1, the vertex is visible.
If visibility is 0, the vertex is invisible.

If the Element super is not of type Super, or Att_Vertex_Visible_Array is not set for super, then a
non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A return value of 0 indicates the function call was successful.

Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)

Name

Integer Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)
Page 453Super String Element

12d Model Programming Manual
Description

For the Element super (which must be of type Super), set the visibility value for vertex number
vert and to visibility.

If visibility is 1, the vertex is visible.
If visibility is 0, the vertex is invisible.

If the Element super is not of type Super, or Att_Vertex_Visible_Array is not set for super, then a
non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A return value of 0 indicates the function call was successful.

Super String Segment Visibility

Set_super_use_segment_visibility_value(Element super,Integer use)

Name

Integer Set_super_use_segment_visibility_value(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Segment_Visible_Value is
used. If Att_Segment_Visible_Value is set then the visibility is the same for all segments in
super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

If use is 1, the dimension is set and the visibility is the same for all segments.
If use is 0, the dimension is removed.

Note that if the dimension Att_Segment_Visible_Array exists, this call is ignored.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_visibility_value(Element super,Integer &use)

Name

Integer Get_super_use_segment_visibility_value(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Visible_Value exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Set_super_use_segment_visibility_array(Element super,Integer use)

Name

Integer Set_super_use_segment_visibility_array(Element super,Integer use)

Description

For Element super of type Super, define whether the dimension Att_Segment_Visible_Array is
used. If Att_Segment_Visible_Array is set then there can be a different visibility defined for each
segment in super.
Page 454 Super String Element

Chapter 5 4DML Library Calls
See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

If use is 1, the dimension is set and the visibility is different for each segment.
If use is 0, the dimension is removed.

A return value of 0 indicates the function call was successful.

Get_super_use_segment_visibility_array(Element super,Integer &use)

Name

Integer Get_super_use_segment_visibility_array(Element super,Integer &use)

Description

Query whether the dimension Att_Segment_Visible_Array exists for the super string super.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

use is returned as 1 if the dimension exists.
use is returned as 0 if the dimension doesn’t exist.

A return value of 0 indicates the function call was successful.

Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)

Name

Integer Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)

Description

For the Element super (which must be of type Super), get the visibility value for segment
number seg and return it in the Integer visibility.

If visibility is 1, the segment is visible.
If visibility is 0, the segment is invisible.

If the Element super is not of type Super, or Att_Segment_Visible_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A return value of 0 indicates the function call was successful.

Set_super_segment_visibility(Element super,Integer seg,Integer visibility)

Name

Integer Set_super_segment_visibility(Element super,Integer seg,Integer visibility)

Description

For the Element super (which must be of type Super), set the visibility value for segment
number seg to visibility.

If visibility is 1, the segment is visible.
If visibility is 0, the segment is invisible.

If the Element super is not of type Super, or Att_Segment_Visible_Array is not set for super,
then a non-zero return code is returned.

See Super String Dimensions and Flags for information on dimensions and Visibility Dimensions
for information on the Visibility dimensions.

A return value of 0 indicates the function call was successful.
Page 455Super String Element

12d Model Programming Manual
Element Operations

Selecting

Select_string(Text msg,Element &string)

Name

Integer Select_string(Text msg,Element &string)

Description

Write the message msg to the 12d Model message area and then return the Element picked by
the user.

The picked Element is returned in the Element string.

A function return value of

-1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick

Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real
&ht)

Name

Integer Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description

Write the message msg to the 12d Model message area and then return the Element picked by
the user. The co-ordinates of the picked point are also returned.

The picked Element is returned in the Element string.

The co-ordinates and chainage of the picked point on the Element string are (x,y,z) and ch
respectively.

The value ht is reserved for future use and should be ignored.

A function return value of

-1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick

Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real
&ht,Integer &dir)

Name

Integer Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht, Integer
&dir)

Description

Write the message msg to the 12d Model message area and then return the Element picked by
the user. The co-ordinates of the picked point are also returned plus whether the string selecting
was picked in the same direction as the string, or the opposite direction to the string.

The picked Element is returned in the Element string.

The co-ordinates and chainage of the picked point on the Element string are (x,y,z) and ch
Page 456 Element Operations

Chapter 5 4DML Library Calls
respectively.

The value ht is reserved for future use and should be ignored.

The value dir indicates if the picking motion was in the same direction as the selected string, or
in the opposite direction.

 dir = when the picking motion was in the same direction as the selected string.
 dir = when the picking motion was in the opposite direction as the selected string.

A function return value of

-1 indicates cancel was chosen from the pick-ops menu.
 0 pick unsuccessful
 1 pick was successful
 2 a cursor pick

Drawing

Element_draw(Element elt,Integer col_num)

Name

Integer Element_draw(Element elt,Integer col_num)

Description

Draw the Element elt in the colour number col_num on all the views that elt is displayed on.

A function return value of zero indicates that elt

 was drawn successfully.

Element_draw(Element elt)

Name

Integer Element_draw(Element elt)

Description

Draw the Element elt in its natural colour.

A function return value of zero indicates that elt

 was drawn successfully.

Open and Close

String_closed(Element elt,Integer &closed)

Name

Integer String_closed(Element elt,Integer &closed)

Description

Checks to see if the Element elt is closed. That is, check if the first and the last points of the
element are the same. The close status is returned as closed.

If closed is

1 then elt is closed

0 then elt is not closed (i.e. open)

A zero function return value indicates that the closure check was successful.
Page 457Element Operations

12d Model Programming Manual
String_open(Element elt)

Name

Integer String_open(Element elt)

Description

Open the Element elt.

That is, if the first and the last points of the elt are the same, then delete the last point of elt.

A function return value of zero indicates that elt was successfully opened.

String_close(Element elt)

Name

Integer String_close(Element elt)

Description

Close the Element elt.

That is, if the first and the last points of elt are not the same, then add a point to the end of elt
which is the same as the first point of elt.

A function return value of zero indicates that elt was successfully closed.

Length and Area

Get_length(Element elt,Real &length)

Name

Integer Get_length(Element elt,Real &length)

Description

Get the plan length of the string (which equals end chainage minus the start chainage)

A function return value of zero indicates the plan length was successfully returned.

Get_length_3d(Element elt,Real &length)

Name

Integer Get_length_3d(Element elt,Real &length)

Description

Get the 3d length of the string.

A function return value of zero indicates the 3d length was successfully returned.

Plan_area(Element elt, Real &plan_area)

Name

Integer Plan_area(Element elt,Real &plan_area)

Description

Calculate the plan area of an Element. If the Element is not closed, then the first and last points
Page 458 Element Operations

Chapter 5 4DML Library Calls
are joined before calculating the area. For an arc, the plan area of the sector is returned.

The area is returned in the Real plan_area.

A function return value of zero indicates the plan area was successfully returned.

Position and Drop Point

Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)

Name

Integer Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)

Description

Get the (x,y,z) position and instantaneous direction (inst_dir - as an angle, measured in radians)
of a point at chainage ch on the Element elt.

A function return value of zero indicates success.

Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real
&rad, Real &inst_grade)

Name

Integer Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &rad,Real
&inst_grade)

Description

For a Element, elt, of type Alignment only, get the (x,y,z) position, radius rad, instantaneous
direction (inst_dir - as an angle, measured in radians) and instantaneous grade (inst_grade) of
a point on elt at chainage ch.

A function return value of zero indicates success.

Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real
&ch,Real &inst_dir,Real &off)

Name

Integer Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf,Real &zf,Real &ch,Real
&inst_dir,Real &off)

Description

In plan, drop the point (xd,yd) perpendicularly onto the Element elt. If the point cannot be
dropped onto any segment of the Element, then the point is dropped onto the closest end point.
A z-value for the dropped point is created by interpolation.

The position of the dropped point on the Element in returned in xf, yf and zf. The chainage of the
dropped point on the string is ch and inst_dir the instantaneous direction (as an angle,
measured in radians) at the dropped point.

Off is the plan distance from the original point to the dropped point on the string.

A function return value of zero indicates that the drop was successful.

Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real
&ch,Real &inst_dir,Real &off,Segment &segment)
Page 459Element Operations

12d Model Programming Manual
Name

Integer Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf,Real &zf,Real &ch,Real
&inst_dir,Real &off,Segment &segment)

Description

In plan, drop the point (xd,yd) perpendicularly onto the Element elt. If the point cannot be
dropped onto any segment of the Element, then the point is dropped onto the closest end point.
A z-value for the dropped point is created by interpolation.

The position of the dropped point on the Element in returned in xf, yf and zf. The chainage of the
dropped point on the string is ch and inst_dir the instantaneous direction (as an angle,
measured in radians) at the dropped point.

Off is the plan distance from the original point to the dropped point on the string.

Segment segment is the link of the string that the point drops onto.

A function return value of zero indicates that the drop was successful.

Parallel
The parallel command is a plan parallel and is used for all Elements except Tin and Text.

The sign of the distance to parallel the object is used to indicate whether the object is parallelled
to the left or to the right.

A positive distance means to parallel the object to the right.

A negative distance means to parallel the object to the left.

Parallel(Element elt,Real distance,Element ¶llelled)

Name

Integer Parallel(Element elt,Real distance,Element ¶llelled)

Description

Plan parallel the Element elt by the distance distance.

The parallelled Element is returned as the Element parallelled. The z-values are not modified,
i.e. they are the same as for elt.

A function return value of zero indicates the parallel was successful.

Self Intersection

String_self_intersects(Element elt,Integer &intersects)

Name

Integer String_self_intersects(Element elt,Integer &intersects)

Description

Find the number of self intersections for the Element elt.

The number of self intersections is returned as intersects.

A function return value of zero indicates that there were no errors in the function.

Note

For Elements of type Alignment, Arc, Circle and Text the number of intersects is set to negative.
Page 460 Element Operations

Chapter 5 4DML Library Calls
Loop Clean Up

Loop_clean(Element elt,Point ok_pt,Element &new_elt)

Name

Integer Loop_clean(Element elt,Point ok_pt,Element &new_elt)

Description

This routine tries to remove any plan loops in the Element elt.

If elt is closed, then the function assumes that the Point ok_pt is near a segment of the string
that will also be in the cleaned string.

If elt is open, then the function starts cleaning from the end of the string closest to the Point
ok_pt.

The cleaned Element is returned as Element new_elt.

A function return value of zero indicates the clean was successful.

Note

Loop_clean is not defined for the Elements of type Alignment, Arc, Circle and Text

Locks

Get_read_locks(Element elt,Integer &num_locks)

Name

Integer Get_read_locks(Element elt,Integer &num_locks)

Description

<no description>

Get_write_locks(Element elt,Integer &num_locks)

Name

Integer Get_write_locks(Element elt,Integer &num_locks)

Description

<no description>
Page 461Element Operations

12d Model Programming Manual
Creating Valid Names
Valid_string_name(Text old_name,Text &valid_name)

Name

Integer Valid_string_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid string name by substituting spaces for any illegal characters
in old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.

Valid_model_name(Text old_name,Text &valid_name)

Name

Integer Valid_model_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid model name by substituting spaces for any illegal
characters in old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.

Valid_tin_name(Text old_name,Text &valid_name)

Name

Integer Valid_tin_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid tin name by substituting spaces for any illegal characters in
old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.

Valid_attribute_name(Text old_name,Text &valid_name)

Name

Integer Valid_attribute_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid attribute name by substituting spaces for any illegal
characters in old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.

Valid_linestyle_name(Text old_name,Text &valid_name)

Name

Integer Valid_linestyle_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid linestyle name by substituting spaces for any illegal
characters in old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.
Page 462 Creating Valid Names

Chapter 5 4DML Library Calls
Valid_symbol_name(Text old_name,Text &valid_name)

Name

Integer Valid_symbol_name(Text old_name,Text &valid_name)

Description

Convert the Text old_name to a valid symbol name by substituting spaces for any illegal
characters in old_name. The new name is returned in valid_name.

A function return value of zero indicates the function was successful.
Page 463Creating Valid Names

12d Model Programming Manual
XML
The XML macro calls allow the user to read or write xml files from the macro language in a DOM
based manner. This will be effective for small to mid size XML files, but very large XML files may
not be supported.

For more information on the XML standard, see http://www.w3.org/XML/

Create_XML_Document()

Name

XML_Document Create_XML_Document()

Description

This call creates a new XML document. This is the entry point for all macro code that works with
XML. Existing files can then be read into the document, or the code may start to build up nodes
into the document.

Read_XML_document(XML_Document doc,Text file)

Name

Integer Read_XML_document(XML_Document doc,Text file)

Description

Reads the supplied file and loads the nodes into the supplied XML Document object.

Returns 0 if successful.

Write_XML_Document(XML_Document doc,Text file)

Name

Integer Write_XML_Document(XML_Document doc,Text file)

Description

Writes the supplied XML Document to the given file name.

Returns 0 if successful.

Get_XML_Declaration(XML_Document doc,Text &version,Text &encoding,
Integer &standalone)

Name

Integer Get_XML_Declaration(XML_Document doc,Text &version,Text &encoding,Integer &standalone)

Description

Finds and returns the values from the XML declaration in the given document. Not all documents
may contain XML declarations.

Returns 0 if successful.

Set_XML_declaration(XML_Document doc,Text version,Text encoding,
 Integer standalone)

Name
Page 464 XML

Chapter 5 4DML Library Calls
Integer Set_XML_declaration(XML_Document doc,Text version,Text encoding,Integer standalone)

Description

This call sets the details for the XML declaration. If the document does not already contain an
XML declaration, one will be added to the top of the document.

Returns 0 if successful.

Create_node(Text name)

Name

XML_Node Create_node(Text name)

Description

This call creates a new XML node. This node can have its value set, or have other children
nodes appended to it. It must also be either set as the root node (see Set_Root_Node) or
appended to another node (see Append_Node) to become part of a document.

Get_root_node(XML_Document doc,XML_Node &node)

Name

Integer Get_root_node(XML_Document doc,XML_Node &node)

Description

This call finds and retrieves the node at the root of the document. This is the top level node. If
there is no root node, the call will return non 0.

Returns 0 if successful.

Set_root_node(XML_Document,XML_Node &node)

Name

Integer Set_root_node(XML_Document,XML_Node &node)

Description

This call sets the root node (the top level node) for the given document. There must be at most
one root node in a document.

Get_number_of_nodes(XML_Node node)

Name

Integer Get_number_of_nodes(XML_Node node)

Description

This call returns the number of children nodes for the given nodes. A node may contain 0 or more
children.

Get_child_node(XML_Node node,Integer index,XML_Node &child_node)

Name

Integer Get_child_node(XML_Node node,Integer index,XML_Node &child_node)

Description

This call retrieves the n'th child, as specified by index, of a parent node and stores it in the
Page 465XML

12d Model Programming Manual
child_node argument.

Returns 0 if successful.

Get_child_node(XML_Node node,Text name,XML_Node &child_node)

Name

Integer Get_child_node(XML_Node node,Text name,XML_Node &child_node)

Description

This call retrieves the first instance of a child of a parent node, by its name. If there is more than
one element of the same name, this call will only return the first. The retrieved node will be stored
in the child_node argument.

This call will return 0 if successful.

Append_node(XML_Node parent,XML_Node new_node)

Name

Integer Append_node(XML_Node parent,XML_Node new_node)

Description

This call appends a child node to a parent node. A parent node may contain 0 or more children
nodes.

This call will return 0 if successful.

Remove_node(XML_Node parent,Integer index)

Name

Integer Remove_node(XML_Node parent,Integer index)

Description

This call removes the n'th child node, as given by index, from the supplied parent node.

This call will return 0 if successful.

Get_parent_node(XML_Node child,XML_Node &parent)

Name

Integer Get_parent_node(XML_Node child,XML_Node &parent)

Description

This call will find the parent node of the supplied child and store it in the parent argument.

This call will return 0 if successful.

Get_next_sibling_node(XML_Node node,XML_Node &sibling)

Name

Integer Get_next_sibling_node(XML_Node node,XML_Node &sibling)

Description

Given a node, this call will retrieve the next sibling, or same level node.

In the following example, Child2 is the next sibling of Child1.
Page 466 XML

Chapter 5 4DML Library Calls
<Parent>
 <Child1/>
 <Child2/>
</Parent>

This call will return 0 if successful.

Get_prev_sibling_node(XML_Node node,XML_Node &sibling)

Name

Integer Get_prev_sibling_node(XML_Node node,XML_Node &sibling)

Description

Given a node, this call will retrieve the previous sibling, or same level node.

In the following example, Child1 is the previous sibling of Child2.

<Parent>
 <Child1/>
 <Child2/>
</Parent>

This call will return 0 if successful.

Get_node_name(XML_Node node,Text &name)

Name

Integer Get_node_name(XML_Node node,Text &name)

Description

This call will retrieve the name of a supplied node and store it in the name argument.

The name of a node is the value within the brackets or tags. In the following example, MyNode is
the name of the node.

<MyNode>1234</MyNode>
This call will return 0 if successful.

Get_node_attribute(XML_Node node,Text name,Text &value)

Name

Integer Get_node_attribute(XML_Node node,Text name,Text &value)

Description

This call will try find an attribute of given name belonging to the supplied node, and will store the
value in the value attribute.

In the following example, the data stored in value will be: MyAttributeData

<MyNode MyAttribute="MyAttributeData" />
This call will return 0 if successful.

Set_node_attribute(XML_Node node,Text name,Text value)

Name

Integer Set_node_attribute(XML_Node node,Text name,Text value)

Description

This call will set the value of an attribute attached to a node. If it does not exist, the attribute will
Page 467XML

12d Model Programming Manual
be created.

This call will return 0 if successful.

Remove_node_attribute(XML_Node node,Text name)

Name

Integer Remove_node_attribute(XML_Node node,Text name)

Description

This call will attempt to remove a node of a given name from the supplied node.

This call will return 0 if successful.

Is_text_node(XML_node &node)

Name

Integer Is_text_node(XML_node &node)

Description

This call will attempt to determine if a node is a text only node or not.

A text node is one that contains only text, and no other child nodes.

This call will return 1 if the node is a text node.

Get_node_text(XML_Node &node,Text &text)

Name

Integer Get_node_text(XML_Node &node,Text &text)

Description

This call will attempt to retrieve the internal text value of a node and store it in text.

Not all nodes may contain text.

In the following example, the value of text will be set to MyText

<MyNode>MyText</MyNode>
This call will return 0 if successful.

Set_node_text(XML_Node &node,Text value)

Name

Integer Set_node_text(XML_Node &node,Text value)

Description

This call will set the internal text of node to the value.

This call will return 0 if successful.

Create_text_node(Text name,Text value)

Name

XML_Node Create_text_node(Text name,Text value)

Description
Page 468 XML

Chapter 5 4DML Library Calls
This call will create a new text node of the given name and set the internal text to the given value.

This call will return the created node.
Page 469XML

12d Model Programming Manual
Map File
Map_file_create(Map_File &file)

Name

Integer Map_file_create(Map_File &file)

Description

Create a mapping file. The file unit is returned as Map_file file.

A function return value of zero indicates the file was opened successfully.

Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)

Name

Integer Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)

Description

Open up a mapping file to read.

The file unit is returned as Map_file file.

The prefix of models is given as Text prefix.

The string type is given as Integer use_ptline,

0 – point string

1 – line sting.

A function return value of zero indicates the file was opened successfully.

Map_file_close(Map_File file)

Name

Integer Map_file_close(Map_File file)

Description

Close a mapping file. The file being closed is Map_file file.

A function return value of zero indicates the file was closed successfully.

Map_file_number_of_keys(Map_File file,Integer &number)

Name

Integer Map_file_number_of_keys(Map_File file,Integer &number)

Description

Get the number of keys in a mapping file.

The file is given as Map_file file.

The number of keys is returned in Integer number.

A function return value of zero indicates the number was returned successfully.

Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer
colour,Integer ptln,Text style)
Page 470 Map File

Chapter 5 4DML Library Calls
Name

Integer Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text
style)

Description

Add key to a mapping file.

The file is given in Map_file file.

The key is given in Text key.

The string name is given in Text name.

The model name is given in Text model.

The string colour is given in Integer colour.

The string type is given in Integer ptln.

The string style is given in Text style.

A function return value of zero indicates the key was added successfully.

Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model,
Integer &colour,Integer &ptln,Text &style)

Name

Integer Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer
&colour,Integer &ptln,Text &style)

Description

Get nth key’s data from a mapping file.

The file is given in Map_file file.

The key is returned in Text key.

The string name is returned in Text name.

The model name is returned in Text model.

The string colour is returned in Integer colour.

The string type is returned in Integer ptln.

The string style is returned in Text style.

A function return value of zero indicates the key was returned successfully.

Map_file_find_key(Map_File file,Text key, Integer &number)

Name

Integer Map_file_find_key(Map_File file,Text key,Integer &number)

Description

Find the record number from a mapping file that contains the given key.

The file unit is given in Map_file file.

The record number is returned in Integer number.

A function return value of zero indicates the key was find successfully.
Page 471Map File

12d Model Programming Manual
Page 472 Map File

Chapter
Panels
The user can build panels in the 12d Model Macro Language that replicates the look and feel,
and much of the functionality, of standard 12d Model panels. Even in 12d Model there are many
options that are written in the 12d Model Macro Language and in most cases, the only way to tell
if a panel is an inbuilt 12d Model panel or is a 12dML panel is by clicking on the Windows button
on the top left hand side of a panel and then selecting About.

Panels are made up of Widgets which can be Input widgets such a Model_Box and
Named_Tick_Box, or Buttons such as Report or Finish, or Trees or Grids.

The Widgets can be built up in horizontal or vertical groups. Widgets inside are group are
automatically spaced out by 12d Model.

One the Panel is constructed, it is displayed on screen by calling Show_widget(Panel panel).
Page 473Panels

12d Model Programming Manual
See Widget Controls
See Horizontal Group
See Vertical Group
See Panel Help and Tooltip Calls
See Panel Page
See Input Widgets
See Buttons
See GridCtrl_Box
See Tree Box Calls

Get_cursor_position(Integer &x,Integer &y)

Name

Integer Get_cursor_position(Integer &x,Integer &y)

Description

Get the cursor position (x,y).

The units of x and y are screen units (pixels).

The type of x and y must be Integer.

A function return value of zero indicates the position was returned successfully.

Set_cursor_position(Integer x,Integer y)

Name

Integer Set_cursor_position(Integer x,Integer y)

Description

Set the cursor position with the coordinates (x, y).

The units of x and y are screen units (pixels).

A function return value of zero indicates the position was successfully set.

Widget Controls

Create_panel(Text title_text)

Name

Panel Create_panel(Text title_text)

Description

Create a panel with the title title_text.

The function return value is the created Panel.

Note: the Show_widget(Panel panel) call must be made to display the panel on the screen. For
example:

Panel Example:

 Panel panel = Create_panel("Grid of Min/Max of Tins");

Show_widget(panel);
Page 474 Panels

Chapter
Widget of type Button

Panel title

Widget Tin_Box

Widget title

Widget of type Button

Message_Box or
Colour_Message_Box

Browse button

Widget of type

typed input area
of a Widget

of a Widget

Named_Tick_Box

Widget of type

title of Button Widget

Panel title Browse button
of a Widget

Browse button
turned off
for a widget

Widget optional

Widget disabled

Horizontal_Group of
two Buttons with
border text "Buttons"

Vertical_Group of
four Widgets with
border text "Tins"
Page 475Panels

12d Model Programming Manual
Append(Widget widget,Panel panel)

Name

Integer Append(Widget widget,Panel panel)

Description

Append the Widget widget to the Panel panel.

A function return value of zero indicates the widget was appended successfully.

Note: the panel is built up of Widgets in the order that they are Appended.

For an example of a panel with Widgets Tin_Box, Buttons, Message_Box etc, see Panel
Example:

Use_browse_button(Widget widget,Integer mode)

Name

Integer Use_browse_button(Widget widget,Integer mode)

Description

Set whether the browse button is available for Widget widget.

If mode = 1 use the browse button
if mode = 0 don’t use the browse button.

The default value for a Widget is mode = 1.

If the browse button is not used, the space where the button would be, is removed.

Note: This call must be made before the Panel that contains the widget is shown.

A function return value of zero indicates the value was valid.

Use_browse_button mode = 1

Use_browse_button mode = 0

Browse button of a Widget

Show_browse_button(Widget widget,Integer mode)

Name

Integer Show_browse_button(Widget widget,Integer mode)

Description

This calls you to show or hide the browse button for the Widget widget.

If mode = 1 show the browse button
if mode = 0 don’t show the browse button.

The default value for a Widget is mode = 1.

This call can be made after the Widget has been added to a panel and allows the Browse button
of the Widget to be turned on and off under the programmers control.

Note if Use_browse_button was called with a mode of 0 then this call is ineffective. See
Use_browse_button(Widget widget,Integer mode)
Page 476 Panels

Chapter
A function return value of zero indicates the mode was successfully set.

Show_browse_button mode = 1

Show_browse_button mode = 0

Browse Button of
the Tin_Box Widget

Set_enable(Widget widget,Integer mode)

Name

Integer Set_enable(Widget widget,Integer mode)

Description

Set the enabled mode for the Widget widget.

If mode = 1 the Widget is to be enabled
 mode = 0 the Widget is not to be enabled.

The default value for a Widget is mode = 1.

Note If the widget is not enabled, it will be greyed out in the standard Windows fashion and no
interaction with the Widget is possible.

A function return value of zero indicates the mode was successfully set.

Set_enable mode = 1

Set_enable mode = 0

All parts of the disabled Widget are greyed out

Get_enable(Widget widget,Integer &mode)

Name

Integer Get_enable(Widget widget,Integer &mode)

Description

Check if the Widget widget is enabled or disabled. See Set_enable(Widget widget,Integer
mode)

Return the Integer mode where

 mode = 1 if the Widget is enabled
 mode = 0 if the Widget is not enabled.

A function return value of zero indicates the mode was returned successfully.

Set_optional(Widget widget,Integer mode)

Name

Integer Set_optional(Widget widget,Integer mode)
Page 477Panels

12d Model Programming Manual
Description

Set the optional mode for the Widget widget.

That is, if the Widget field is blank, the title text to the left is greyed out, signifying that this Widget
is optional.

If mode = 1 the widget is optional
 mode = 0 the widget is not optional.

The default value for a Widget is mode = 0.

If this mode is used (i.e. 1), the widget must be able to accept a blank response for the field, or
assume a reasonable value.

A function return value of zero indicates the mode was successfully set.

Set_optional mode = 0

Set_optional mode = 1Widget title
greyed out

Get_optional(Widget widget,Integer &mode)

Name

Integer Get_optional(Widget widget,Integer &mode)

Description

Check if the Widget widget is optional. That is, the Widget does not have to be answered.See
Set_optional(Widget widget,Integer mode)

Return the Integer mode where

 mode = 1 if the Widget is optional
 mode = 0 if the Widget is not optional.

A function return value of zero indicates the mode was returned successfully.

Set_name(Widget widget,Text text)

Name

Integer Set_name(Widget widget,Text text)

Description

Set the title text of the Widget widget.

A Widget is usually given a title when it is first created This call can be made after the Widget has
been added to a panel and allows the title of the Widget to be changed under the programmers
control.

A function return value of zero indicates the title was successfully set.

Get_name(Widget widget,Text &text)

Name

Integer Get_name(Widget widget,Text &text)
Page 478 Panels

Chapter
Description

Get the title text from the Widget widget.

A function return value of zero indicates the text was returned successfully.

Set_error_message(Widget widget,Text text)

Name

Integer Set_error_message(Widget widget,Text text)

Description

This call is used to set the error message for a Widget if it is validated and there is an error.

LJG ??

When there is an error, text is sent to the associated Message_Box of the widget, the focus is
set to the widget and the cursor is moved to the widget.

A function return value of zero indicates the text was successfully set.

Set_width_in_chars(Widget widget,Integer num_char)

Name

Integer Set_width_in_chars(Widget widget,Integer num_char)

Description

Set the Widget widget to be num_char characters wide.

A function return value of zero indicates the width was set successful.

Show_widget(Widget widget)

Name

Integer Show_widget(Widget widget)

Description

Show the Widget widget at the cursor’s current position.

A function return value of zero indicates the widget was shown successfully.

Show_widget(Widget widget,Integer x,Integer y)

Name

Integer Show_widget(Widget widget,Integer x,Integer y)

Description

Show the Widget widget at the screen coordinates (pixels) x, y.

A function return value of zero indicates the widget was shown successfully.

Hide_widget(Widget widget)

Name

Integer Hide_widget(Widget widget)

Description
Page 479Panels

12d Model Programming Manual
Hide the Widget widget. That is, don’t display the Widget on the screen.

Note the Widget still exists but it is not visible on the screen.

A function return value of zero indicates the widget was hidden successfully.

Set_size(Widget widget,Integer x,Integer y)

Name

Integer Set_size(Widget widget,Integer x,Integer y)

Description

Set the size in screen units (pixels) of the Widget widget with the width x and height y.

The type of x and y must be Integer.

A function return value of zero indicates the size was successfully set.

Get_size(Widget widget,Integer &x,Integer &y)

Name

Integer Get_size(Widget widget,Integer &x,Integer &y)

Description

Get the size in screen units (pixels) of the Widget widget in x and y.

The type of x and y must be Integer.

A function return value of zero indicates the size was returned successfully.

Get_widget_size(Widget widget,Integer &w,Integer &h)

Name

Integer Get_widget_size(Widget widget,Integer &w,Integer &h)

Description

Get the size of the Widget widget in screen units (pixels)

The width of widget is returned in w and the height of widget is returned in h.

A function return value of zero indicates the size was successfully returned.

Set_cursor_position(Widget widget)

Name

Integer Set_cursor_position(Widget widget)

Description

Move the cursor position to the Widget widget.

A function return value of zero indicates the position was successfully set.

Get_widget_position(Widget widget,Integer &x,Integer &y)

Name

Integer Get_widget_position(Widget widget,Integer &x,Integer &y)

Description
Page 480 Panels

Chapter
Get the screen position of the Widget widget.

The position of the widget is returned in x, y. The units of x and y are screen units (pixels).

A function return value of zero indicates the position was successfully returned.

Get_position(Widget widget,Integer &x,Integer &y)

Name

Integer Get_position(Widget widget,Integer &x,Integer &y)

Description

Get the screen position of the Widget widget.

The position of the widget is returned in x, y. The units of x and y are screen units (pixels).

A function return value of zero indicates the position was successfully returned.

Get_id(Widget)

Name

Integer Get_id(Widget)

Description

Get the id of the Widget widget.

The function return value is the id.

Set_focus(Widget widget)

Name

Integer Set_focus(Widget widget)

Description

Set the focus to the typed input area for an Input Widget widget, or on the button for a Button
Widget widget.

After this call all typed input will go to this widget.

A function return value of zero indicates the focus was successfully set.

Wait_on_widgets(Integer &id,Text &cmd,Text &msg)

Name

Integer Wait_on_widgets(Integer &id,Text &cmd,Text &msg)

Description

When the user activates a Widget displayed on the screen (for example by clicking on a Button
Widget), the id, cmd and msg from the widget is passed back to Wait_on_widgets.

A function return value of zero indicates the data was successfully returned.

Horizontal Group

Horizontal_Group Create_horizontal_group(Integer mode)
Page 481Panels

12d Model Programming Manual
Name

Horizontal_Group Create_horizontal_group(Integer mode)

Description

Create a Widget of type Horizontal_Group.

A Horizontal_Group is used to collect a number of Widgets together. The Widgets are added to
the Horizontal_Group using the Append(Widget widget,Horizontal_Group group) call. The Widgets
are automatically spaced horizontally in the order that they are appended.

The mode is always set to 0.

The function return value is the created Horizontal_Group.

Horizontal_Group Create_button_group()

Name

Horizontal_Group Create_button_group()

Description

Create a Widget of type Horizontal_Group to hold Widgets of type Button.

A Horizontal_Group is used to collect a number of Widgets together. The Widgets are added to
the Horizontal_Group using the Append(Widget widget,Horizontal_Group group) call. The Widgets
are automatically spaced horizontally in the order that they are appended.

The mode is always set to 0.

The function return value is the created Horizontal_Group.

Append(Widget widget,Horizontal_Group group)

Name

Integer Append(Widget widget,Horizontal_Group group)

Description

Append the Widget widget to the Horizontal_Group group.

A Horizontal_Group is used to collect a number of Widgets together and the Widgets are added
to the Horizontal_Group using this call. The Widgets are automatically spaced horizontally in the
order that they are appended.

A function return value of zero indicates the Widget was appended successfully.

Set_border(Horizontal_Group group,Text text)

Name

Integer Set_border(Horizontal_Group group,Text text)

Description

Set a border for the Horizontal_Group group with Text text.on the top left side of the border.

If text is blank, the border is removed.

A function return value of zero indicates the border was successfully set.
Page 482 Panels

Chapter
Horizontal_Group of two Buttons
with no border

Horizontal_Group of two Buttons
with border and text "Buttons"

Set_border(Horizontal_Group group,Integer bx,Integer by)

Name

Integer Set_border(Horizontal_Group group,Integer bx,Integer by)

Description

Set a gap around the border of the Horizontal_Group group.

bx sets the left and right side gap around the border.

by sets the top and bottom side gap around of the border.

The units of bx and by are screen units (pixels).

A function return value of zero indicates the border gap was successfully set.

Horizontal_Group of two Buttons
with default border gaps
and text "Buttons"

Horizontal_Group of two Buttons
with border gaps bx =10 and by = 20
and text "Buttons"

Set_gap(Horizontal_Group group,Integer gap)

Name

Integer Set_gap(Horizontal_Group group,Integer gap)

Description
Page 483Panels

12d Model Programming Manual
Set a horizontal gap of at least gap screen units (pixels) between the Widgets of the
Horizontal_Group group.

A function return value of zero indicates the vertical gap was successfully set.

Vertical Group

Vertical_Group Create_vertical_group(Integer mode)

Name

Vertical_Group Create_vertical_group(Integer mode)

Description

Create a widget of type Vertical_Group.

The mode is always set to 0.

The function return value is the created Vertical_Group.

Append(Widget widget,Vertical_Group group)

Name

Integer Append(Widget widget,Vertical_Group group)

Description

Append the Widget widget to the Vertical_Group group.

A function return value of zero indicates the widget was appended successfully.

Set_border(Vertical_Group group,Text text)

Name

Integer Set_border(Vertical_Group group,Text text)

Description

Set a border of the Vertical_Group group with Text text.on the top left side of the border. If text is
blank, the border is removed.

A function return value of zero indicates the border was successfully set.
Page 484 Panels

Chapter
The tins are a Vertical_Group of

The same Vertical_Group of 4 Widgets
with border and text "Tins"

4 Widgets with no border

Note that for the left and right gaps that
the width of the panel doesn’t change
but the gap from the sides of the panel
to the box is increased

Set_border(Vertical_Group group,Integer bx,Integer by)

Name

Integer Set_border(Vertical_Group group,Integer bx,Integer by)

Description

Set a gap around the border of the Vertical_Group group.

bx sets the left and right side gap around the border.

by sets the top and bottom side gap around of the border.

The units of bx and by are screen units (pixels).

A function return value of zero indicates the border gap was successfully set.

Vertical_Group of 4 Widgets
with default border gaps
and text "Tins"

Vertical_Group of 4 Widgets
with border gaps bx =10 and by = 20
and text "Tins"

Note that for the left and right gaps that
the width of the panel doesn’t change
but the gap from the sides of the panel
to the box is increased

Set_gap(Vertical_Group group,Integer gap)
Page 485Panels

12d Model Programming Manual
Name

Integer Set_gap(Vertical_Group group,Integer gap)

Description

Set a vertical gap of at least gap screen units (pixels) between the Widgets of the Vertical_Group
group.

A function return value of zero indicates the vertical gap was successfully set.

Panel Help and Tooltip Calls

Set_tooltip(Widget widget,Text tip)

Name

 Integer Set_tooltip(Widget widget,Text tip)

Description

Sets the tool tip message for the Widget widget to tip.

When the user hovers over widget, this message tip will be displayed as a Windows tooltip.

A function return value of zero indicates the tooltip was successfully set.

Tooltip shown as cursor
goes over the Widget

Get_tooltip(Widget widget,Text &tip)

Name

Integer Get_tooltip(Widget widget,Text &tip)

Description

Queries the current tool tip message and returns the message in tip.

A function return value of zero indicates the tooltip was successfully returned.

Set_help(Widget widget,Integer help_num)

Name

Integer Set_help(Widget widget,Integer help_num)

Description

For the Widget widget, the help number for widget is set to help_num.

This is currently not used.

A function return value of zero indicates the help number was successfully set.

Get_help(Widget widget,Integer &help_num)

Name
Page 486 Panels

Chapter
Integer Get_help(Widget widget,Integer &help_num)

Description

Get the help number for Widget widget and return it in help_num.

The type of help must be integer.

A function return value of zero indicates the help number was successfully returned.

Set_help(Widget widget,Text help_message)

Name

 Integer Set_help(Widget widget,Text help_message)

Description

For the Widget widget, the help message for widget is set to help_message.

This help message will be sent back to 12d Model via Wait_on_widgets(Integer &id,Text
&cmd,Text &msg) with command cmd equal to “Help”, and msg equal to help_message.

So a sample bit of code to handle help is

Wait_on_widgets(id,cmd,msg);

if (cmd == “Help”) {;

 Winhelp(panel,"12d.hlp",'a',msg); // in the Winhelp file 12d.hlp,
 // find and display the a table entry msg

 continue;

}

 A function return value of zero indicates the text was successfully set.

Get_help(Widget widget,Text &help_message)

Name

Integer Get_help(Widget widget,Text &help_message)

Description

Queries the current help message for a widget and returns the message in help_mesage.

A function return value of zero indicates the message was successfully returned.

Winhelp(Widget widget,Text help_file,Text key)

Name

Integer Winhelp(Widget widget,Text help_file,Text key)

Description

Calls the Windows help system to display the key from the k table of the Windows help file
help_file. The Windows help file help_file must exist and be in a location that can be found.

A function return value of zero indicates the function was successful.

Winhelp(Widget widget,Text help_file,Integer table,Text key)

Name

Integer Winhelp(Widget widget,Text help_file,Integer table,Text key)
Page 487Panels

12d Model Programming Manual
Description

Calls the Windows help system to display the key from the named table of the help file help_file.
table takes the form ‘a’, ‘k’ etc. The Windows help file help_file must exist and be in a location
that can be found.

A function return value of zero indicates the function was successful.

Winhelp(Widget widget,Text help_file,Integer help_id)

Name

Integer Winhelp(Widget widget,Text help_file,Integer help_id)

Description

Calls the Windows help system to display the key from the k table of the help file help_file. The
Windows help file help_file must exist and be in a location that can be found.

A function return value of zero indicates the function was successful.

Winhelp(Widget widget,Text help_file,Integer help_id,Integer popup)

Name

Integer Winhelp(Widget widget,Text help_file,Integer helpid,Integer popup)

Description

Calls the Windows help system to display the help with help number help_id from the k table of
the help file help_file. The Windows help file help_file must exist and be in a location that can be
found. The value popup is used to determine whether the help information appears as a popup
style help or normal help.

LJG ?? what are the values for popup

A function return value of zero indicates the function was successful.

Panel Page

Widget_Pages Create_widget_pages()

Name

Widget_Pages Create_widget_pages()

Description

A Widget_Pages object allows a number of controls to exist in the same physical location on a
dialog. This is very handy if you want a field to change between a Model_Box, View_Box or the
like.

A bit of sample code might look like,

 Vertical_Group vgroup1 = Create_vertical_group(0);

 Model_Box mbox = Create_model_box(…);

 Append(mbox,vgroup1);

 Vertical_Group vgroup2 = Create_vertical_group(0);

 View_Box vbox = Create_view_box(…);
Page 488 Panels

Chapter
 Append(vbox,vgroup2);

 Widget_Pages pages = Create_widget_pages();

 Append(vgroup1,pages);

 Append(vgroup2,pages);

 Set_page(page,1) // this shows the 1st page - vgroup1

The function return value is the created Widget_pages.

Append(Widget widget,Widget_Pages pages)

Name

Integer Append(Widget widget,Widget_Pages pages)

Description

Append Widget widget into the Widget_Pages pages.

For each item appended, another page is created.

If you want more than 1 item on a page, add each item to a Horizontal_Group, Vertical_Group.

A function return value of zero indicates the widget was appended successfully.

Set_page(Widget_Pages pages,Integer n)

Name

Integer Set_page(Widget_Pages pages,Integer n)

Description

Show (display on the screen) the n’th page of the Widget_Pages pages.

Note the "n’th page" is the n’th widget appended to the Widget_Pages pages.

All the controls associated with the n’th page_no are shown.

A function return value of zero indicates the page was successfully set.

Set_page(Widget_Pages pages,Widget widget)

Name

Integer Set_page(Widget_Pages pages,Widget widget)

Description

Show (display on the screen) the page of pages containing the Widget widget.

All the controls associated with the widget are shown.

A function return value of zero indicates the page was successfully set.

Get_page(Widget_Pages pages,Widget widget,Integer &page_no)

Name

Integer Get_page(Widget_Pages pages,Widget widget,Integer &page_no)

Description
Page 489Panels

12d Model Programming Manual
For the Widget_Pages pages, get the page number of the page containing the Widget widget.

Note the "n’th page" of a Widget_Pages is the n’th widget appended to the Widget_Pages.

The page n umber is returned as page_no.

A function return value of zero indicates the page number was successfully returned.
Page 490 Panels

Chapter
Input Widgets

See Angle_Box
See Attributes_Box
See Texture_Box
See Bitmap_Fill_Box
See Chainage_Box
See Choice_Box
See Colour_Box
See Colour_Message_Box
See Date_Time_Box
See Directory_Box
See Draw_Box
See File_Box
See Function_Box
See HyperLink_Box
See Input_Box
See Integer_Box
See Justify_Box
See Linestyle_Box
See List_Box
See Map_File_Box
See Message_Box
See Model_Box
See Name_Box
See New_Select_Box
See Name_Tick_Box
See New_XYZ_Box
See Plotter_Box
See Polygon_Box
See Real_Box
See Report_Box
See Screen_Text
See Select_Box
See Select_Boxes
See Sheet_Size_Box
See Source_Box
See Symbol_Box
See Target_Box
See Template_Box
See Text_Style_Box
See Text_Units_Box
See Textstyle_Data_Box
See Text_Edit_Box
See Texture_Box
See Tick_Box
See Tin_Box
See View_Box
See XYZ_Box

Angle_Box

Create_angle_box(Text title_text,Message_Box message)

Name

Angle_Box Create_angle_box(Text title_text,Message_Box message)
Page 491Panels

12d Model Programming Manual
Description

Create an input Widget of type Angle_Box for inputting and validating angles.

The Angle_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Angle_Box.

Set_data(Angle_Box box,Real angle)

Name

Integer Set_data(Angle_Box box,Real angle)

Description

Set the Real data for the Angle_Box box as the Real angle.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

A function return value of zero indicates the data was successfully set.

Set_data(Angle_Box box,Text text_data)

Name

Integer Set_data(Angle_Box box,Text text_data)

Description

Set the data of type Text for the Angle_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Angle_Box box,Text &text_data)

Name

Integer Get_data(Angle_Box box,Text &text_data)

Get the data of type Text from the Angle_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Validate(Angle_Box box,Real &angle)

Name

Integer Validate(Angle_Box box,Real &angle)

Description

Validate the contents of the Angle_Box box and return the angle in angle.

angle is in radians and is measured in a counterclockwise direction from the positive x-axis.

The function returns the value of:

 NO_NAME if the Widget Angle_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.
Page 492 Panels

Chapter
Warning this is the opposite of most 4DML function return values

For information on the other Input Widgets, go to Input Widgets

Attributes_Box

Attributes_Box Create_attributes_box(Text title_text,Message_Box message)

Name

Attributes_Box Create_attributes_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Attributes_Box.

The Attributes_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Attributes_Box.

Set_data(Attributes_Box box,Attributes &data)

Name

Integer Set_data(Attributes_Box box,Attributes &data)

Description

Set the data of type Attributes for the Attributes_Box box to data.

A function return value of zero indicates the data was successfully set.

Set_data(Attributes_Box box,Text text_data)

Name

Integer Set_data(Attributes_Box box,Text text_data)

Description

Set the data of type Text for the Attributes_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Attributes_Box box,Text &text_data)

Name

Integer Get_data(Attributes_Box box,Text &text_data)

Description

Get the data of type Text from the Attributes_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Validate(Attributes_Box box,Attributes &result)

Name

Integer Validate(Attributes_Box box,Attributes &result)
Page 493Panels

12d Model Programming Manual
Description

Validate the contents of Attributes_Box box and return the Attributes in result.

The function returns the value of:

 NO_NAME if the Widget Attributes_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

For information on the other Input Widgets, go to Input Widgets

Billboard_Box

Billboard_Box Create_billboard_box(Text title_text,Message_Box message)

Name

Billboard_Box Create_billboard_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Billboard_Box.

The Billboard_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Billboard_Box.

Set_data(Billboard_Box box,Text text_data)

Name

Integer Set_data(Billboard_Box box,Text text_data)

Description

Set the data of type Text for the Billboard_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Billboard_Box box,Text &text_data)

Name

Integer Get_data(Billboard_Box box,Text &text_data)

Description

Get the data of type Text from the Billboard_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Validate(Billboard_Box box,Text &result)

Name

Integer Validate(Billboard_Box box,Text &result)
Page 494 Panels

Chapter
Description

Validate the contents of Billboard_Box box and return the name of the billboard in Text result.

The function returns the value of:

 NO_NAME if the Widget Billboard_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

For information on the other Input Widgets, go to Input Widgets

Bitmap_Fill_Box

Create_bitmap_fill_box(Text title_text,Message_Box message)

Name

Bitmap_Fill_Box Create_bitmap_fill_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Bitmap_Fill_Box.

The Bitmap_Fill_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Bitmap_Fill_Box.

Validate(Bitmap_Fill_Box box,Text &result)

Name

Integer Validate(Bitmap_Fill_Box box,Text &result)

Description

Validate the contents of Bitmap_Fill_Box box and return the name of the bitmap in Text result.

The function returns the value of:

 NO_NAME if the Widget Bitmap_Fill_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Bitmap_Fill_Box box,Text text_data)

Name

Integer Set_data(Bitmap_Fill_Box box,Text text_data)

Description
Page 495Panels

12d Model Programming Manual
Set the data of type Text for the Bitmap_Fill_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Bitmap_Fill_Box box,Text &text_data)

Name

Integer Get_data(Bitmap_Fill_Box box,Text &text_data)

Description

Get the data of type Text from the Bitmap_Fill_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Chainage_Box

Chainage_Box Create_chainage_box(Text title_text,Message_Box message)

Name

Chainage_Box Create_chainage_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Chainage_Box.

The Chainage_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Chainage_Box.

Validate(Chainage_Box box,Real &result)

Name

Integer Validate(Chainage_Box box,Real &result)

Description

Validate the contents of Chainage_Box box and return the chainage in Real result.

The function returns the value of:

 NO_NAME if the Widget Chainage_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Chainage_Box box,Text &text_data)

Name

Integer Get_data(Chainage_Box box,Text &text_data)

Description
Page 496 Panels

Chapter
Get the data of type Text from the Chainage_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Chainage_Box box,Real real_data)

Name

Integer Set_data(Chainage_Box box,Real real_data)

Description

Set the data of type Real for the Chainage_Box box to real_data.

A function return value of zero indicates the data was successfully set.

Set_data(Chainage_Box box,Text text_data)

Name

Integer Set_data(Chainage_Box box,Text text_data)

Description

Set the data of type Text for the Chainage_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Choice_Box

Create_choice_box(Text title_text,Message_Box message)

Name

Choice_Box Create_choice_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Choice_Box.

The Choice_Box is created with the title title_text.

The Message_Box message is used to display the choice information.

The function return value is the created Choice_Box.

Validate(Choice_Box box,Text &result)

Name

Integer Validate(Choice_Box box,Text &result)

Description

Validate the contents of Choice_Box box and return the Text result.

The function returns the value of:

 NO_NAME if the Widget Choice_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.
Page 497Panels

12d Model Programming Manual
So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Choice_Box box,Text &text_data)

Name

Integer Get_data(Choice_Box box,Text &text_data)

Description

Get the data of type Text from the Choice_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Choice_Box box,Text text_data)

Name

Integer Set_data(Choice_Box box,Text text_data)

Description

Set the data of type Text for the Choice_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Set_data(Choice_Box box,Integer nc,Text choices[])

Name

Integer Set_data(Choice_Box box,Integer nc,Text choices[])

Description

Set the available choice list. There are nc items in the choices list for the Choice_Box box.

The data type in the choices list must be Text.

A function return value of zero indicates the nc’th data in the choices list was successfully set.

For information on the other Input Widgets, go to Input Widgets

Colour_Box

Create_colour_box(Text title_text,Message_Box message)

Name

Colour_Box Create_colour_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Colour_Box.

The Colour_Box is created with the title title_text.

The Message_Box message is used to display the colour information.

The function return value is the created Colour_Box.

Validate(Colour_Box box,Integer &result)
Page 498 Panels

Chapter
Name

Integer Validate(Colour_Box box,Integer &result)

Description

Validate the contents of Colour_Box box and return the colour Integer in result.

The function returns the value of:

 NO_NAME if the Widget Colour_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Colour_Box box,Text &text_data)

Name

Integer Get_data(Colour_Box box,Text &text_data)

Description

Get the data of type Text from the Colour_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Colour_Box box,Integer colour_num)

Name

Integer Set_data(Colour_Box box,Integer colour_num)

Description

Set the data for the Colour_Box box to be the colour number colour_num.

colour_num must be Integer.

A function return value of zero indicates the colour number was successfully set.

Set_data(Colour_Box box,Text text_data)

Name

Integer Set_data(Colour_Box box,Text text_data)

Description

Set the data of type Text for the Colour_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Colour_Message_Box

Text messages can be sent and displayed in a Colour_Message_Box.

However unlike a Message_Box, the background colour of the display area can be modified for a
Page 499Panels

12d Model Programming Manual
Colour_Message_Box.

This is useful for differentiating between different types of messages such as errors, warnings
etc. The levels for the Colour_Message_Box are:

For level = 1, the colour is normal.
For level = 2, the colour is yellow (for Warning)
For level = 3, the colour is red (for Error)
For level = 4, the colour is green (for Good)

Create_colour_message_box(Text title_text)

Name

Colour_Message_Box Create_colour_message_box(Text title_text)

Description

Create a box of type Colour_Message_Box for writing out messages.

The Colour_Message_Box is created with the title title_text.

The background colour of the display area is set using Set_level (Colour_Message_Box, level).

The function return value is the created Colour_Message_Box.

Set_data(Colour_Message_Box box,Text text_data)

Name

Integer Set_data(Colour_Message_Box box,Text text_data)

Description

Set the data of type Text for the Colour_Message_Box box as the Text text_data.

A function return value of zero indicates the data was successfully set.

Set_data(Colour_Message_Box box,Text text_data,Integer level)

Name

Integer Set_data(Colour_Message_Box box,Text text_data,Integer level)

Description

Set the data of type Text for the Colour_Message_Box box as the Text text_data.

The background colour of the box is set as level.

A function return value of zero indicates the data was successfully set.

Set_level(Colour_Message_Box box,Integer level)

Name

Integer Set_level(Colour_Message_Box box,Integer level)

Description

Setting level defines the background colour of the display area.

For level = 1, the colour is normal.
For level = 2, the colour is yellow (for Warning)
For level = 3, the colour is red (for Error)
For level = 4, the colour is green (for Good)
Page 500 Panels

Chapter
A function return value of zero indicates the level was successfully set.

For information on the other Input Widgets, go to Input Widgets

Date_Time_Box

Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)

Name

Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Date_Time_Box.

The Date_Time_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Date_Time_Box.

Validate(Date_Time_Box box,Text &data)

Name

Integer Validate(Date_Time_Box box,Text &data)

Description

Validate the contents of Date_Time_Box box and return the time in Text data.

The function returns the value of:

 NO_NAME if the Widget Date_Time_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and data is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Date_Time_Box box,Text text_data)

Name

Integer Set_data(Date_Time_Box box,Text text_data)

Description

Set the data of type Text for the Date_Time_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Date_Time_Box box,Text &text_data)

Name

Integer Get_data(Date_Time_Box box,Text &text_data)

Description

Get the data of type Text from the Date_Time_Box box and return it in text_data.
Page 501Panels

12d Model Programming Manual
A function return value of zero indicates the data was successfully returned.

Get_data(Date_Time_Box box,Integer &integer_data)

Name

Integer Get_data(Date_Time_Box box,Integer &integer_data)

Description

Get the data of type Integer from the Date_Time_Box box and return it in integer_data.

A function return value of zero indicates the data was successfully returned.

Get_data(Date_Time_Box box,Real &real_data)

Name

Integer Get_data(Date_Time_Box box,Real &real_data)

Description

Get the data of type Real from the Date_Time_Box box and return it in real_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Directory_Box

Create_directory_box(Text title_text,Message_Box message,Integer mode)

Name

Directory_Box Create_directory_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Directory_Box.

The Directory_Box is created with the title title_text.

The Message_Box message is used to display the directory information.

The value of mode is listed in the Appendix A - Directory mode

The function return value is the created Directory_Box.

Validate(Directory_Box box,Integer mode,Text &result)

Name

Integer Validate(Directory_Box box,Integer mode,Text &result)

Description

Validate the contents of Directory_Box box and return the Text result.

The value of mode is listed in the Appendix A - Directory mode. See Directory Mode

The function returns the value of:

 NO_NAME if the Widget Directory_Box is optional and the box is left empty

 NO_DIRECTORY, DIRECTORY_EXISTS, or NEW_DIRECTORY.

 TRUE (1) if no other return code is needed and result is valid.
Page 502 Panels

Chapter
 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Directory_Box box,Text &text_data)

Name

Integer Get_data(Directory_Box box,Text &text_data)

Description

Get the data of type Text from the Directory_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Directory_Box box,Text text_data)

Name

Integer Set_data(Directory_Box box,Text text_data)

Description

Set the data of type Text for the Directory_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Draw_Box

Create_draw_box(Integer width,Integer height,Integer border)

Name

Draw_Box Create_draw_box(Integer width,Integer height,Integer border)

Description

Create an input Widget of type Draw_Box with the width, height and border.

The function return value is the created Draw_Box.

Get_size(Draw_Box,Integer &width,Integer &height)

Name

Integer Get_size(Draw_Box,Integer &width,Integer &height)

Description

Get the width and height of the draw box.

A function return value of zero indicates the width and height were successfully returned.

Set_text_font(Draw_Box box,Text font)

Name
Page 503Panels

12d Model Programming Manual
Integer Set_text_font(Draw_Box box,Text font)

Description

Set the text font font for the Draw_Box box.

A function return value of zero indicates the font was successfully set.

Set_text_weight(Draw_Box box,Integer weight)

Name

Integer Set_text_weight(Draw_Box box,Integer weight)

Description

Set the text weight weight for the Draw_Box box.

A function return value of zero indicates the weight

 was successfully set.

Set_text_align(Draw_Box box,Integer mode)

Name

Integer Set_text_align(Draw_Box box,Integer mode)

Description

Set the text alignment for Draw_Box box depending on the mode value.

A function return value of zero indicates the alignment was successfully set.

For information on the other Input Widgets, go to Input Widgets

File_Box

Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)

Name

File_Box Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)

Description

Create an input Widget of type File_Box.

The File_Box is created with the title title_text.

The Message_Box message is used to display the file information.

The value of mode is listed in the Appendix A - File mode.

If the RB is pressed in the box area, a list of the files in the current area which match the wild
card text wild (for example, *.dat) Is placed in a pop-up. If a file is selected from the pop-up
(using LB), the file name is placed in the box area.

The function return value is the created File_Box.

Validate(File_Box box,Integer mode,Text &result)

Name

Integer Validate(File_Box box,Integer mode,Text &result)

Description
Page 504 Panels

Chapter
Validate the contents of File_Box box and return Text result.

The value of mode is listed in the Appendix A - File mode. See File Mode

The function returns the value of:

 NO_NAME if the Widget File_Box is optional and the box is left empty

 NO_FILE, FILE_EXISTS, or NO_FILE_ACCESS.

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(File_Box box,Text &text_data)

Name

Integer Get_data(File_Box box,Text &text_data)

Description

Get the data of type Text from the File_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(File_Box box,Text text_data)

Name

Integer Set_data(File_Box box,Text text_data)

Description

Set the data of type Text for the File_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_wildcard(File_Box box,Text &data)

Name

Integer Get_wildcard(File_Box box,Text &data)

Description

Get the wildcard from the File_Box box.

The type of data must be Text.

A function return value of zero indicates the wildcard data was returned successfully.

Set_wildcard(File_Box box,Text text_data)

Name

Integer Set_wildcard(File_Box box,Text text_data)

Description

Set the wildcard to the File_Box box.

The type of data must be Text.
Page 505Panels

12d Model Programming Manual
A function return value of zero indicates the wildcard data was successfully set.

Get_directory(File_Box box,Text &data)

Name

Integer Get_directory(File_Box box,Text &data)

Description

Get directory from the File_Box box.

The type of data must be Text.

A function return value of zero indicates the directory data was returned successfully.

Set_directory(File_Box box,Text text_data)

Name

Integer Set_directory(File_Box box,Text text_data)

Description

Set the directory to the File_Box box.

The type of data must be Text.

A function return value of zero indicates the directory data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Function_Box

Function_Box Create_function_box(Text title_text,Message_Box message,Integer
mode,Integer type)

Name

Function_Box Create_function_box(Text title_text,Message_Box message,Integer mode,Integer type)

Description

Create an input Widget of type Function_Box for inputting and validating Functions.

The Function_Box is created with the title title_text.

The Message_Box message is selected to display information during the operation.

The value of mode is listed in the Appendix A - Function mode. See Function Mode

LJG? What is type

The function return value is the created Function_Box.

Validate(Function_Box box,Integer mode,Function &result)

Name

Integer Validate(Function_Box box,Integer mode,Function &result)

Description

Validate the contents of Function_Box box and return the Function result.

The value of mode is listed in the Appendix A - Function mode. See Function Mode
Page 506 Panels

Chapter
The function returns the value of:

 NO_NAME if the Widget Function_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Function_Box box,Text &text_data)

Name

Integer Get_data(Function_Box box,Text &text_data)

Description

Get the data of type Text from the Function_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Function_Box box,Text text_data)

Name

Integer Set_data(Function_Box box,Text text_data)

Description

Set the data of type Text for the Function_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_type(Function_Box box,Integer &type)

Name

Integer Get_type(Function_Box box,Integer &type)

Description

Get the function Integer type from the Function_Box box and return it in type.

A function return value of zero indicates the type was returned successfully.

Set_type(Function_Box box,Integer type)

Name

Integer Set_type(Function_Box box,Integer type)

Description

Set the function Integer type for the Function_Box box to type.

The type of type must be Integer.

A function return value of zero indicates the type was successfully set.

Get_type(Function_Box box,Text &type)

Name
Page 507Panels

12d Model Programming Manual
Integer Get_type(Function_Box box,Text &type)

Description

Get the function Text type from the Function_Box box and return it in type.

A function return value of zero indicates the type was returned successfully.

Set_type(Function_Box box,Text type)

Name

Integer Set_type(Function_Box box,Text type)

Description

Set the function Text type for the Function_Box box to type.

A function return value of zero indicates the type was successfully set.

For information on the other Input Widgets, go to Input Widgets

HyperLink_Box

HyperLink_Box Create_hyperlink_box(Text title_text,Message_Box message)

Name

HyperLink_Box Create_hyperlink_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Hyperlink_Box.

The Hyperlink_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Hyperlink_Box.

Validate(HyperLink_Box box,Text &result)

Name

Integer Validate(HyperLink_Box box,Text &result)

Description

Validate the contents of HyperLink_Box box and return the name of the hyperlink in Text result.

The function returns the value of:

 NO_NAME if the Widget HyperLink_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(HyperLink_Box box,Text text_data)

Name
Page 508 Panels

Chapter
Integer Set_data(HyperLink_Box box,Text text_data)

Description

Set the data of type Text for the Hyperlink_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(HyperLink_Box box,Text &text_data)

Name

Integer Get_data(HyperLink_Box box,Text &text_data)

Description

Get the data of type Text from the Hyperlink_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Input_Box

Create_input_box(Text title_text,Message_Box message)

Name

Input_Box Create_input_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Input_Box.

The Input_Box is created with the title title_text.

The Message_Box message is used to display the input information.

The function return value is the created Input_Box.

Validate(Input_Box box,Text &result)

Name

Integer Validate(Input_Box box,Text &result)

Description

Validate the contents of Input_Box box and return the Text result.

This call is almost not required as the box either has text or it does not but it is required to know if
the Input_Box was optional and nothing was typed in.

The function returns the value of:

 NO_NAME if the Widget Input_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values
Page 509Panels

12d Model Programming Manual
Get_data(Input_Box box,Text &text_data)

Name

Integer Get_data(Input_Box box,Text &text_data)

Description

Get the data of type Text from the Input_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Input_Box box,Text text_data)

Name

Integer Set_data(Input_Box box,Text text_data)

Description

Set the data of type Text for the Input_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Integer_Box

Create_integer_box(Text title_text,Message_Box message)

Name

Integer_Box Create_integer_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Integer_Box.

The Integer_Box is created with the title title_text.

The Message_Box message is used to display the integer information.

The function return value is the created Integer_Box.

Validate(Integer_Box box,Integer &result)

Name

Integer Validate(Integer_Box box,Integer &result)

Description

Validate result (of type Integer) in the Integer_Box box.

Validate the contents of Integer_Box box and return the Integer result.

The function returns the value of:

 NO_NAME if the Widget Integer_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values
Page 510 Panels

Chapter
Get_data(Integer_Box box,Text &text_data)

Name

Integer Get_data(Integer_Box box,Text &text_data)

Description

Get the data of type Text from the Input_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Integer_Box box,Integer integer_data)

Name

Integer Set_data(Integer_Box box,Integer integer_data)

Description

Set the data of type Integer for the Integer_Box box to integer_data.

A function return value of zero indicates the data was successfully set.

Set_data(Integer_Box box,Text text_data)

Name

Integer Set_data(Integer_Box box,Text text_data)

Description

Set the data of type Text for the Integer_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Justify_Box

Create_justify_box(Text title_text,Message_Box message)

Name

Justify_Box Create_justify_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Justify_Box.

The Justify_Box is created with the title title_text.

The Message_Box message is used to display the justify information.

The function return value is the created Justify_Box.

Validate(Justify_Box box,Integer &result)

Name

Integer Validate(Justify_Box box,Integer &result)

Description
Page 511Panels

12d Model Programming Manual
Validate the contents of Justify_Box box and return the Integer result.

The function returns the value of:

 NO_NAME if the Widget Justify_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Justify_Box box,Text &text_data)

Name

Integer Get_data(Justify_Box box,Text &text_data)

Description

Get the data of type Text from the Justify_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Justify_Box box,Integer integer_data)

Name

Integer Set_data(Justify_Box box,Integer integer_data)

Description

Set the data of type Integer for the Justify_Box box to integer_data.

integer_data represents the text justification and can have the values 1 to 9.

A function return value of zero indicates the data was successfully set.

Set_data(Justify_Box box,Text text_data)

Name

Integer Set_data(Justify_Box box,Text text_data)

Description

Set the data of type Text for the Justify_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Linestyle_Box

Create_linestyle_box(Text title_text,Message_Box message,Integer mode)

Name

Linestyle_Box Create_linestyle_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Linestyle_Box.
Page 512 Panels

Chapter
The Linestyle_Box is created with the title title_text.

The Message_Box message is used to display the linestyle information.

The value of mode is listed in the Appendix A - Linestyle mode.

The function return value is the created Linestyle_Box.

Validate(Linestyle_Box box,Integer mode,Text &result)

Name

Integer Validate(Linestyle_Box box,Integer mode,Text &result)

Description

Validate the contents of Linestyle_Box box and return the name of the linestyle in Text result.

The value of mode is listed in the Appendix A - Linestyle mode. See Linestyle Mode

The function returns the value of:

 NO_NAME if the Widget Linestyle_Box is optional and the box is left empty

 LINESTYLE_EXISTS or NO_LINESTYLE.

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Linestyle_Box box,Text &text_data)

Name

Integer Get_data(Linestyle_Box box,Text &text_data)

Description

Get the data of type Text from the Linestyle_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Linestyle_Box box,Text text_data)

Name

Integer Set_data(Linestyle_Box box,Text text_data)

Description

Set the data of type Text for the Linestyle_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

List_Box

Create_list_box(Text title_text,Message_Box message,Integer nlines)

Name
Page 513Panels

12d Model Programming Manual
List_Box Create_list_box(Text title_text,Message_Box message,Integer nlines)

Description

Create an input Widget of type List_Box.

The List_Box is created with the title title_text.

The number of lines nline will be created in the List_Box.

The Message_Box message is used to display the select information.

The function return value is the created List_Box.

Get_number_of_items(List_Box box,Integer &count)

Name

Integer Get_number_of_items(List_Box box,Integer &count)

Description

For the List_Box box, get the number of items in the list and return the number in count.

A function return value of zero indicates that count is successfully returned.

Set_sort(List_Box box,Integer mode)

Name

Integer Set_sort(List_Box box,Integer mode)

Description

Set the sort model for the List_Box box depending on the Integer mode.

If mode is 0 then the sort is ascending,

If mode is 1 then the sort is descending.

A function return value of zero indicates the sort was successfully set.

Get_sort(List_Box box,Integer &mode)

Name

Integer Get_sort(List_Box box,Integer &mode)

Description

Get the sort mode from the List_Box box and return it in mode.

If mode is 0 then the sort is ascending,

If mode is 1 then the sort is descending.

A function return value of zero indicates the mode was returned successfully.

For information on the other Input Widgets, go to Input Widgets

Map_File_Box

Create_map_file_box(Text title_text,Message_Box message,Integer mode)

Name

Map_File_Box Create_map_file_box(Text title_text,Message_Box message,Integer mode)
Page 514 Panels

Chapter
Description

Create an input Widget of type Map_File_Box.

The Map_File_Box is created with the title title_text.

The Message_Box message is used to display the map file information.

The value of mode is listed in the Appendix A - File mode.

The function return value is the created Map_File_Box.

Validate(Map_File_Box box,Integer mode,Text &result)

Name

Integer Validate(Map_File_Box box,Integer mode,Text &result)

Description

Validate the contents of Map_File_Box box and return the Text result.

The value of mode is listed in the Appendix A - File mode. See File Mode

The function returns the value of:

 NO_NAME if the Widget Map_File_Box is optional and the box is left empty

 NO_FILE, FILE_EXISTS or NO_FILE_ACCESS

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Map_File_Box box,Text &text_data)

Name

Integer Get_data(Map_File_Box box,Text &text_data)

Description

Get the data of type Text from the Map_File_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Map_File_Box box,Text text_data)

Name

Integer Set_data(Map_File_Box box,Text text_data)

Description

Set the data of type Text for the Map_File_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Message_Box
Page 515Panels

12d Model Programming Manual
Text messages can be sent and displayed in a Message_Box.

Create_message_box(Text title_text)

Name

Message_Box Create_message_box(Text title_text)

Description

Create a box of type Message_Box for writing out messages.

The Message_Box is created with the title title_text.

The function return value is the created Message_Box.

Get_data(Message_Box box,Text &text_data)

Name

Integer Get_data(Message_Box box,Text &text_data)

Description

Get the data of type Text from the Message_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Message_Box box,Text text_data)

Name

Integer Set_data(Message_Box box,Text text_data)

Description

Set the data of type Text for the Message_Box box as the Text text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Model_Box

Create_model_box(Text title_text,Message_Box message,Integer mode)

Name

Model_Box Create_model_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Model_Box for inputting and validating Models.

The Model_Box is created with the title title_text.

The Message_Box box is used to display information.

The value of the mode is listed in the Appendix A - Model mode.

The function return value is the created Model_Box.

Validate(Model_Box box,Integer mode,Model &result)

Name
Page 516 Panels

Chapter
Integer Validate(Model_Box box,Integer mode,Model &result)

Description

Validate the contents of the Model_Box box and return the Model result.

The value of the mode is listed in the Appendix A - Model mode. See Model Mode

The function returns the value of:

 NO_NAME if the Widget Model_Box is optional and the box is left empty

 NO_MODEL, MODEL_EXISTS, DISK_MODEL_EXISTS or NEW_MODEL

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

A function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Model_Box box,Text &text_data)

Name

Integer Get_data(Model_Box box,Text &text_data)

Description

Get the data of type Text from the Model_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Model_Box box,Text text_data)

Name

Integer Set_data(Model_Box box,Text text_data)

Description

Set the data of type Text for the Model_Box box as the Text text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Name_Box

Create_name_box(Text title_text,Message_Box message)

Name

Name_Box Create_name_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Name_Box.

The Name_Box is created with the title title_text.

The Message_Box message is used to display the name information.

The function return value is the created Name_Box.
Page 517Panels

12d Model Programming Manual
Validate(Name_Box box,Text &result)

Name

Integer Validate(Name_Box box,Text &result)

Description

Validate the contents of Name_Box box and return the Text result.

The function returns the value of:

 NO_NAME if the Widget Name_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (0) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Name_Box box,Text &text_data)

Name

Integer Get_data(Name_Box box,Text &text_data)

Description

Get the data of type Text from the Name_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Name_Box box,Text text_data)

Name

Integer Set_data(Name_Box box,Text text_data)

Description

Set the data of type Text for the Name_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Name_Tick_Box

Create_named_tick_box(Text title_text,Integer state,Text response)

Name

Named_Tick_Box Create_named_tick_box(Text title_text,Integer state,Text response)

Description

Create an input Widget of type Named_Tick_Box.

The Named_Tick_Box is created with the Text title_text.

The Integer state specifies the ticked/unticked state of the box:

 state = 0 set the box as unticked
 state = 1 set the box as ticked
Page 518 Panels

Chapter
The Text response returns the msg when calling the Wait_on_widgets function.

The function return value is the created Named_Tick_Box.

Validate(Named_Tick_Box box,Integer &result)

Name

Integer Validate(Named_Tick_Box box,Integer &result)

Description

Validate the contents of Named_Tick_Box box and return the Integer result.

The function returns the value of

 TRUE (1) if the Named_Tick_Box is ticked

 FALSE (0) if the Named_Tick_Box is not ticked.

Set_data(Named_Tick_Box box,Integer state)

Name

Integer Set_data(Named_Tick_Box box,Integer state)

Description

Set the state of the Named_Tick_Box to

 ticked if state = 1
 unticked if state = 0

A function return value of zero indicates the data was successfully set.

Get_data(Named_Tick_Box box,Text &text_data)

Name

Integer Get_data(Named_Tick_Box box,Text &text_data)

Description

Get the data of type Text from the Named_Tick_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Named_Tick_Box box,Text text_data)

Name

Integer Set_data(Named_Tick_Box box,Text text_data)

Description

Set the data of type Text for the Named_Tick_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

New_Select_Box

New_Select_Box Create_new_select_box(Text title_text,Text select_title,Integer
Page 519Panels

12d Model Programming Manual
mode,Message_Box message)

Name

New_Select_Box Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box
message)

Description

Create an input Widget of type New_Select_Box.

The New_Select_Box is created with the title title_text.

The value of mode is listed in the Appendix A - Select mode.

The Message_Box message is used to display information.

The function return value is the created New_Select_Box.

Validate(New_Select_Box select,Element &string)

Name

Integer Validate(New_Select_Box select,Element &string)

Description

Validate the contents of New_Select_Box select and return the selected Element in string.

The function returns the value of:

 NO_NAME if the Widget New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Validate(New_Select_Box select,Element &string,Integer silent)

Name

Integer Validate(New_Select_Box select,Element &string,Integer silent)

Description

Validate the contents of New_Select_Box select and return the selected Element in string.

If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of:

 NO_NAME if the Widget New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(New_Select_Box select,Element string)
Page 520 Panels

Chapter
Name

Integer Set_data(New_Select_Box select,Element string)

Description

Set the data of for the New_Select_Box select to string.

A function return value of zero indicates the data was successfully set.

Set_data(New_Select_Box select,Text model_string)

Name

Integer Set_data(New_Select_Box select,Text model_string)

Description

Set the Element of the New_Select_Box box by giving the model name and string name as a
Text model_string in the form "model_name->string_name".

A function return value of zero indicates the data was successfully set.

Get_data(New_Select_Box select,Text &model_string)

Name

Integer Get_data(New_Select_Box select,Text &model_string)

Description

Get the model and string name of the Element in the New_Select_Box box and return it in Text
model_string.

Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

New_XYZ_Box

New_XYZ_Box Create_new_xyz_box(Text title_text,Message_Box message)

Name

New_XYZ_Box Create_new_xyz_box(Text title_text,Message_Box message)

Description

Create an input Widget of type New_XYZ_Box.

The New_XYZ_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created New_XYZ_Box.

Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)

Name

Integer Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)

Description
Page 521Panels

12d Model Programming Manual
Validate the contents of the New_XYZ_Box box and check that it decodes to three Reals.

The three Reals are returned in x, y, and z.

The function returns the value of:

 NO_NAME if the Widget New_XYZ_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and x, y and z are valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(New_XYZ_Box box,Text &text_data)

Name

Integer Get_data(New_XYZ_Box box,Text &text_data)

Description

Get the data of type Text from the New_XYZ_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(New_XYZ_Box box,Real x,Real y,Real z)

Name

Integer Set_data(New_XYZ_Box box,Real x,Real y,Real z)

Description

Set the x y z data (all of type Real) for the New_XYZ_Box box to the values x, y and z.

A function return value of zero indicates the data was successfully set.

Set_data(New_XYZ_Box box,Text text_data)

Name

Integer Set_data(New_XYZ_Box box,Text text_data)

Description

Set the data of type Text for the New_XYZ_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Plotter_Box

Create_plotter_box(Text title_text,Message_Box message)

Name

Plotter_Box Create_plotter_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Plotter_Box.

The Plotter_Box is created with the title title_text.
Page 522 Panels

Chapter
The Message_Box message is used to display the plotter information.

The function return value is the created Plotter_Box.

Validate(Plotter_Box box,Text &result)

Name

Integer Validate(Plotter_Box box,Text &result)

Description

Validate the contents of Plotter_Box box and return the Text result.

The function returns the value of:

 NO_NAME if the Widget Plotter_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (0) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Plotter_Box box,Text &text_data)

Name

Integer Get_data(Plotter_Box box,Text &text_data)

Description

Get the data of type Text from the Plotter_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Plotter_Box box,Text text_data)

Name

Integer Set_data(Plotter_Box box,Text text_data)

Description

Set the data of type Text for the Plotter_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text
&plotter_type)

Name

Integer Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type) \

Description

<no description>

Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)

Name
Page 523Panels

12d Model Programming Manual
Integer Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)

Description

<no description>

Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text
 &plotter_type)

Name

Integer Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)

Description

<no description>

For information on the other Input Widgets, go to Input Widgets

Polygon_Box

Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer
mode,Message_Box message)

Name

Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description

Create an input Widget of type Polygon_Box.

The Polygon_Box is created with the title title_text.

LJG? select_title

LJG ? mode

The Message_Box message is used to display information.

The function return value is the created Polygon_Box.

Validate(Polygon_Box select,Element &string)

Name

Integer Validate(Polygon_Box select,Element &string)

Description

Validate the contents of Polygon_Box select and return the selected Element in string.

If there is an error, a message is written and the cursor goes back to the Polygon_Box.

The function returns the value of:

 NO_NAME if the Widget Polygon_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values
Page 524 Panels

Chapter
Validate(Polygon_Box select,Element &string,Integer silent)

Name

Integer Validate(Polygon_Box select,Element &string,Integer silent)

Description

Validate the contents of Polygon_Box select and return the selected Element in string.

If silent = 0, and there is an error, a message is written and the cursor goes back to the

 Polygon_Box.

If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of:

 NO_NAME if the Widget Polygon_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Polygon_Box select,Element string)

Name

Integer Set_data(Polygon_Box select,Element string)

Description

Set the data of type Element for the Polygon_Box select to string.

A function return value of zero indicates the data was successfully set.

Set_data(Polygon_Box select,Text string_name)

Name

Integer Set_data(Polygon_Box select,Text string_name)

Description

Set the data of type Text for the Polygon_Box select to string_name.

A function return value of zero indicates the data was successfully set.

Get_data(Polygon_Box select,Text &string)

Name

Integer Get_data(Polygon_Box select,Text &string)

Description

Get the data of type Text from the Polygon_Box select and return it in string.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets
Page 525Panels

12d Model Programming Manual
Real_Box

Create_real_box(Text title_text,Message_Box message)

Name

Real_Box Create_real_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Real_Box.

The Real_Box is created with the title title_text.

The Message_Box message is used to display the real information.

The function return value is the created Real_Box.

Validate(Real_Box box,Real &result)

Name

Integer Validate(Real_Box box,Real &result)

Description

Validate the contents of Real_Box box and return the Real result.

A function return value of zero indicates the value was valid.

The function returns the value of:

 NO_NAME if the Widget Real_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Real_Box box,Text &text_data)

Name

Integer Get_data(Real_Box box,Text &text_data)

Description

Get the data of type Text from the Real_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Real_Box box,Real real_data)

Name

Integer Set_data(Real_Box box,Real real_data)

Description

Set the data of type Real for the Real_Box box to real_data.

A function return value of zero indicates the data was successfully set.

Set_data(Real_Box box,Text text_data)
Page 526 Panels

Chapter
Name

Integer Set_data(Real_Box box,Text text_data)

Description

Set the data of type Text for the Real_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Report_Box

Create_report_box(Text title_text,Message_Box message,Integer mode)

Name

Report_Box Create_report_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Report_Box.

The Report_Box is created with the title title_text.

The Message_Box message is used to display information about the report.

The value of mode is listed in the Appendix A - File mode.

The function return value is the created Report_Box.

Validate(Report_Box box,Integer mode,Text &result)

Name

Integer Validate(Report_Box box,Integer mode,Text &result)

Description

Validate the contents of Report_Box box and return the Text result.

The value of mode is listed in the Appendix A - File mode. See File Mode

The function returns the value of:

 NO_NAME if the Widget Report_Box is optional and the box is left empty

 NO_FILE, FILE_EXISTS or NO_FILE_ACCESS

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Report_Box box,Text &text_data)

Name

Integer Get_data(Report_Box box,Text &text_data)

Description

Get the data of type Text from the Report_Box box and return it in text_data.
Page 527Panels

12d Model Programming Manual
A function return value of zero indicates the data was successfully returned.

Set_data(Report_Box box,Text text_data)

Name

Integer Set_data(Report_Box box,Text text_data)

Description

Set the data of type Text for the Report_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Screen_Text

Create_screen_text(Text text)

Name

Screen_Text Create_screen_text(Text text)

Description

Create a Screen_Text with the Text text.

The function return value is the created Screen_Text.

Set_data(Screen_Text widget,Text text_data)

Name

Integer Set_data(Screen_Text widget,Text text_data)

Description

Set the data of type Text for the Screen_Text widget to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Screen_Text widget,Text &text_data)

Name

Integer Get_data(Screen_Text widget,Text &text_data)

Description

Get the data of type Text from the Screen_Text widget and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Select_Box

 Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box
message)
Page 528 Panels

Chapter
Name

Select_Box Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)

Description

Create an input Widget of type Select_Box.

The Select_Box is created with the title title_text.

The value of mode is listed in the Appendix A - Select mode.

The Message_Box message is used to display the select information.

The function return value is the created Select_Box.

Validate(Select_Box select,Element &string)

Name

Integer Validate(Select_Box select,Element &string)

Description

Validate the Element string in the Select_Box select.

The function returns the value of:

 NO_NAME if the Widget Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Validate(Select_Box select,Element &string,Integer silent)

Name

Integer Validate(Select_Box select,Element &string,Integer silent)

Description

Validate the Element string in the Select_Box select.

If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of SELECT_STRING indicates the string is selected successfully.

Set_data(Select_Box select,Text model_string)

Name

Integer Set_data(Select_Box select,Text model_string)

Description

Set the Element in the Select_Box select by giving the model name and string name as a Text
model_string in the form "model_name->string_name"

.A function return value of zero indicates the data was successfully set.

Set_data(Select_Box select,Element string)
Page 529Panels

12d Model Programming Manual
Name

Integer Set_data(Select_Box select,Element string)

Description

Set the Element for the Select_Box select to string.

A function return value of zero indicates the data was successfully set.

Get_data(Select_Box select,Text &string)

Name

Integer Get_data(Select_Box select,Text &string)

Description

Get the model and string name of the Element in Select_Box select and return it in the Text
model_string,

Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.

A function return value of zero indicates the data was successfully returned.

Select_start(Select_Box select)

Name

Integer Select_start(Select_Box select)

Description

Starts the string selection for the Select_Box select. This is the same as if the button on the
Select_Box had been clicked.

A function return value of zero indicates the start was successful.

Select_end(Select_Box select)

Name

Integer Select_end(Select_Box select)

Description

Cancels the string selection that is running for the Select_Box select. This is the same as if
Cancel had been selected from the Pick Ops menu.

A function return value of zero indicates the end was successful.

Set_select_type(Select_Box select,Text type)

Name

Integer Set_select_type(Select_Box select,Text type)

Description

Set the string selection type type for the Select_Box select. For example “Alignment”, “3d”.

A function return value of zero indicates the type was successfully set.

Set_select_snap_mode(Select_Box select,Integer snap_control)
Page 530 Panels

Chapter
Name

Integer Set_select_snap_mode(Select_Box select,Integer snap_control)

Description

Set the snap control for the Select_Box select to snap_control.

 snap control control value

Ignore_Snap 0
User_Snap 1
Program_Snap 2

A function return value of zero indicates the snap control was successfully set.

Set_select_snap_mode(Select_Box select,Integer mode,Integer control,Text
snap_text)

Name

Integer Set_select_snap_mode(Select_Box select,Integer mode,Integer control,Text snap_text)

Description

Set the snap mode mode and snap control control for the Select_Box select.

When snap mode is:

Name_Snap 6
Tin_Snap 7
Model_Snap 8

the snap_text must be string name; tin name, model name respectively, otherwise, leave the
snap_text blank (“”).

A function return value of zero indicates the snap mode was successfully set.

Get_select_direction(Select_Box select,Integer &dir)

Name

Integer Get_select_direction(Select_Box select,Integer &dir)

Description

Get the selection direction dir from the string selected for the Select_Box select.

The returned dir type must be Integer.

If select without direction, the returned dir is 1, otherwise, the returned dir is:

Dir Value Pick direction

 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.

Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real
&ht)

Name

Integer Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description

Get the coordinates, chainage and height of the selected snap point of the string for the
Page 531Panels

12d Model Programming Manual
Select_Box select.

The return values of x, y, z, ch, and ht are of type Real.

A function return value of zero indicates the values were successfully returned.

For information on the other Input Widgets, go to Input Widgets

Select_Boxes

Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer
mode[],Message_Box message)

Name

Select_Boxes Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer
mode[],Message_Box message)

Description

Create an input Widget of type Select_Boxes which is actually a collection of 0 or more boxes
that each acts like a Select_Box.

no_boxes indicates the number of boxes in the boxes array.

The Select_Boxes are created with the titles given in the array title_text[].

The value of mode[] is listed in the Appendix A - Select mode.

The Message_Box message is used to display the select information.

The function return value is the created Select_Boxes.

Validate(Select_Boxes select,Integer n,Element &string)

Name

Integer Validate(Select_Boxes select,Integer n,Element &string)

Description

Validate the nth Element string in the Select_Box select.

The function returns the value of:

 NO_NAME if the n’th box of the New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Validate(Select_Boxes select,Integer n,Element &string,Integer silent)

Name

Integer Validate(Select_Boxes select,Integer n,Element &string,Integer silent)

Description

Validate the nth Element string in the Select_Box select.

If silent = 0, and there is an error, a message is written and the cursor goes back to the box.
Page 532 Panels

Chapter
If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of:

 NO_NAME if the n’th box of the New_Select_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Select_Boxes select,Integer n,Text model_string)

Name

Integer Set_data(Select_Boxes select,Integer n,Text model_string)

Description

Set the Element of the n’th box in the Select_Boxes select by giving the model name and string
name as a Text model_string in the form "model_name->string_name".

A function return value of zero indicates the data was successfully set.

Set_data(Select_Boxes select,Integer n,Element string)

Name

Integer Set_data(Select_Boxes select,Integer n,Element string)

Description

Set the data of type Element for the n’th box in the Select_Boxes select to string.

A function return value of zero indicates the data was successfully set.

Get_data(Select_Boxes select,Integer n,Text &model_string)

Name

Integer Get_data(Select_Boxes select,Integer n,Text &model_string)

Description

Get the model and string name of the Element in the n’th box of the Select_Boxes select. and
return it in the Text model_string,

Note: the model and string name is in the form "model_name->string_name" so only one Text is
required.

A function return value of zero indicates the data was successfully returned.

Select_start(Select_Boxes select,Integer n)

Name

Integer Select_start(Select_Boxes select,Integer n)

Description

Starts the string selection for the n’th box of the Select_Boxes select. This is the same as if the
button on the n’th box of Select_Boxes had been clicked.

A function return value of zero indicates the start was successful.
Page 533Panels

12d Model Programming Manual
Select_end(Select_Boxes select,Integer n)

Name

Integer Select_end(Select_Boxes select,Integer n)

Description

Cancels the string selection that is running for the n’th box of the Select_Boxes n’th box of the
Select_Boxes select. This is the same as if Cancel had been selected from the Pick Ops menu.

A function return value of zero indicates the end was successful.

Set_select_type(Select_Boxes select,Integer n,Text type)

Name

Integer Set_select_type(Select_Boxes select,Integer n,Text type)

Description

Set the string selection for the n’th box of the Select_Boxes select to type. For example
“Alignment”, “3d”.

A function return value of zero indicates the type was successfully set.

Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)

Name

Integer Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)

Description

Set the snap control for n’th box of the Select_Boxes select to control.

snap control control value

 Ignore_Snap 0
 User_Snap
 Program_Snap 2

A function return value of zero indicates the snap control was successfully set.

Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer
snap_control,Text snap_text)

Name

Integer Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text
snap_text)

Description

Set the snap mode mode and snap control snap_control for the nth box of the Select_Boxes
select.

When snap mode is:

 Name_Snap 6
 Tin_Snap 7
 Model_Snap 8

the snap_text must be string name; tin name, model name respectively, otherwise, leave the
snap_text blank (“”).
Page 534 Panels

Chapter
A function return value of zero indicates the snap mode was successfully set.

Get_select_direction(Select_Boxes select,Integer n,Integer &dir)

Name

Integer Get_select_direction(Select_Boxes select,Integer n,Integer &dir)

Description

Get the selection direction dir of the string selected for the n’th box of the Select_Boxes select.

The returned dir type must be Integer.

If select without direction, the returned dir is 1, otherwise, the returned dir is:

Dir Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.

Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real
&ch,Real &ht)

Name

Integer Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real
&ht)

Description

Get the coordinate, chainage and height of the snap point of the string selected for the n’th box
of the Select_Boxes select.

The return value of x, y, z, ch, and ht are of type of Real.

A function return value of zero indicates the coordinate was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Sheet_Size_Box

Create_sheet_size_box(Text title_text,Message_Box message)

Name

Sheet_Size_Box Create_sheet_size_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Sheet_Size_Box.

The Sheet_Size_Box is created with the title title_text.

The Message_Box message is used to display sheet size information.

The function return value is the created Sheet_Size_Box.

Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)
Page 535Panels

12d Model Programming Manual
Name

Integer Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)

Description

Validate the contents of Sheet_Size_Box box and return the width of the sheet as w, the height
of the sheet as h and the sheet size as Text sheet or blank if it is not a standard size.

The function returns the value of:

 NO_NAME if the Widget Sheet_Size_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and w, h, sheet are valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Sheet_Size_Box box,Text &text_data)

Name

Integer Get_data(Sheet_Size_Box box,Text &text_data)

Description

Get the data of type Text from the Sheet_Size_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Sheet_Size_Box box,Text text_data)

Name

Integer Set_data(Sheet_Size_Box box,Text text_data)

Description

Set the data of type Text for the Sheet_Size_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Source_Box

Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)

Name

Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)

Description

Create an input Widget of type Source_Box.

The Source_Box is created with the title title_text.

The Message_Box message is used to display information.

LJG?flags

The function return value is the created Source_Box.
Page 536 Panels

Chapter
Validate(Source_Box box,Dynamic_Element &de_results)

Name

Integer Validate(Source_Box box,Dynamic_Element &elements)

Description

Validate the contents of Source_Box box and return the Dynamic_Element de_results.

The function returns the value of:

 NO_NAME if the Widget Source_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and elements is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Source_Box box,Text text_data)

Name

Integer Set_data(Source_Box box,Text text_data)

Description

Set the data of type Text for the Source_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Source_Box box,Text &text_data)

Name

Integer Get_data(Source_Box box,Text &text_data)

Description

Get the data of type Text from the Source_Edit_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Symbol_Box

Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer
mode)

Name

Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Symbol_Box.

The Symbol_Box is created with the title title_text.

The Message_Box message is used to display information.
Page 537Panels

12d Model Programming Manual
LJG? mode

The function return value is the created Symbol_Box.

Validate(Symbol_Box box,Integer mode,Text &result)

Name

Integer Validate(Symbol_Box box,Integer mode,Text &result)

Description

Validate the contents of Symbol_Box box and return the name of the symbol in Text result.

LJG? The value of mode is listed in the Appendix A - Symbol mode. See Symbol Mode

The function returns the value of:

 NO_NAME if the Widget Symbol_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Symbol_Box box,Text &text_data)

Name

Integer Get_data(Symbol_Box box,Text &text_data)

Description

Get the data of type Text from the Symbol_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Symbol_Box box,Text text_data)

Name

Integer Set_data(Symbol_Box box,Text text_data)

Description

Set the data of type Text for the Symbol_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Target_Box

Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)

Name

Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)

Description
Page 538 Panels

Chapter
Create an input Widget of type Target_Box.

The Target_Box is created with the title title_text.

The Message_Box message is used to display information.

LJG?flags

The function return value is the created Target_Box.

Validate(Target_Box box)

Name

Integer Validate(Target_Box box)

Description

<no description>

Validate(Target_Box box,Integer &mode,Text &text_data) For V10 only
Name

Integer Validate(Target_Box box,Integer &mode,Text &text_data)

Description

<no description>

For information on the other Input Widgets, go to Input Widgets

Template_Box

Create_template_box(Text title_text,Message_Box message,Integer mode)

Name

Template_Box Create_template_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Template_Box.

The Template_Box is created with the title title_text.

The Message_Box message is used to display template information.

The value of mode is listed in the Appendix A - Template mode.

The function return value is the created Template_Box.

Validate(Template_Box box,Integer mode,Text &result)

Name

Integer Validate(Template_Box box,Integer mode,Text &result)

Description

Validate the contents of Template_Box box and return the Text result.

The value of mode is listed in the Appendix A - Template mode. See Template Mode

The value result must be type of Text.

The function returns the value of:
Page 539Panels

12d Model Programming Manual
 NO_NAME if the Widget Template_Box is optional and the box is left empty

 NO_TEMPLATE, TEMPLATE_EXISTS, DISK_TEMPLATE_EXISTS or NEW_TEMPLATE

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Template_Box box,Text &text_data)

Name

Integer Get_data(Template_Box box,Text &text_data)

Description

A function return value of zero indicates the data was successfully returned.

Get the data of type Text from the Template_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Template_Box box,Text text_data)

Name

Integer Set_data(Template_Box box,Text text_data)

Description

Set the data of type Text for the Template_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Text_Style_Box

Create_text_style_box(Text title_text,Message_Box message)

Name

Text_Style_Box Create_text_style_box(Text title_text,Message_Box message)

Description

Create an input of type Text_Style_Box.

The Text_Style_Box is created with the title title_text.

The Message_Box message is used to display the text style information.

The function return value is the created Text_Style_Box.

Validate(Text_Style_Box box,Text &result)

Name

Integer Validate(Text_Style_Box box,Text &result)

Description
Page 540 Panels

Chapter
Validate the contents of Text_Style_Box box and return name of the textstyle as the Text result.

The function returns the value of:

 NO_NAME if the Widget Text_Style_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Text_Style_Box box,Text &text_data)

Name

Integer Get_data(Text_Style_Box box,Text &text_data)

Description

Get the data of type Text from the Text_Style_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Text_Style_Box box,Text text_data)

Name

Integer Set_data(Text_Style_Box box,Text text_data)

Description

Set the data of type Text for the Text_Style_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Text_Units_Box

Create_text_units_box(Text title_text,Message_Box message)

Name

Text_Units_Box Create_text_units_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Text_Units_Box

The Text_Units_Box is created with the title title_text.

The Message_Box message is used to display the text units information.

The function return value is the created Text_Units_Box.

Validate(Text_Units_Box box,Integer &result)

Name

Integer Validate(Text_Units_Box box,Integer &result)

Description
Page 541Panels

12d Model Programming Manual
Validate the contents of Text_Units_Box box and return the Integer result.

The function returns the value of:

 NO_NAME if the Widget Text_Units_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Text_Units_Box box,Text &text_data)

Name

Integer Get_data(Text_Units_Box box,Text &text_data)

Description

Get the data of type Text from the Text_Units_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Text_Units_Box box,Integer integer_data)

Name

Integer Set_data(Text_Units_Box box,Integer integer_data)

Description

Set the data of type Integer for the Text_Units_Box box to integer_data.

A function return value of zero indicates the data was successfully set.

Set_data(Text_Units_Box box,Text text_data)

Name

Integer Set_data(Text_Units_Box box,Text text_data)

Description

Set the data of type Text for the Text_Units_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Textstyle_Data_Box

Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer
flags)

Name

Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags)

Description

Create an input Widget of type Textstyle_Data_Box.
Page 542 Panels

Chapter
The Textstyle_Data_Box is created with the title title_text.

The Message_Box message is used to display the information.

LJG?flags

The function return value is the created Textstyle_Data_Box.

Validate(Textstyle_Data_Box box,Textstyle_Data &data)

Name

Integer Validate(Textstyle_Data_Box box,Textstyle_Data &data)

Description

Validate the contents of Textstyle_Data_Box box and return the Textstyle_Data data.

The function returns the value of:

 NO_NAME if the Widget Textstyle_Data_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and data is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Textstyle_Data_Box box,Textstyle_Data data)

Name

Integer Set_data(Textstyle_Data_Box box,Textstyle_Data data)

Description

Set the data of type Textstyle_Data for the Textstyle_Data_Box box to data.

A function return value of zero indicates the data was successfully set.

Set_data(Textstyle_Data_Box box,Text text_data)

Name

Integer Set_data(Textstyle_Data_Box box,Text text_data)

Description

Set the data of type Text for the Texstyle_Data_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Get_data(Textstyle_Data_Box box,Textstyle_Data &data)

Name

Integer Get_data(Textstyle_Data_Box box,Textstyle_Data &data)

Description

Get the data of type Textstyle_Data from the Textstyle_Data_Box box and return it in data.

A function return value of zero indicates the data was successfully returned.
Page 543Panels

12d Model Programming Manual
Get_data(Textstyle_Data_Box box,Text &text_data)

Name

Integer Get_data(Textstyle_Data_Box box,Text &text_data)

Description

Get the data of type Text from the Textstyle_Data_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Text_Edit_Box

Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)

Name

Text_Edit_Box Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)

Description

Create an input Widget of type Text_Edit_Box.

The Text_Edit_Box is created with the title title_text.

The Message_Box box is used to display information.

The number of lines allowed is no_lines.

The function return value is the created Text_Edit_Box.

Set_data(Text_Edit_Box box,Text text_data)

Name

Integer Set_data(Text_Edit_Box box,Text text_data)

Description

Set the data of type Text for the Text_Edit_Box box to text_data.

A function return value of zero indicates the data was successfully set.

Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)

Name

Integer Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)

Description

Set the data of type Dynamic_Text for the Text_Edit_Box widget to dt_data.

A function return value of zero indicates the data was successfully set.

Get_data(Text_Edit_Box widget,Text &text_data)

Name

Integer Get_data(Text_Edit_Box widget,Text &text_data)

Description

Get the data of type Text from the Text_Edit_Box widget and return it in text_data.
Page 544 Panels

Chapter
A function return value of zero indicates the data was successfully returned.

Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)

Name

Integer Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)

Description

Get the data of type Dynamic_Text from the Text_Edit_Box widget and return it in dt_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Texture_Box

Texture_Box Create_texture_box(Text title_text,Message_Box message)

Name

Texture_Box Create_texture_box(Text title_text,Message_Box message)

Description

Create an input Widget of type Texture_Box.

The Texture_Box is created with the title title_text.

The Message_Box message is used to display information.

The function return value is the created Texture_Box.

Validate(Texture_Box box,Text &result)

Name

Integer Validate(Texture_Box box,Text &result)

Description

Validate the contents of Texture_Box box and return the name of the texture in Text result.

The function returns the value of:

 NO_NAME if the Widget Texture_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Texture_Box box,Text text_data)

Name

Integer Set_data(Texture_Box box,Text text_data)

Description

Set the data of type Text for the Texture_Box box to text_data.
Page 545Panels

12d Model Programming Manual
A function return value of zero indicates the data was successfully set.

Get_data(Texture_Box box,Text &text_data)

Name

Integer Get_data(Texture_Box box,Text &text_data)

Description

Get the data of type Text from the Texture_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

For information on the other Input Widgets, go to Input Widgets

Tick_Box

Create_tick_box(Message_Box message)

Name

Tick_Box Create_tick_box(Message_Box message)

Description

Create an input Widget of type Tick_Box.

The Message_Box message is used to display the tick information.

The function return value is the created Tick_Box.

Validate(Tick_Box box,Integer &result)

Name

Integer Validate(Tick_Box box,Integer &result)

Description

Validate result (of type Integer) in the Tick_Box box.

Validate the contents of Tick_Box box and return the Integer result.

LJG? The function returns the value of

 TRUE (1) if the Named_Tick_Box is ticked

 FALSE (0) if the Named_Tick_Box is not ticked.

Get_data(Tick_Box box,Text &text_data)

Name

Integer Get_data(Tick_Box box,Text &text_data)

Description

Get the data of type Text from the Tick_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(Tick_Box box,Text text_data)
Page 546 Panels

Chapter
Name

Integer Set_data(Tick_Box box,Text text_data)

Description

Set the data of type Text for the Tick_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Tin_Box

Create_tin_box(Text title_text,Message_Box message,Integer mode)

Name

Tin_Box Create_tin_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type Tin_Box.

The Tin_Box is created with the title title_text.

The Message_Box message is used to display the tin information.

The value of mode is listed in the Appendix A Tin mode.

The function return value is the created Tin_Box.

Validate(Tin_Box box,Integer mode,Tin &result)

Name

Integer Validate(Tin_Box box,Integer mode,Tin &result)

Description

Validate the contents of Tin_Box box and return the Tin result.

The value of mode is listed in the Appendix A Tin mode. See Tin Mode

The function returns the value of:

 NO_NAME if the Widget Tin_Box is optional and the box is left empty

 NO_TIN, TIN_EXISTS or DISK_TIN_EXISTS

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(Tin_Box box,Text &text_data)

Name

Integer Get_data(Tin_Box box,Text &text_data)

Description

Get the data of type Text from the Tin_Box box and return it in text_data.
Page 547Panels

12d Model Programming Manual
A function return value of zero indicates the data was successfully returned.

Set_data(Tin_Box box,Text text_data)

Name

Integer Set_data(Tin_Box box,Text text_data)

Description

Set the data of type Text for the Tin_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

View_Box

Create_view_box(Text title_text,Message_Box message,Integer mode)

Name

View_Box Create_view_box(Text title_text,Message_Box message,Integer mode)

Description

Create an input Widget of type View_Box.

The View_Box is created with the title title_text.

The Message_Box message is used to display the view information.

The value of mode is listed in the Appendix A - View mode.

The function return value is the created View_Box.

Validate(View_Box box,Integer mode,View &result)

Name

Integer Validate(View_Box box,Integer mode,View &result)

Description

Validate the contents of View_Box box and return the View result.

The value of mode is listed in the Appendix A - View mode. See View Mode

The function returns the value of:

 NO_NAME if the Widget View_Box is optional and the box is left empty

 NO_VIEW or VIEW_EXISTS

 TRUE (1) if no other return code is needed and result is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(View_Box box,Text &text_data)

Name
Page 548 Panels

Chapter
Integer Get_data(View_Box box,Text &text_data)

Description

Get the data of type Text from the View_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(View_Box box,Text text_data)

Name

Integer Set_data(View_Box box,Text text_data)

Description

Set the data of type Text for the View_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

XYZ_Box

Create_xyz_box(Text title_text,Message_Box message)

Name

XYZ_Box Create_xyz_box(Text title_text,Message_Box message)

Description

Create an input Widget of type XYZ_Box.

The XYZ_Box is created with the title title_text.

The Message_Box message is used to display the XYZ information.

The function return value is the created XYZ_Box.

Validate(XYZ_Box box,Real &x,Real &y,Real &z)

Name

Integer Validate(XYZ_Box box,Real &x,Real &y,Real &z)

Description

Validate the contents of the XYZ_Box box and check it decodes to three Reals.

The three Reals are returned in x, y, and z.

The function returns the value of:

 NO_NAME if the Widget XYZ_Box is optional and the box is left empty

 TRUE (1) if no other return code is needed and x, y and z are valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Get_data(XYZ_Box box,Text &text_data)
Page 549Panels

12d Model Programming Manual
Name

Integer Get_data(XYZ_Box box,Text &text_data)

Description

Get the data of type Text from the XYZ_Box box and return it in text_data.

A function return value of zero indicates the data was successfully returned.

Set_data(XYZ_Box box,Real x,Real y,Real z)

Name

Integer Set_data(XYZ_Box box,Real x,Real y,Real z)

Description

Set the x y z data (all of type Real) for the XYZ_Box box to the values x, y and z.

A function return value of zero indicates the data was successfully set.

Set_data(XYZ_Box box,Text text_data)

Name

Integer Set_data(XYZ_Box box,Text text_data)

Description

Set the data of type Text for the XYZ_Box box to text_data.

A function return value of zero indicates the data was successfully set.

For information on the other Input Widgets, go to Input Widgets

Buttons
See Button
See Finish Button
See Select_Button

Button

Create_button(Text title_text,Text reply)

Name

Button Create_button(Text title_text,Text reply)

Description

Create a button of type Button.

The button is created with a label text title_text.

The Text reply is the message that is sent to the widget.

The function return value is the created Button.

Set_raised_button(Button button,Integer mode)

Name
Page 550 Panels

Chapter
Integer Set_raised_button(Button button,Integer mode)

Description

Set the button raised or sank depending on the mode value.

mode value
 -3 Raise
 0 Flat
3 Sink

A function return value of zero indicates the button was successfully raised.

Create_child_button(Text title_text)

Name

Button Create_child_button(Text title_text)

Description

Not implemented.

For information on the other Buttons, go to Buttons

Finish Button

Create_finish_button(Text title_text,Text reply)

Name

Button Create_finish_button(Text title_text,Text reply)

Description

<no description>

For information on the other Buttons, go to Buttons

Select_Button

Create_select_button(Text title_text,Integer mode,Message_Box box)

Name

Select_Button Create_select_button(Text title_text,Integer mode,Message_Box box)

Description

Create a button of type Select_Button.

The button is created with the label text title_text.

The Message_Box box is selected to display the select information.

The value of mode is:

mode value

SELECT_STRING 5509

SELECT_STRINGS 5510 not implemented!

Refer to the list in the Appendix A.
Page 551Panels

12d Model Programming Manual
The function return value is the created Select_Button.

Validate(Select_Button select,Element &string)

Name

Integer Validate(Select_Button select,Element &string)

Description

Validate the Element string that is selected via the Select_Button select.

The function returns the value of:

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Validate(Select_Button select,Element &string,Integer silent)

Name

Integer Validate(Select_Button select,Element &string,Integer silent)

Description

Validate the contents of Select_Button select and return the selected Element in string.

If silent = 0, and there is an error, a message is written and the cursor goes back to the button.
If silent = 1 and there is an error, no message or movement of cursor is done.

The function returns the value of:

 TRUE (1) if no other return code is needed and string is valid.

 FALSE (zero) if there is an error.

So a function return value of zero indicates that there is an error.

Warning this is the opposite of most 4DML function return values

Set_data(Select_Button select,Element string)

Name

Integer Set_data(Select_Button select,Element string)

Description

Sets the Element for the Select_Button select to string.

A function return value of zero indicates the data was successfully set.

Set_data(Select_Button select,Text string)

Name

Integer Set_data(Select_Button select,Text string)

Description

Set the model and string name as a Text string in the form "model_name->string_name"
Page 552 Panels

Chapter
A function return value of zero indicates the data was successfully set.

Get_data(Select_Button select,Text &string)

Name

Integer Get_data(Select_Button select,Text &string)

Description

Get the model and string name for the selected string in the form "model_name->string_name".
Return the Text in string.

The returned string type must be Text.

A function return value of zero indicates the data was successfully returned.

Select_start(Select_Button select)

Name

Integer Select_start(Select_Button select)

Description

Starts the string selection for the Select_Button select. This is the same as if the button had been
clicked.

A function return value of zero indicates the start was successful.

Select_end(Select_Button select)

Name

Integer Select_end(Select_Button select)

Description

Cancels the string selection that is running for the Select_Button select. This is the same as if
Cancel had been selected from the Pick Ops menu.

A function return value of zero indicates the end was successful.

Set_select_type(Select_Button select,Text type)

Name

Integer Set_select_type(Select_Button select,Text type)

Description

Set the type of the string that can be selected to type for Select_Botton select. For example
“Alignment”, “3d”.

A function return value of zero indicates the type was successfully set.

Set_select_snap_mode(Select_Button select,Integer snap_control)

Name

Integer Set_select_snap_mode(Select_Button select,Integer snap_control)

Description

Set the snap control snap_control for the Select_Button select.
Page 553Panels

12d Model Programming Manual
 mode value

Ignore_Snap 0

User_Snap 1

Program_Snap 2

A function return value of zero indicates the type was successfully set.

Get_select_direction(Select_Button select,Integer &dir)

Name

Integer Get_select_direction(Select_Button select,Integer &dir)

Description

Get the select_direction dir from the selected string.

The returned dir type must be Integer.

If select without direction, the returned dir is 1, otherwise, the returned dir:

Value Pick direction
 1 the direction of the string
-1 against the direction of the string

A function return value of zero indicates the direction was successfully returned.

Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)

Name

Integer Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)

Description

Set the snap mode mode and snap control control

 for the Select_Button select.

When snap mode is:

Name_Snap 6
Tin_Snap 7
Model_Snap 8

the snap_text must be string name; tin name, model name accordingly, otherwise, leave the
snap_text blank “”.

A function return value of zero indicates the type was successfully set.

Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real
&ch,Real &ht)

Name

Integer Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

Description

Get the coordinate of the selected snap point.

The return value of x, y, z, ch and ht must be type of Real.

A function return value of zero indicates the coordinate was successfully returned.
Page 554 Panels

Chapter
For information on the other Buttons, go to Buttons

GridCtrl_Box
A GridCtrl_Box is made up of columns and rows of Widgets.

Each column must have a fixed Widget type, which is defined by supplying an array of Widgets of
the correct type, one for each column, in column order. The title for each Widget becomes the
title for the column of the GridCtrl_Box.

The only thing to be careful of is that if the variable types are not defined as actual Widget but are
derived from Widgets (for example the input boxes Real_Box, Input_Box, Named_Tick_Box etc)
then they must be cast to Widget before they can be loaded into the array to create the
GridCtrl_Box.

As an example, a section of code required to create a GridCtrl_Box, defined the columns for the
GridCtrl_Box using the array column_widgets[] and display it on the screen is:

 Widget cast(Widget w) // this small routine cast needs to be in the macro code.
 {
 return w;
 }
 void main()
 {
 Panel panel = Create_panel("Panel Grid Test");

 Widget column_widgets[3];

 Message_Box message_box = Create_message_box("");
 Real_Box col_1_box = Create_real_box("My Real", message_box);
 Input_Box col_2_box = Create_input_box("My Input", message_box);
 Named_Tick_Box col_3_box = Create_named_tick_box("Tick", 1, "resp");

 column_widgets[1] = cast(col_1_box);
 column_widgets[2] = cast(col_2_box);
 column_widgets[3] = cast(col_3_box);

 GridCtrl_Box grid_box = Create_gridctrl_box("MyGrid", 2, 3, column_widgets,1,
 message_box, 100, 200);
 Append(grid_box, panel);

 Show_widget(panel);

Two rows

Three columns with column types Real_Box, Input_Box, Tick_Box.
The titles of the Widgets are the headings for the columns.

Grid navigation

message box

boxes
Page 555Panels

12d Model Programming Manual
Important note: Loading data into the GridCtrl_Box can only be done after the Show_widget call
is made.

Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer
height)

Name

GridCtrl_Box Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height)

Description

This call creates a new GridCtrl_Box object which can be added to Panels.

name is the name of the GridCtrl_Box and the number of rows that the grid initially has is
num_rows and the number of columns is num_columns (rows can also be added or deleted
after the GridCtrl_Box has been displayed).

column_widgets[] is an array of Widgets in column order, and each Widget is of the type for that
column. For an example see GridCtrl_Box .

If show_nav is 1 then there are navigation boxes on the side of the GridCtrl_Box.
If show_nav is 0 then there are no navigation boxes.

The width of the grid cell is width and the height of the grid cell is height, The units for width and
height are screen units (pixels).

Important note: All Boxes, even through they have names like Real_Box and Input_Box,
derived from Widgets and can be used in many options that take a Widget. For example
Show_widget. However for the array of widgets column_widgets[] defining the GridCtrl_Box
columns, the array values need to be Widget and so the other types derived from Widget have to
be cast to a Widget before they can be used to fill the column_widgets[] array. The cast is easily
done by simply having the following cast function defined and in your macro code.

 Widget cast(Widget w)
 {
 return w;
 }

See GridCtrl_Box for an example of using cast when defining values for column_widgets[].

GridCtrl_Box with two row and three columns with column types Real_Box, Input_Box, Tick_Box
The titles of the Widgets are the headings for the columns

Grid navigation
boxes

show_nav = 1

show_nav = 0
so navigation boxes

so navigation boxes
Page 556 Panels

Chapter
If the rows and columns are too large to fit inside the area defined by width and height, scroll bars
are automatically created so that all cells can be reached.

A horizontal scroll bar is automatically added when
the columns are wider than the given width

A vertical scroll bar is automatically added
when the rows are wider than the
given height

The created GridCtrl_Box is returned as the function return value.

Create_gridctrl_box(Text name,Integer num_rows, Integer num_columns,Widget
column_widgets[],Integer column_readonly[], Integer show_nav,Message_Box
messages,Integer width,Integer height) For V10 only
Name

GridCtrl_Box Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer column_readonly[],Integer show_nav,Message_Box messages,Integer
width,Integer height)

Description

This call creates a new GridCtrl_Box object which can be added to Panels.

This is the same as the previous GridCtrl_Box function except that there is also the array
column_readonly[] where

column_readonly[] is an Integer array of size num_columns where a value of 1 means that the
cell is read only, and 0 means that the cell can be edited.

column_readonly[1] = 0;
column_readonly[2] = 1;
column_readonly[3] = 0;

Integer column_readonly[3];

Second column is read only

To set only the middle column
to be read only -

See Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget
column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height) for
Page 557Panels

12d Model Programming Manual
more documentation for this function.

The created GridCtrl_Box is returned as the function return value.

Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)

Name

Integer Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)

Description

Let column_widgets[] be the array that was used to define the GridCtrl_Box columns in the
Create_gridcltrl_box call. See Create_gridctrl_box(Text name,Integer num_rows,Integer
num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer
width,Integer height) .

Load_widgets_from_row loads the values in row row_num of the GridCtrl_Box grid into
column_widgets[].

Load_widgets_from_row allows you to validate grid values for a row, or to get the values to use
for other purposes.

To change grid values, you first call Load_widgets_from_row to place the existing values for a
row into column_widgets[], change the values that you wish to change in column_widgets[],
and then call Load_row_from_widgets to load the new values from column_widgets[] back into
the row. SeeLoad_row_from_widgets(GridCtrl_Box grid,Integer row_num) .

Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.

A function return value of zero indicates the load was successful.

Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)

Name

Integer Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)

Description

Let column_widgets[] be the array that was used to define the GridCtrl_Box columns in the
Create_gridcltrl_box call. See Create_gridctrl_box(Text name,Integer num_rows,Integer
num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer
width,Integer height) .

Load_row_from_widgets loads the values of column_widgets[] into row row_num of the
GridCtrl_Box grid.

Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.

A function return value of zero indicates the load was successful.

Insert_row(GridCtrl_Box grid)

Name

Integer Insert_row(GridCtrl_Box grid)

Description

This call inserts a blank row at the bottom of the GridCtrl_Box grid.
Page 558 Panels

Chapter
Note - this call can only be made after the Show_widget call is made to display the panel
containing the GridCtrl_Box.

A function return value of zero indicates the insertion was successful.

Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)

Name

Integer Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)

Description

This call inserts a blank row into the GridCtrl_Box grid.

If is_before = 1, a blank row is inserted before row_num, so that the blank row becomes the
new row_num’th row. The old rows from row row_num onwards are all pushed down one row.

If is_before = 0, a blank row is after row row_num, so that the blank row becomes a new
(num_row+1)’th row. The old rows from row (num_row+1) onwards are pushed down one row.

t row number row_num of the GridCtrl_Box grid.

If you wish it to be inserted before the specified row, set is_before to 1, otherwise the row will be
inserted after.

Note: a GridCtrl_Box(grid) call should be done after the Insert_row(GridCtrl_Box grid,Integer
row_num,Integer is_before) call. See Format_grid(GridCtrl_Box grid) .

A function return value of zero indicates the insertion was successful.

Delete_row(GridCtrl_Box grid,Integer row_num)

 Name

Integer Delete_row(GridCtrl_Box grid,Integer row_num)

Description

Delete the row row_num from the GridCtrl_Box grid.

A function return value of zero indicates the row was successfully deleted.

Delete_all_rows(GridCtrl_Box grid)

Name

Integer Delete_all_rows(GridCtrl_Box grid)

Description

Delete all the rows of the GridCtrl_Box grid.

A function return value of zero indicates the rows were successfully deleted.

Get_row_count(GridCtrl_Box grid)

Name

Integer Get_row_count(GridCtrl_Box grid)

Description

This call returns the number of rows currently in a GridCtrl_Box grid as the function return value.

Format_grid(GridCtrl_Box grid)
Page 559Panels

12d Model Programming Manual
Name

Integer Format_grid(GridCtrl_Box grid)

Description

This call formats the GridCtrl_Box grid.

This means it makes sure all columns and rows are large enough to fit any entered data.

A function return value of zero indicates the format was successful.

Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)

Name

Integer Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)

Description

For the cell with row number row_num and column number col_num of the GridCtrl_Box grid,
set the text value of the cell to text.

It is recommended that you use the Load_row_from_widgets call, as this call will not provide
any validation of data.

This call will return 0 if successful.

A function return value of zero indicates the set was successful.

Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)

Name

Integer Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)

Description

Get the text value of the cell at row number row_num and column number col_num of the
GridCtrl_Box grid, and returns the text in value.

 It is recommended that you use the Load_widgets_from_row call instead, as this call will not
provide any validation of data.

A function return value of zero indicates the get was successful.

Set_column_width(GridCtrl_Box grid,Integer col,Integer width)

Name

Integer Set_column_width(GridCtrl_Box grid,Integer col,Integer width)

Description

For the GridCtrl_Box grid, set the width of column number col to width. The units of width are
screen units (pixels).

The column can be made invisible by setting its width to 0.

A function return value of zero indicates the width was successfully set.

Set_modified(GridCtrl_Box grid,Integer modified)

Name

Integer Set_modified(GridCtrl_Box grid,Integer modified)

Description
Page 560 Panels

Chapter
This call sets the modified state of the GridCtrl_Box grid.

If modified = 0 then the modified state is set to off.
If modified = 1 then the modified state is set to on.

A function return value of zero indicates the modified state was successfully set.

Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)

 Name

Integer Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)

Description

This call sets the warn on modified state of the GridCtrl_Box grid.

If warn_on_modified = 1 then if the panel containing grid is being closed and grid is in a modified
state, then the user is prompted to confirm that grid is to be closed.

If warn_on_modified = 0 then there is no warning when the panel containing grid is being closed
even if the panel has been modified.

Note: a GridCtrl_Box is in a in a modified state if data in the GridCtrl_Box has been changed and
the modified state has not been set off by a Set_modified(grid,0) call. See
Set_modified(GridCtrl_Box grid,Integer modified)

The default for a GridCtrl_Box is that a warning is given when attempting to close it.

A function return value of zero indicates the warn on modified state was successfully set.

Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer
&start_col,Integer &end_row,Integer &end_col)

Name

Integer Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer &start_col,Integer
&end_row,Integer &end_col)

Description

For the GridCtrl_Box grid, return the minimum and maximum row and column numbers for the
current selected cells (the range of the selected cells).

The minimum and maximums are returned in start_row, start_col and end_row and end_col.

Note that not all the cells in the range need to be selected.
Page 561Panels

12d Model Programming Manual
start_row = 2
start_col= 1

end_row = 4
end_col = 4

The function return value is zero if there are selected cells and the range is returned successfully.

The function return value is non-zero is there are no selected rows.
Page 562 Panels

Chapter
Tree Box Calls
The tree box is a widget that consists of two parts - a left hand side (Tree) and a right hand side
for displaying information for a particular part of the tree.

The tree on the left hand side is made up of nodes (or pages).

Each node (page) can have a set of Widgets that are displayed on the right hand side, when that
node is selected on the left hand side.

Each node (page) can have zero or more of children pages.

The Tree_Box is similar in style to the 12d Model panels for Super Alignment Parts Editor, the
Chain editor and the Env.4d editor.

The right hand side of
Tree_Page "Page 1"
comes up when you
click on "Page 1" in the

Border around
right hand side
of "Page1"

Title for border

Tree on the left hand side

Left hand side of the Tree_Box

The Tree expands/collapses
when you click on + or -

Children of
Page 1"

Right hand side of the Tree_Box

 Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer
tree_height)

Name

Tree_Box Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer tree_height)

Description

This call creates a Tree_Box with the name name and with width tree_width and height
tree_height. The units for width and height are screen units (pixels).

An empty node/page at the root of the tree is created with the title root_item_text. This is called
the root page.
Page 563Panels

12d Model Programming Manual
An example of a section of the code required to create a Tree_Box with its root page is:

 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);

The created Tree_Box is returned as the function return value.

Get_root_page(Tree_Box tree_box)

Name

Tree_Page Get_root_page(Tree_Box tree_box)

Description

Get the root page of the Tree_Box tree_box and return it as the function return value.

All Tree_Box’s automatically have a root page.

 Create_tree_page(Tree_Page parent_page,Text name,Integer show_border, Integer
use_name_for_border)

Name

Tree_Page Create_tree_page(Tree_Page parent_page,Text name,Integer show_border,Integer
use_name_for_border)

Description

This call creates a new Tree_Page with the name name, as a child of the Tree_Page
parent_page.

When the right hand side of the created page exists and there is none or more than one Group
(either Horizontal_Group’s and/or Vertical_Group’s), then the right hand side can have an
optional border and be given the name of the Tree_Page as a title for the border.

If show_border = 1, a border is drawn around the right had side of the created Tree_Page.
If show_border = 0, no border is drawn around the right had side of the created Tree_Page.

If use_name_for_border = 1, name is used as the title when the border is drawn around the right
had side of the created Tree_Page.
If use_name_for_border = 0, there is no title when the border is drawn around the right had side
of the created Tree_Page.
Page 564 Panels

Chapter
Right hand side of
Tree_Page "Page 1"

The right hand side comes up when you
click on "Page 1" in the Tree on the left

Border around
right hand side
of "Page1"

Title for border

A parent page must exist before a child page can be created. The parent page may be the root
page that is automatically created for a Tree_Box and the Get_root_page call is used to get the
root page of a Tree_Box. See Get_root_page(Tree_Box tree_box)

A Tree_Page can contain any number of children pages.

An example of a section of the code required to create a Tree_Box with its root page, and then one
child page of the root page is:

 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);

// get the root page to add a child page called "Page 1" to

 Tree_Page root_page = Get_root_page(tree_box);

 Tree_Page page_1 = Create_tree_page(root_page, "Page 1", 1, 1);

The created Tree_Box is returned as the function return value.
Page 565Panels

12d Model Programming Manual
Append(Widget widget,Tree_Page page)

Name

Integer Append(Widget widget,Tree_Page page)

Description

Append the Widget widget to the Tree_Page page.

All Widgets appended to a Tree_Page page are displayed on the right hand side of the Tree_Box
when the user clicks on page on the left hand side of the Tree_Box.

A function return value of zero indicates the Widget was successfully appended.

An example of a section of the code required to create a Tree_Box with its root page, one child
page of the root page, and some boxes to show on the right had side of the child page is:

 Panel panel = Create_panel("Tree Box test");

 Tree_Box tree_box = Create_tree_box("Tree", "Tree Root", 200, 200);

// get the root page to add a child page to

 Tree_Page root_page = Get_root_page(tree_box);

 Tree_Page page_1 = Create_tree_page(root_page, "Page 1", 1, 1);

 Message_Box message_box = Create_message_box("");

 Input_Box ib_1 = Create_input_box("Input box", message_box);

 Real_Box db_1 = Create_real_box("Double box", message_box);

 Append(ib_1,page_1);

 Append(db_1,page_1);

 Append(message_box,page_1);

 Append(tree_box, panel);

 Show_widget(panel);

Get_number_of_pages(Tree_Page page)

Name

Integer Get_number_of_pages(Tree_Page page)

Description

For the Tree_Page page, return the number of child pages belonging to page as the function
Page 566 Panels

Chapter
return value.

Get_page(Tree_Page parent,Integer n,Tree_Page &child_page)

Name

Integer Get_page(Tree_Page parent,Integer page_index,Tree_Page &child_page)

Description

For the Tree_Page parent, find the n’th child page of parent and return the page as child_page.

A function return value of zero indicates a child page was successfully returned.

Integer Has_child_page(Tree_Page parent,Tree_Page child)

Name

Has_child_page(Tree_Page parent,Tree_Page child)

Description

This call checks if the given child Tree_Page child belongs to the parent Tree_Page parent.

A non-zero function return value indicates that child is a child page of parent.

Warning this is the opposite of most 4DML function return values

Has_widget(Tree_Page page,Widget w)

Name

Integer Has_widget(Tree_Page page,Widget w)

Description

This call checks if the Tree_Page page contains the Widget w.

A non-zero function return value indicates that w is in page.

Warning this is the opposite of most 4DML function return values

Get_page_name(Tree_Page page)

Name

Text Get_page_name(Tree_Page page)

Description

For the Tree_Page page, return the Text name of page as the function return value.

Set_page(Tree_Box tree_box,Widget w)

Name

Integer Set_page(Tree_Box tree_box,Widget w)

Description

Set the current displayed page of the Tree_Box tree to the Tree_Page that contains the Widget
w.

This is particularly useful for validation, when validation fails.

A function return value of zero indicates the page was successfully displayed.
Page 567Panels

12d Model Programming Manual
Set_page(Tree_Box tree_box,Tree_Page page)

Name

Integer Set_page(Tree_Box tree_box,Tree_Page page)

Description

Set the current displayed page of the Tree_Box tree to the Tree_Page page.

A function return value of zero indicates the page was successfully displayed.

Set_page(Tree_box tree_box,Text name)

Name

Integer Set_page(Tree_box tree_box,Text name)

Description

Set the current displayed page of the Tree_Box tree to the Tree_Page with name name.

A function return value of zero indicates the page was successfully displayed.

Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)

Name

Integer Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)

Description

Get the Tree_Page that is currently selected and return it in current_page.

A function return value of zero indicates the page was successfully returned.
Page 568 Panels

Chapter
General

Name Matching

Match_name(Text name,Text reg_exp)

Name

Integer Match_name(Text name,Text reg_exp)

Description

Checks to see if the Text name matches a regular expression given by Text reg_exp.

The regular expression uses

* for a wild cards

? for a wild character

A non-zero function return value indicates that there is a match.

A zero function return value indicates there is no match.

Warning - this is the opposite of most 4DML function return values

Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)

Name

Integer Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)

Description

Returns all the Elements from the Dynamic_Element de whose names match the regular
expression Text reg_exp.

The matching elements are returned by appended them to the Dynamic_Element matched.

A function return value of zero indicates there were no errors in the matching calculations.
Page 569General

12d Model Programming Manual
Project Functions

Get_project_functions(Dynamic_Text &function_names)

Name

Integer Get_project_functions(Dynamic_Text &function_names)

Description

Get the names of all the functions in the project.

The dynamic array of function names is returned in the Dynamic_Text function_names.

A function return value of zero indicates the function names were successfully returned.

Get_project_name(Text &name)

Name

Integer Get_project_name(Text &name)

Description

Get the names of the current project.

The names is returned in the Text name.

A function return value of zero indicates the function names were successfully returned.
Page 570 General

Chapter
Null Data
It often happens in modelling that the plan position of a point is known (that is, the (x,y) co-
ordinates are known) but the z-value is not defined.

For these situations, 12d Model has a special null z-value that is used to indicate that the z-value
is to be ignored.

Is_null(Real value)

Name

Integer Is_null(Real value)

Description

Checks to see if the Real value is null or not.

A non-zero function return value indicates the value is null.

A zero function return value indicates the value is not null.

Warning - this is the opposite of most 4DML function return values

Null(Real &value)

Name

void Null(Real &value)

Description

This function sets the Real value to the 12d Model null-value.

There is no function return value.

Null_ht(Dynamic_Element elements,Real height)

Name

Integer Null_ht(Dynamic_Element elements,Real height)

Description

This function examines the z-values of each point for all non-Alignment strings in the
Dynamic_Element elements, and if the z-value of the point equals height, the z-value is reset to
the null value.

A returned value of zero indicates there were no errors in the null operation.

Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)

Name

Integer Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)

Description

This function examines the z-values of each point for all non-Alignment strings in the
Dynamic_Element elements, and if the z-value of the point is between ht_min and ht_max, the
z-

value is reset to the null value.

A returned value of zero indicates there were no errors in the null operation.
Page 571General

12d Model Programming Manual
Reset_null_ht(Dynamic_Element elements,Real height)

Name

Integer Reset_null_ht(Dynamic_Element elements,Real height)

Description

This function resets all the null z-values of all points of non-Alignment strings in the
Dynamic_Element elements, to the value height.

A returned value of zero indicates there were no errors in the reset operation.
Page 572 General

Chapter
Fence

Fence(Dynamic_Element data_to_fence,Integer mode,Element
user_poly,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)

Name

Integer Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element
&ret_inside,Dynamic_Element &ret_outside)

Description

This function fences all the Elements in the Dynamic_Element data_to_list against the user
supplied polygon Element user_poly.

The fence mode is given by Integer mode and when mode equals

0 get the inside of the polygon
1 get the outside of the polygon
2 get the inside and the outside of the polygon

If the inside is required, the data is returned by appending it to the Dynamic_Element ret_inside.

If the outside is required, the data is returned by appending it to the Dynamic_Element
ret_outside

A returned value of zero indicates there were no errors in the fence operation.

Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element
polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)

Name

Integer Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element
polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)

Description

This function fences all the Elements in the Dynamic_Element data_to_list against one or more
user supplied polygons given in the Dynamic_Element polygon_list.

The fence mode is given by Integer mode and when mode equals

0 get the inside of each of the polygons
1 get the outside of all the polygons
2 get the inside and the outside of the polygons

If the inside is required, the data is returned by appending it to the Dynamic_Element ret_inside.

If the outside is required, the data is returned by appending it to the Dynamic_Element
ret_outside

A returned value of zero indicates there were no errors in the fence operation Head to Tail
Page 573General

12d Model Programming Manual
Head to Tail

Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)

Name

Integer Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)

Description

Perform head to tail processing on the data in Dynamic_Element in_list.

The resulting elements are returned by appending them to the Dynamic_Element out_list.

A function return value of zero indicates there were no errors in the head to tail process.
Page 574 General

Chapter
Convert

Convert(Dynamic_Element in_de,Integer mode,Integer pass_others,
Dynamic_Element &out_de)

Name

Integer Convert(Dynamic_Element in_de,Integer mode,Integer pass_others,Dynamic_Element &out_de)

Description

Convert the strings in Dynamic_Element in_de using Integer mode and when mode equals

1 convert 2d to 3d

2 convert 3d to 2d if the 3d string has constant z

3 convert 4d to 3d (the text is dropped at each point)

The converted strings are returned by appending them to the Dynamic_Element out_de.

If Integer pass_others is non zero, any strings in in_de that cannot be converted will be copied
to out_de.

A function return value of zero indicates the conversion was successful.

Convert(Element elt,Text type,Element &newelt)

Name

Integer Convert(Element elt,Text type,Element &newelt)

Description

Tries to convert the Element elt to the Element type given by Text type.

If successful, the new element is returned in Element newelt.

A function return value of zero indicates the conversion was successful.
Page 575General

12d Model Programming Manual
Filter

Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real
tolerance,Dynamic_Element &out_de)

Name

Integer Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real
tolerance,Dynamic_Element &out_de)

Description

Filter removes points from 2d and/or 3d strings that do not deviate by more than the distance
tolerance from the straight lines joining successive string points.

Hence the function Filter filters the data from in_de where mode means:

0 only 2d strings are filtered.

1 2d and 3d strings are filtered.

The filtered data is placed in the Dynamic_Element out_de.

If pass_others is non-zero, elements that can't be processed using the mode will be copied to
out_de.

A function return value of zero indicates the filter was successful.
Page 576 General

Chapter
Factor

Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)

Name

Integer Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)

Description

Multiply all the co-ordinates of all the elements in the Dynamic_Element elements by the factors
(xf,yf,zf).

A function return value of zero indicates the factor was successful.
Page 577General

12d Model Programming Manual
Helmert Transformation

Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)

Name

Integer Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)

Description

Apply to all the elements in the Dynamic_Element elements, the Helmert transformation with
parameters:

Rotation rotate (in radians)

Scale factor scale

Translation (dx,dy)

A function return value of zero indicates the transformation was successful.
Page 578 General

Chapter
Affine Transformation

Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real
scale_y,Real dx,Real dy)

Name

Integer Affine(Dynamic_Element elements,Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real
dx,Real dy)

Description

Apply to all the elements in the Dynamic_Element elements, the Affine transformation with
parameters:

X axis rotation rotate_x (in radians)

Y axis rotation rotate_y (in radians)

X scale factor scale_x

Y scale factor scale_y

Translation (dx,dy)

A function return value of zero indicates the transformation was successful.
Page 579General

12d Model Programming Manual
Rotate

Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)

Name

Integer Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)

Description

Rotate all the elements in the Dynamic_Element elements about the centre point (xorg,yorg)
through the angle ang.

A function return value of zero indicates the rotate was successful.
Page 580 General

Chapter
Swap XY

Swap_xy(Dynamic_Element elements)

Name

Integer Swap_xy(Dynamic_Element elements)

Description

Swap the x and y co-ordinates for all the elements in the Dynamic_Element elements.

A function return value of zero indicates the swap was successful.
Page 581General

12d Model Programming Manual
Translate

Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)

Name

Integer Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)

Description

Translate translates all the elements in the Dynamic_Element elements by the amount
(dx,dy,dz).

A function return value of zero indicates the translate was successful.
Page 582 General

Chapter
Triangulate Data

Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer
preserve,Integer bubbles,Tin &tin)

Name

Integer Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer preserve,Integer
bubbles,Tin &tin)

Description

The elements from the Dynamic_Element de are triangulated and a tin named tin_name created
with colour tin_colour.

A non zero value for preserve allows break lines to be preserved.

A non zero value for bubbles removes bubbles from the triangulation.

A created tin is returned by Tin tin.

A function return value of zero indicates the triangulation was successful.
Page 583General

12d Model Programming Manual
Contour

Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer
cont_col,Dynamic_Element &cont_de,Real bold_inc,Integer
bold_col,Dynamic_Element &bold_de)

Name

Integer Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element
&cont_de,Real bold_inc,Integer bold_col,Dynamic_Element &bold_de)

Description

Contour the triangulation tin between the minimum and maximum z values cmin and cmax.

The contour increment is cinc, and cref is a z value that the contours will pass through.

ccol is the colour of the normal contours and they are added to the Dynamic_Element cont_de.

bold_inc and bold_col are the increment and colour of the bold contours respectively. If
bold_inc is zero then no bold contour are produced.

Any bold contours are added to the Dynamic_Element bold_de.

A function return value of zero indicates the contouring was successful.

Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer
zero_colour,Integer fill_colour,Real interval,Real start_level,Real end_level,Integer
mode,Dynamic_Element &de)

Name

Integer Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer
fill_colour,Real interval,Real start_level,Real end_level,Integer mode,Dynamic_Element &de)

Description

Calculate depth contours (isopachs) between the triangulations original and new.

The contour increment is interval, and the range is from start_level to end_level.

cut_colour, zero_colour and fill_colour are the colours of the cut, zero and fill contours
respectively.

If the value of mode is

0 2d strings are produced with depth as the z-value

1 3d strings are produced with the depth contours projected onto the Tin original.

2 3d strings are produced with the depth contours projected onto the Tin new.

The new strings are added to the Dynamic_Element de.

A function return value of zero indicates the contouring was successful.

Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)

Name

Integer Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)

Description

Calculate the intersection (daylight lines) between the triangulations original and new.

The intersection lines have colour colour and are added to the Dynamic_Element de.

Note
Page 584 General

Chapter
This is the same as the zero depth contours projected onto either Tin original or new (mode 1 or
2) that are produced by the function Tin_tin_depth_contours.

A function return value of zero indicates the intersection was successful.

Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element
&de,Integer mode)

Name

Integer Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode)

Description

Calculate the intersection (daylight lines) between the triangulations original and new.

The intersection lines have colour colour and are added to the Dynamic_Element de.

If mode is

0 the intersection line with z = 0 (2d string) is produced

1 the full 3d intersection is created.

A function return value of zero indicates the intersection was successful.
Page 585General

12d Model Programming Manual
Drape

Drape(Tin tin,Model model,Dynamic_Element &draped_elts)

Name

Integer Drape(Tin tin,Model model,Dynamic_Element &draped_elts)

Description

Drape all the Elements in the Model model onto the Tin tin.

The draped Elements are returned in the Dynamic_Element draped_elts.

A function return value of zero indicates the drape was successful.

Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)

Name

Integer Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)

Description

Drape all the Elements in the Dynamic_Element de onto the Tin tin.

The draped Elements are returned in the Dynamic_Element draped_elts.

A function return value of zero indicates the drape was successful.

Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)

Name

Integer Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)

Description

Face drape all the Elements in the Model model onto the Tin tin.

The draped Elements are returned in the Dynamic_Element face_draped_elts.

A function return value of zero indicates the face drape was successful.

Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element
&face_draped_strings)

Name

Integer Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings)

Description

Face drape all the Elements in the Dynamic_Element de onto the Tin tin.

The face draped Elements are returned in the Dynamic_Element face_draped_elts.

A function return value of zero indicates the face drape was successful.
Page 586 General

Chapter
Volumes

End Area

Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text
report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)

Name

Integer Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer
report_mode,Real &cut,Real &fill,Real &balance)

Description

Calculate the volume from a tin tin_1 to a height ht inside the polygon poly using the end area
method. The sections used for the end area calculations are taken at the angle ang with a
separation of sep.

A report file is created called report_name which contains cut, fill and balance information.

If report_mode is equal to

0 only the total cut, fill and balance is given

1 the cut and fill value for every section is given.

If the file report_name is blank (""), no report is created.

The variables cut, fill and balance return the total cut, fill and balance.

A function return value of zero indicates the volume calculation was successful.

Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text
report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)

Name

Integer Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer
report_mode,Real &cut,Real &fill,Real &balance)

Description

Calculate the volume from tin tin_1 to tin tin_2 inside the polygon poly using the end area
method. The sections used for the end area calculations are taken at the angle ang with a
separation of sep.

A report file is created called report_name which contains cut, fill and balance information.

If report_mode is equal to

0 only the total cut, fill and balance is given

1 the cut and fill value for every section is given.

If the file report_name is blank (""), no report is created.

The variables cut, fill and balance return the total cut, fill and balance.

A function return value of zero indicates the volume calculation was successful.

Exact Volumes

Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)

Name

Integer Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)

Description
Page 587General

12d Model Programming Manual
Calculate the volume from a tin tin_1 to a height ht inside the polygon poly using the exact
method.

The variables cut, fill and balance return the total cut, fill and balance.

A function return value of zero indicates the volume calculation was successful.

Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real
&balance)

Name

Integer Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real &balance)

Description

Calculate the volume between tin tin_1 and tin tin_2 inside the polygon poly using the exact
method.

The variables cut, fill and balance return the total cut, fill and balance.

A function return value of zero indicates the volume calculation was successful.
Page 588 General

Chapter
Interface

Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real
search_dist,Integer side,Element &interface_string)

Name

Integer Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer
side,Element &interface_string)

Description

Perform an interface to the tin tin along the Element string.

Use cut and fill slopes of value cut_slope and fill_slope and a distance between sections of
sep. The units for slopes is 1:x.

Search to a maximum distance search_dist to find an intersection with the tin.

If side is negative, the interface is made to the left hand side of the string.

If side is positive, the interface is made to the right hand side of the string.

The resulting string is returned as the Element interface_string.

A function return value of zero indicates the interface was successful.

Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real
search_dist,Integer side, Element &interface_string,Dynamic_Element &tadpoles)

Name

Integer Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer
side,Element &interface_string,Dynamic_Element &tadpoles)

Description

Perform the interface as given in the previous function with the addition that slope lines are
created and returned in the Dynamic_Element tadpoles.

A function return value of zero indicates the interface was successful.
Page 589General

12d Model Programming Manual
Templates

Template_exists(Text template_name)

Name

Integer Template_exists(Text template_name)

Description

Checks to see if a template with the name template_name exists in the project.

A non-zero function return value indicates the template does exist.

A zero function return value indicates that no template of that name exists.

Warning - this is the opposite of most 4DML function return values

Get_project_templates(Dynamic_Text &template_names)

Name

Integer Get_project_templates(Dynamic_Text &template_names)

Description

Get the names of all the templates in the project.

The dynamic array of template names is returned in the Dynamic_Text template_names.

A function return value of zero indicates success.

Template_rename(Text original_name,Text new_name)

Name

Integer Template_rename(Text original_name,Text new_name)

Description

Change the name of the Template original_name to the new name new_name.

A function return value of zero indicates the rename was successful.
Page 590 General

Chapter
Applying Templates

Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element
&xsect)

Name

Integer Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element &xsect)

Description

Applies the templates template at the point (xpos,ypos,zpos) going out at the plan angle, ang.

The Tin tin is used as the surface for any interface calculations and the calculated section is
returned as the Element xsect.

A function return value of zero indicates the apply was successful.

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance)

Name

Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance)

Description

Applies the templates left_template and right_template to the Element string going from start
chainage start_ch to end chainage end_ch with distance sep between each section. The Tin tin
is used as the surface for any interface calculations.

The variables cut, fill and balance return the total cut, fill and balance for the apply.

A function return value of zero indicates the apply was successful.

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report)

Name

Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance,Text report)

Description

Applies templates as for the previous function with the addition of a report being created with the
name report.

A function return value of zero indicates the apply was successful.

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text
left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text
report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section_colour,Integer
do_polygons,Dynamic_Element &polygons,Integer
do_differences,Dynamic_Element &diffs,Integer difference_colour)

Name

Integer Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text
right_template,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element
&strings,Integer do_sections,Dynamic_Element §ions,Integer section_colour,Integer
Page 591General

12d Model Programming Manual
do_polygons,Dynamic_Element &polygons,Integer do_differences,Dynamic_Element &diffs,Integer
difference_colour)

Description

Applies templates as for the previous function with the additions:

If do_strings is non-zero, the strings are returned in strings.

If do_sections is non-zero, design sections of colour section_colour are returned in sections.

If do_polygons is non-zero, polygons are returned in polygons.

If do_differences is non-zero, difference sections of colour difference_colour are returned in
diffs.

A function return value of zero indicates the apply was successful.

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut,Real &fill,Real &balance)

Name

Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real
&fill,Real &balance)

Description

Applies the templates as specified in the file many_template_file to the Element string with
distance sep between each section. The Tin tin is used as the surface for any interface
calculations.

The variables cut, fill and balance return the total cut, fill and balance for the apply.

A function return value of zero indicates success.

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut_volume,Real &fill_volume,Real &balance_volume,Text report)

Name

Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut_volume,Real &fill_volume,Real &balance_volume,Text report)

Description

Applies templates as for the previous function with the addition of a report being created with the
name report.

A function return value of zero indicates success.

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real
&cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element
&strings,Integer do_sections,Dynamic_Element §ions,Integer
section_colour,Integer do_polygons,Dynamic_Element &polygons,Integer
do_difference,Dynamic_Element &diffs,Integer difference_colour)

Name

Integer Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real
&fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section_colour,Integer do_polygons,Dynamic_Element
&polygons,Integer do_difference,Dynamic_Element &diffs,Integer difference_colour)

Description
Page 592 General

Chapter
Applies templates as for the previous function with the additions:

If do_strings is non-zero, the strings are returned in strings.

If do_sections is non-zero, design sections of colour section_colour are returned in sections.

If do_polygons is non-zero, polygons are returned in polygons.

If do_differences is non-zero, difference sections of colour difference_colour are returned in
diffs.

A function return value of zero indicates the apply was successful.
Page 593General

12d Model Programming Manual
Strings Edits

String_reverse(Element in,Element &out)

Name

Integer String_reverse(Element in,Element &out)

Description

This functions creates a reversed copy of the string Element in and the reversed string is
returned in out. That is, the chainage of string out starts at the end of the original string in and
goes to the beginning of the original string in.

If successful, the new reversed string is returned in Element out.

A function return value of zero indicates the reverse was successful.

Extend_string(Element elt,Real before,Real after,Element &newelt)

Name

Integer Extend_string(Element elt,Real before,Real after,Element &newelt)

Description

Extend the start and end of the string in Element elt.

The start of the string is extended by Real before.

The end of the string is extended by Real after.

If successful, the new element is returned in Element newelt.

A function return value of zero indicates the chainage was returned successfully.

Clip_string(Element string,Real chainage1,Real chainage2, Element
&left_string,Element &mid_string,Element &right_string)

Name

Integer Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element
&mid_string,Element &right_string)

Description

Clip a string about 2 chainages for the Element string. This will result in 3 new strings being
created.

The part that exists before Real chainage1 is returned in Element left_string.

The part that exists after Real chainage2 is returned in Element right_string.

The part that exists between Real chainage1 and Real chainage2 is returned in Element
mid_string.

A function return value of zero indicates the clip was successful.

Note

If the string is closed, right_string is not used.

If chainage1 is on or before the start of the string, left_string is not used.

If chainage2 is on or after the end of the string, right_string is not used.

If chainage1 is greater than chainage2, they are first swapped.

Clip_string(Element string,Integer direction,Real chainage1,Real
Page 594 General

Chapter
chainage2,Element &left_string,Element &mid_string,Element &right_string)

Name

Integer Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element
&left_string,Element &mid_string,Element &right_string)

Description

Clip a string about 2 chainages for the string Element string. This will result in 3 new strings
being created. The clipped parts are returned relative to Integer direction. If direction is
negative, string is first reversed before being clipped.

The part that exists before Real chainage1 is returned in Element left_string.

The part that exists after Real chainage2 is returned in Element right_string.

The part that exists between Real chainage1 and Real chainage2 is returned in Element
mid_string.

A function return value of zero indicates the clip was successful.

Note

If the string is closed, right_string is not used.

If chainage1 is on or before the start of the string, left_string is not used.

If chainage2 is on or after the end of the string, right_string is not used.

If chainage1 is greater than chainage2, they are first swapped.

Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real
xarray_in[],Real yarray_in [],Real zarray_in [],Integer &npts_out,Real
xarray_out[],Real yarray_out[],Real yarray_out[])

Name

 Integer Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real xarray_in[],Real
yarray_in [],Real zarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[],Real
yarray_out[])

Description

Split_string(Element string,Real chainage,Element &string1,Element &string2)

Name

Integer Split_string(Element string,Real chainage,Element &string1,Element &string2)

Description

Split a string about a chainage for ELement string

This will result in 2 new strings being created.

The part that exists before Real chainage is returned in Element string1.

The part that exists after Real chainage is returned in Element string2.

A function return value of zero indicates the split was successful.

Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real
y2,Real z2,Element &joined_string)

Name

Integer Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real
Page 595General

12d Model Programming Manual
z2,Element &joined_string)

Description

Join the 2 strings Element string1 and Element string2 together to form 1 new string. The end of
string1 closest to x1,y1,z1 is joined to the end of string2 closest to x2,y2,z2.

The joined string is returned in Element joined_string.

A function return value of zero indicates the interface was successful.

Note

If the ends joined are no coincident, then a line between the ends is inserted.

The joined string is always of a type that preserves as much as possible about the original
strings.

If you join 2 strings of the same type, the joined string is of the same type.

Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real zarray_in
[],Real yarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[])

Name

 Integer Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real xarray_in [],Real yarray_in
[],Integer &npts_out,Real xarray_out[],Real yarray_out[])

Description
Page 596 General

Chapter
Cuts Through Strings

Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result)

Name

Integer Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)

Description

Cut all the strings from the list Dynamic_Element seed with the strings from the list

Dynamic_Element strings and add to Dynamic_Element result.

The strings created are 4d strings which have at each vertex the string cut.

Cuts are only considered valid if they have heights. Any cut at a point where

the string height is null, will not be included.

A function return value of zero indicates the cut calculations was successful.

Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element
strings,Dynamic_Element &result)

Name

Integer Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element
&result)

Description

Cut all the strings from the list Dynamic_Element seed with the strings from the list

Dynamic_Element strings and add to Dynamic_Element result.

The strings created are 4d strings which have at each vertex the string cut.

A function return value of zero indicates the cut calculations was successful.
Page 597General

12d Model Programming Manual
Chains

Run_chain(Text chain)

Name

Integer Run_chain(Text chain)

Description

Run the chain in the file named chain.

A function return value of zero indicates the chain was successfully run.
Page 598 General

Chapter
12d Model Functions
Create_macro_function(Text function_name,Macro_Function &func)

Name

Integer Create_macro_function(Text function_name,Macro_Function &func)

Description

Create a user defined Function with the name function_name and return the created Function
as func.

If a Function with the name function_name already exists, the function fails and a non-zero
function return value is returned.

A function return value of zero indicates the Function was successfully created.

Function_recalc(Function func)

Name

Integer Function_recalc(Function func)

Description

Recalc (i.e. re-run) the Function func.

A function return value of zero indicates the recalc was successful.

Function_exists(Text function_name)

Name

Integer Function_exists(Text function_name)

Description

Checks to see if a 12d or user Function with the name function_name exists.

A non-zero function return value indicates a Function does exist.

A zero function return value indicates that no Function of name function_name exists.

Warning - this is the opposite of most 4DML function return values.

Function_rename(Text original_name,Text new_name)

Name

Integer Function_rename(Text original_name,Text new_name)

Description

Change the name of the Function original_name to the new name new_name.

A function return value of zero indicates the rename was successful.

Get_name(Function func,Text &name)

Name

 Integer Get_name(Function func,Text &name)

Description

Get the name of the Function func and return it in name.
Page 59912d Model Functions

12d Model Programming Manual
A function return value of zero indicates the Function name was successfully returned.

Get_time_created(Function func,Integer &time)

Name

Integer Get_time_created(Function func,Integer &time)

Description

Get the time that the Function func was created and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Get_time_updated(Function func,Integer &time)

Name

Integer Get_time_updated(Function func,Integer &time)

Description

Get the time that the Function func was last updated and return the time in time.

LJG? Units of time?

A function return value of zero indicates the time was successfully returned.

Set_time_updated(Function func,Integer time)

Name

Integer Set_time_updated(Function func,Integer time)

Description

Set the update time for the Function func to time.

LJG? Units of time?

A function return value of zero indicates the time was successfully set.

Get_all_functions(Dynamic_Text &functions)

Name

Integer Get_all_functions(Dynamic_Text &functions)

Description

Get all names of the 12d and user defined Function currently in the project. The Function names
are returned in the Dynamic_Text functions.

A function return value of zero indicates the Function names are returned successfully.

Function_delete(Text function_name)

Name

Integer Function_delete(Text function_name)

Description

Delete the Function with the name function_name.
Page 600 12d Model Functions

Chapter
Note that the data in the function is not deleted.

If a Function with the name function_name does not exist, the function fails and a non-zero
function return value is returned.

A function return value of zero indicates the Function was successfully deleted.

Get_function(Text function_name)

Name

Function Get_function(Text function_name)

Description

Get the Function with the name function_name and return it as the function return value.

LJG? what if the function does not exist?

The existence of a function with the name function_name can first be checked by the call
Function_exists(function_name).

Get_macro_function(Text function_name,Macro_Function &func)

Name

Integer Get_macro_function(Text function_name,Macro_Function &func)

Description

Get the Macro Function with the name function_name and return it as func.

If the Function named function_name does not exist, or it does exist but is not a Macro
Function, then the function fails and a non-zero function return value is returned.

A function return value of zero indicates the Macro Function was successfully returned.

Add_dependancy_file(Macro_Function func,Text name,Text file)

Name

Integer Add_dependancy_file(Macro_Function func,Text name,Text file)

Description

Record in the Macro Function func, that the disk file named file is dependant on func and on a
recalc of func, needs to be checked for changes from the last time that func was recalced.

The dependency is added with the unique name name.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.

Add_dependancy_model(Macro_Function func,Text name,Model model)

Name

Integer Add_dependancy_model(Macro_Function func,Text name,Model model)

Description

Record in the Macro Function func, that the Model model is dependant on func and on a recalc
of func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.
Page 60112d Model Functions

12d Model Programming Manual
A function return value of zero indicates the dependency was successfully set.

Add_dependancy_tin(Macro_Function func,Text name,Tin tin)

Name

Integer Add_dependancy_tin(Macro_Function func,Text name,Tin tin)

Description

Record in the Macro Function func, that the Tin tin is dependant on func and on a recalc of
func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.

Integer Add_dependancy_template(Macro_Function func,Text name,Text
template)

Name

Integer Add_dependancy_template(Macro_Function func,Text name,Text template)

Description

Record in the Macro Function func, that the template name template is dependant on func and
on a recalc of func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.

Add_dependancy_element(Macro_Function func,Text name,Element elt)

Name

Integer Add_dependancy_element(Macro_Function func,Text name,Element elt)

Description

Record in the Macro Function func, that the Element elt is dependant on func and on a recalc of
func, needs to be checked for changes from the last time that func was recalced.

If a dependency called name already exists, a non-zero function return value is returned and no
dependency is added.

A function return value of zero indicates the dependency was successfully set.

Get_number_of_dependancies(Macro_Function func,Integer &count)

Name

Integer Get_number_of_dependancies(Macro_Function func,Integer &count)

Description

For the Macro_Function func, return the number of dependencies that exist for func and return
the number in count.

A function return value of zero indicates the count was successfully returned.
Page 602 12d Model Functions

Chapter
Get_dependancy_name(Macro_Function func,Integer i,Text &name)

Name

Integer Get_dependancy_name(Macro_Function func,Integer i,Text &name)

Description

For the Macro_Function func, return the name of the i’th dependencies in name.

A function return value of zero indicates the name was successfully returned.

Get_dependancy_type(Macro_Function func,Integer i,Text &type)

Name

Integer Get_dependancy_type(Macro_Function func,Integer i,Text &type)

Description

For the Macro_Function func, return the type of the i’th dependencies as the Text type.

The valid types are:

 unknown
 File
 Element
 Model
 Template
 Tin
 Integer
 Real
 Text

A function return value of zero indicates the type was successfully returned.

Get_dependancy_file(Macro_Function func,Integer i,Text &file)

Name

Integer Get_dependancy_file(Macro_Function func,Integer i,Text &file)

Description

For the Macro_Function func, if the i’th dependency is a file then return the name of the file in
name.

If the i’th dependency is not a file then a non-zero function return value is returned.

A function return value of zero indicates the file name was successfully returned.

Get_dependancy_model(Macro_Function func,Integer i,Model &model)

Name

Integer Get_dependancy_model(Macro_Function func,Integer i,Model &model)

Description

For the Macro_Function func, if the i’th dependency is a Model then return the Model in model.

If the i’th dependency is not a Model then a non-zero function return value is returned.

A function return value of zero indicates the Model was successfully returned.

Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)
Page 60312d Model Functions

12d Model Programming Manual
Name

Integer Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)

Description

For the Macro_Function func, if the i’th dependency is a Tin then return the Tin in tin.

If the i’th dependency is not a Tin then a non-zero function return value is returned.

A function return value of zero indicates the Tin was successfully returned.

Get_dependancy_template(Macro_Function func,Integer i,Text &template)

Name

Integer Get_dependancy_template(Macro_Function func,Integer i,Text &template)

Description

For the Macro_Function func, if the i’th dependency is a Template then return the template name
in template.

If the i’th dependency is not a Template then a non-zero function return value is returned.

A function return value of zero indicates the Tin was successfully returned.

Get_dependancy_element(Macro_Function func,Integer i,Element &element)

Name

Integer Get_dependancy_element(Macro_Function func,Integer i,Element &element)

Description

For the Macro_Function func, if the i’th dependency is an Element then return the Element in elt.

If the i’th dependency is not an Element then a non-zero function return value is returned.

A function return value of zero indicates the Element was successfully returned.

Get_dependancy_data(Macro_Function func,Integer i,Text &text)

Name

Integer Get_dependancy_data(Macro_Function func,Integer i,Text &text)

Description

For the Macro_Function func, a text description of the i’th dependency is returned in text.

For an Element, the text description is: model_name->element_name is return in text.

For a File/Model/Template/Tin, the text description is the name of the File/Model/Template/Tin.

For an Integer, the text description is the Integer converted to Text.

For a Real, the text description is the Real converted to Text. LJG? how many decimals

For a Text, the text description is just the text.

A function return value of zero indicates the Macro_Function description was successfully
returned.

Get_dependancy_type(Macro_Function func,Text name,Text &type)

Name

Integer Get_dependancy_type(Macro_Function func,Text name,Text &type)
Page 604 12d Model Functions

Chapter
Description

For the Macro_Function func, return the type of the dependency with the name name as the Text
type.

The valid types are:

 unknown
 File
 Element
 Model
 Template
 Tin
 Integer
 Real
 Text

If a dependency called name does not exist then a non-zero function return value is returned.

A function return value of zero indicates the type was successfully returned.

Get_dependancy_file(Macro_Function func,Text name,Text &file)

Name

Integer Get_dependancy_file(Macro_Function func,Text name,Text &file)

Description

For the Macro_Function func, get the dependency called name and if it is a File, return the file
name as file.

If no dependency called name exists, or it does exist and it is not a file, then a non-zero function
return value is returned.

A function return value of zero indicates the file name was successfully returned.

Get_dependancy_model(Macro_Function func,Text name,Model &model)

Name

Integer Get_dependancy_model(Macro_Function func,Text name,Model &model)

Description

For the Macro_Function func, get the dependency called name and if it is a Model, return the
Model as model.

If no dependency called name exists, or it does exist and it is not a Model, then a non-zero
function return value is returned.

A function return value of zero indicates the Model was successfully returned.

Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)

Name

Integer Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)

Description

For the Macro_Function func, get the dependency called name and if it is a Tin, return the Tin as
tin.

If no dependency called name exists, or it does exist and it is not a Tin, then a non-zero function
return value is returned.
Page 60512d Model Functions

12d Model Programming Manual
A function return value of zero indicates the Tin was successfully returned.

Get_dependancy_template(Macro_Function func,Text name,Text &template)

Name

Integer Get_dependancy_template(Macro_Function func,Text name,Text &template)

Description

For the Macro_Function func, get the dependency called name and if it is a Template, return the
Template name as template.

If no dependency called name exists, or it does exist and it is not a Template, then a non-zero
function return value is returned.

A function return value of zero indicates the template name was successfully returned.

Get_dependancy_element(Macro_Function func,Text name,Element &elt)

Name

Integer Get_dependancy_element(Macro_Function func,Text name,Element &element)

Description

For the Macro_Function func, get the dependency called name and if it is an Element, return the
Element as elt.

If no dependency called name exists, or it does exist and it is not an Element, then a non-zero
function return value is returned.

A function return value of zero indicates the Element was successfully returned.

Get_dependancy_data(Macro_Function func,Text name,Text &text)

Name

Integer Get_dependancy_data(Macro_Function func,Text name,Text &text)

Description

For the Macro_Function func, get the dependency called name and if it is a Text, return the Text
as text.

If no dependency called name exists, or it does exist and it is not a Text, then a non-zero function
return value is returned.

A function return value of zero indicates the Text was successfully returned.

Delete_dependancy(Macro_Function func,Text name)

Name

Integer Delete_dependancy(Macro_Function func,Text name)

Description

For the Macro_Function func, if the dependency called name exist then it is deleted from the list
of dependencies for func.

Warning: if a dependency is deleted then the dependency number of all dependencies after the
deleted one will be reduced by one.

If no dependency called name exists then a non-zero function return value is returned.

A function return value of zero indicates the dependency was successfully deleted.
Page 606 12d Model Functions

Chapter
Delete_all_dependancies(Macro_Function func)

Name

Integer Delete_all_dependancies(Macro_Function func)

Description

For the Macro_Function func, delete all the dependencies.

A function return value of zero indicates all the dependency were successfully deleted.

Get_id(Function func,Integer &id)

Name

Integer Get_id(Function func,Integer &id)

Description

For the Function/Macro_Function func, get its unique id in the Project and return it in id.

A function return value of zero indicates the id was successfully returned.

Get_id(Function func,Uid &id)

Name

Integer Get_id(Function func,Uid &id)

Description

For the Function/Macro_Function func, get its unique Uid in the Project and return it in id.

A function return value of zero indicates the Uid was successfully returned.

Get_function_id(Element elt,Integer &id)

Name

Integer Get_function_id(Element elt,Integer &id)

Description

For an Element elt, check if it has a function id and if it has, return it in id.

LJG? What if it doesn’t have a function id. Is that a error return code or is something like 0
returned?

A function return value of zero indicates the id was successfully returned.

Get_function_id(Element elt,Uid &id)

Name

Integer Get_function_id(Element elt,Uid &id)

Description

For an Element elt, check if it has a function Uid and if it has, return it in id.

LJG? What if it doesn’t have a function Uid. Is that a error return code or is something like 0
returned?

A function return value of zero indicates the Uid was successfully returned.
Page 60712d Model Functions

12d Model Programming Manual
Set_function_id(Element elt,Integer id)

Name

Integer Set_function_id(Element elt,Integer id)

Description

For an Element elt, set its function id to id.

A function return value of zero indicates the function id was successfully set.

Set_function_id(Element elt,Uid id)

Name

Integer Set_function_id(Element elt,Uid id)

Description

For an Element elt, set its function Uid to id.

A function return value of zero indicates the function Uid was successfully set.

Get_function(Integer function_id)

Name

Function Get_function(Integer function_id)

Description

Find the Function/Macro_Function with the Id function_id.

The Function is returned as the function return value.

If their is no Function/Macro_Function with the Id function_id, then a null Function/
Macro_Function is returned as the function return value.

Function_exists(Uid function_id)

Name

Integer Function_exists(Uid function_id)

Description

Checks to see if a Function/Macro_Function with Uid function_id exists.

A non-zero function return value indicates that a Function does exist.

A zero function return value indicates that no Function exists.

Warning this is the opposite of most 4DML function return values

Get_function(Uid function_id)

Name

Function Get_function(Uid function_id)

Description

Find the Function/Macro_Function with the Uid function_id.

The Function is returned as the function return value.

If their is no Function/Macro_Function with the Uid function_id, then a null Function/
Macro_Function is returned as the function return value.
Page 608 12d Model Functions

Chapter
Function_attribute_exists(Macro_Function fcn,Text att_name)

Function_attribute_exists(Function fcn,Text att_name)

Name

Integer Function_attribute_exists(Macro_Function fcn,Text att_name)

Integer Function_attribute_exists(Function fcn,Text att_name)

Description

Checks to see if an attribute with the name att_name exists for the Macro_Function/Function
fcn.

A non-zero function return value indicates that the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Function_attribute_exists(Function fcn,Text name,Integer &no)

Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)

Name

Integer Function_attribute_exists(Function fcn,Text name,Integer &no)

Integer Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)

Description

Checks to see if an attribute with the name att_name exists for the Macro_Function/Function
fcn.

If the attribute exists, its position is returned in Integer no.

This position can be used in other Attribute functions described below.

A non-zero function return value indicates the attribute does exist.

A zero function return value indicates that no attribute of that name exists.

Warning this is the opposite of most 4DML function return values

Function_attribute_delete(Macro_Function fcn,Text att_name)

Function_attribute_delete(Function fcn,Text att_name)

Name

Integer Function_attribute_delete(Macro_Function fcn,Text att_name)

Integer Function_attribute_delete(Function fcn,Text att_name)

Description

Delete the attribute with the name att_name from the Macro_Function/Function fcn.

A function return value of zero indicates the attribute was deleted.

Function_attribute_delete(Macro_Function fcn,Integer att_no)

Function_attribute_delete(Function fcn,Integer att_no)
Page 60912d Model Functions

12d Model Programming Manual
Name

Integer Function_attribute_delete(Macro_Function fcn,Integer att_no)

Integer Function_attribute_delete(Function fcn,Integer att_no)

Description

Delete the attribute with the number att_no from the Macro_Function/Function fcn.

A function return value of zero indicates the attribute was deleted.

Function_attribute_delete_all(Function fcn)

Function_attribute_delete_all(Macro_Function fcn)

Name

Integer Function_attribute_delete_all(Function fcn)

Integer Function_attribute_delete_all(Macro_Function fcn)

Description

Delete all the attributes from the Macro_Function/Function fcn.

A function return value of zero indicates all the attribute were deleted.

Function_attribute_dump(Function fcn)

Function_attribute_dump(Macro_Function fcn)

Name

Integer Function_attribute_dump(Function fcn)

Integer Function_attribute_dump(Macro_Function fcn)

Description

Write out information about the Macro_Function/Function attributes to the Output Window.

 A function return value of zero indicates the function was successful.

Function_attribute_debug(Macro_Function fcn)

Function_attribute_debug(Function fcn)

Name

Integer Function_attribute_debug(Macro_Function fcn)

Integer Function_attribute_debug(Function fcn)

Description

Write out even more information about the Macro_Function/Function attributes to the Output
Window.

A function return value of zero indicates the function was successful.

Get_function_number_of_attributes(Function fcn,Integer &no_atts)

Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)

Name
Page 610 12d Model Functions

Chapter
Integer Get_function_number_of_attributes(Function fcn,Integer &no_atts)

Integer Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)

Description

Get the number of top level attributes in the Macro_Function/Function fcn and return it in
no_atts.

A function return value of zero indicates the number is successfully returned

Get_function_attribute(Macro_Function fcn,Text att_name,Text &txt)

Get_function_attribute(Function fcn,Text att_name,Text &txt)

Name

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Text &att)

Integer Get_function_attribute(Function fcn,Text att_name,Text &txt)

Description

For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
value in txt. The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)

Get_function_attribute(Function fcn,Text att_name,Integer &int)

Name

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)

Integer Get_function_attribute(Function fcn,Text att_name,Integer &int)

Description

For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
value in int. The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute(Function fcn,Text att_name,Real &real)

 Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)

Name

Integer Get_function_attribute(Function fcn,Text att_name,Real &real)

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)

Description

For the Macro_Function/Function fcn, get the attribute called att_name and return the attribute
Page 61112d Model Functions

12d Model Programming Manual
value in real. The attribute must be of type Real.

If the attribute is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute(Function fcn,Integer att_no,Text &txt)

Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)

Name

Integer Get_function_attribute(Function fcn,Integer att_no,Text &txt)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)

Description

For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in txt. The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute(Function fcn,Integer att_no,Integer &int)

Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)

Name

Integer Get_function_attribute(Function fcn,Integer att_no,Integer &int)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)

Description

For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in int. The attribute must be of type Integer.

If the attribute is not of type Integer then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

 Get_function_attribute(Function fcn,Integer att_no,Real real)

Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Name

Integer Get_function_attribute(Function fcn,Integer att_no,Real real)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Description

For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in real. The attribute must be of type Real.
Page 612 12d Model Functions

Chapter
If the attribute is not of type Real then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)

Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)

Name

Integer Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)

Integer Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)

Description

For the Macro_Function/Function fcn, get the attribute with attribute number att_no and return
the attribute value in txt. The attribute must be of type Text.

If the attribute is not of type Text then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer
&att_type)

Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)

Name

Integer Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer &att_type)

Integer Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)

Description

For the Macro_Function/Function fcn, get the type of the attribute called att_name and return
the attribute type in att_type.

A function return value of zero indicates the attribute type is successfully returned.

Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)

Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer
 &att_type)

Name

Integer Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)

Integer Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer &att_type)

Description

For the Macro_Function/Function fcn, get the type of the attribute with attribute number att_no
and return the attribute type in att_type.

A function return value of zero indicates the attribute type is successfully returned.
Page 61312d Model Functions

12d Model Programming Manual
Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)

Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer
&att_len)

Name

Integer Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)

Integer Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer &att_len)

Description

For the Macro_Function/Function fcn, get the length in bytes of the attribute of name att_name.
The number of bytes is returned in att_len.

 This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.

Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)

Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer
&att_len)

 Name

Integer Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)

Integer Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer &att_len)

Description

For the Macro_Function/Function fcn, get the length in bytes of the attribute with attribute
number att_no. The number of bytes is returned in att_len.

 This is mainly for use with attributes of types Text and Binary (blobs)

A function return value of zero indicates the attribute length is successfully returned.

Set_function_attribute(Function fcn,Text att_name,Text txt)

Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)

Name

Integer Set_function_attribute(Function fcn,Text att_name,Text txt)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)

Description

For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Text and give it the value
txt.
 if the attribute called att_name does exist and it is type Text, then set its value to txt.

If the attribute exists and is not of type Text, or the attribute does not exist, then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Set_function_attribute(Function fcn,Text att_name,Integer int)
Page 614 12d Model Functions

Chapter
Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)

Name

Integer Set_function_attribute(Function fcn,Text att_name,Integer int)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)

Description

For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Integer and give it the value
int.
 if the attribute called att_name does exist and it is type Integer, then set its value to int.

If the attribute exists and is not of type Integer, or the attribute does not exist, then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Set_function_attribute(Macro_Function fcn,Text att_name,Real real)

Set_function_attribute(Function fcn,Text att_name,Real real)

Name

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Real real)

Integer Set_function_attribute(Function fcn,Text att_name,Real real)

Description

For the Macro_Function/Function fcn,
 if the attribute called att_name does not exist then create it as type Real and give it the value
real.
 if the attribute called att_name does exist and it is type Real, then set its value to real.

If the attribute exists and is not of type Real, or the attribute does not exist, then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute called
att_name.

Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)

 Set_function_attribute(Function fcn,Integer att_no,Text txt)

Name

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)

Integer Set_function_attribute(Function fcn,Integer att_no,Text txt)

Description

For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Text and give it
the value txt.
 if the attribute with attribute number att_no does exist and it is type Text, then set its value to
txt.

If the attribute exists and is not of type Text, or the attribute does not exist, then a non-zero return
value is returned.
Page 61512d Model Functions

12d Model Programming Manual
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Set_function_attribute(Function fcn,Integer att_no,Integer int)

Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)

Name

Integer Set_function_attribute(Function fcn,Integer att_no,Integer int)

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)

Description

For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Integer and
give it the value int.
 if the attribute with attribute number att_no does exist and it is type Integer, then set its value to
int.

If the attribute exists and is not of type Integer, or the attribute does not exist, then a non-zero
return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Set_function_attribute(Function fcn,Integer att_no,Real real)

Name

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)

Integer Set_function_attribute(Function fcn,Integer att_no,Real real)

Description

For the Macro_Function/Function fcn,
 if the attribute with attribute number att_no does not exist then create it as type Real and give
it the value real.
 if the attribute with attribute number att_no does exist and it is type Real, then set its value to
real.

If the attribute exists and is not of type Real, or the attribute does not exist, then a non-zero return
value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_function_attribute_type call can be used to get the type of the attribute with
attribute number att_no.

Get_function_attributes(Function fcn,Attributes &att)

Get_function_attributes(Macro_Function fcn,Attributes &att)

Name

Integer Get_function_attributes(Function fcn,Attributes &att)
Page 616 12d Model Functions

Chapter
Integer Get_function_attributes(Macro_Function fcn,Attributes &att)

Description

For the Function/Macro_Function fcn, return the Attributes for the Function/Macro_Function as
att.

If fcn has no Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute is successfully returned.

Set_function_attributes(Function fcn,Attributes att)

Set_function_attributes(Macro_Function fcn,Attributes att)

Name

Integer Set_function_attributes(Function fcn,Attributes att)

Integer Set_function_attributes(Macro_Function fcn,Attributes att)

Description

For the Function/Macro_Function fcn, set the Attributes for the Function/Macro_Function fcn to
att.

A function return value of zero indicates the attribute is successfully set.

Get_function_attribute(Function fcn,Text att_name,Uid &uid)

Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)

Name

Integer Get_function_attribute(Function fcn,Text att_name,Uid &uid)

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)

Description

From the Function/Macro_Function fcn, get the attribute called att_name and return the attribute
value in uid. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)

Get_function_attribute(Function fcn,Text att_name,Attributes &att)

Name

Integer Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)

Integer Get_function_attribute(Function fcn,Text att_name,Attributes &att)

Description

From the Function/Macro_Function fcn, get the attribute called att_name and return the attribute
value in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 61712d Model Functions

12d Model Programming Manual
Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)

Get_function_attribute(Function fcn,Integer att_no,Uid &uid)

Name

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)

Integer Get_function_attribute(Function fcn,Integer att_no,Uid &uid)

Description

From the Function/Macro_Function fcn, get the attribute with number att_no and return the
attribute value in uid. The attribute must be of type Uid.

If the attribute is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Get_function_attribute(Function fcn,Integer att_no,Attributes &att)

Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)

Name

Integer Get_function_attribute(Function fcn,Integer att_no,Attributes &att)

Integer Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)

Description

From the Function/Macro_Function fcn, get the attribute with number att_no and return the
attribute value in att. The attribute must be of type Attributes.

If the attribute is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully returned.

Note - the Get_attribute_type call can be used to get the type of the attribute with attribute
number att_no.

Set_function_attribute(Function fcn,Text att_name,Uid uid)

Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)

Name

Integer Set_function_attribute(Function fcn,Text att_name,Uid uid)

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)

Description

For the Function/Macro_Function fcn,
 if the attribute called att_name does not exist then create it as type Uid and give it the value
uid.
 if the attribute called att_name does exist and it is type Uid, then set its value to att.

If the attribute exists and is not of type Uid then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.
Page 618 12d Model Functions

Chapter
Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)

Set_function_attribute(Function fcn,Text att_name,Attributes att)

Name

Integer Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)

Integer Set_function_attribute(Function fcn,Text att_name,Attributes att)

Description

For the Function/Macro_Function fcn,
 if the attribute called att_name does not exist then create it as type Attributes and give it the
value att.
 if the attribute called att_name does exist and it is type Attributes, then set its value to att.

If the attribute exists and is not of type Attributes then a non-zero return value is returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_name.

Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)

Set_function_attribute(Function fcn,Integer att_no,Uid uid)

Name

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)

Integer Set_function_attribute(Function fcn,Integer att_no,Uid uid)

Description

For the Function/Macro_Function fcn, if the attribute number att_no exists and it is of type Uid,
then its value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Uid then a non-zero return value is
returned.

A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.

Set_function_attribute(Function fcn,Integer att_no,Attributes att)

Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)

Name

Integer Set_function_attribute(Function fcn,Integer att_no,Attributes att)

Integer Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)

Description

For the Function/Macro_Function fcn, if the attribute number att_no exists and it is of type
Attributes, then its value is set to att.

If there is no attribute with number att_no then nothing can be done and a non-zero return code
is returned.

If the attribute of number att_no exists and is not of type Attributes then a non-zero return value
is returned.
Page 61912d Model Functions

12d Model Programming Manual
A function return value of zero indicates the attribute value is successfully set.

Note - the Get_attribute_type call can be used to get the type of the attribute called att_no.
Page 620 12d Model Functions

Chapter
Plot Parameters
12d Model plot parameters control the look of the different plots that 12d Model can generate.

The Plot_Parameter_File is a 12d Model Variable that can contain plot parameters and the plot
parameter values for a given plot type.

Plot_Parameter_File Types

The valid Plot_Parameter_File types are:

 section_x_plot
 section_long_plot
 melb_water_sewer_long_plot
 pipeline_long_plot
 drainage_long_plot
 drainage_plan_plot
 plot_frame_plot
 rainfall_methods
 design_parameters

Each type of plot has its own set of valid plot parameters.

When a Plot_Parameter_File, say ppf, is first defined, it starts as an empty structure until it has
its type defined using the Create_XX_parameter calls. The ppf then knows what plot parameters
are valid for that type of plot.

The Plot_Parameter_File ppf is then loaded with particular plot parameters and their values by
making Set_Parameter calls and/or reading in data from a plot parameter file stored already disk
(Read_Parameter_File).

When all the required plot parameters have been set, the Plot_Parameter_File ppf can be used
to create a plot (Plot_parameter_file).

The Plot_Parameter_File ppf can also be written out as a disk file so that it can be used in the
future (Write_parameter_file).

Note: note all the available parameters for a particular plot type need to be set for a
Plot_Parameter_File. For most plot parameters, there is a default value used for plotting and that
is used if the parameter is not given a value by a Set_Parameter call.

Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)

Name

Integer Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)

Description

Set the Plot_Parameter_File ppf to be of type ppf_type and clear out any information already
contained in ppf. For the valid types, see Plot_Parameter_File Types .

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

 Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)

Description
Page 621Plot Parameters

12d Model Programming Manual
Set the Plot_Parameter_File ppf to be of type section_long_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type section_x_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type melb_water_sewer_long_plot, and clear out any
information already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type pipeline_long_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type drainage_long_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.
Page 622 Plot Parameters

Chapter
Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type drainage_plan_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type plot_frame_plot, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type rainfall_methods, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Create_design_parameters_parameter_file(Plot_Parameter_File ppf)

Name

Integer Create_design_parameters_parameter_file(Plot_Parameter_File ppf)

Description

Set the Plot_Parameter_File ppf to be of type design_parameters, and clear out any information
already contained in ppf.

Hence if ppf already contained plot information, then all that information will be lost.

A function return value of zero indicates the type is successfully set.

Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer
expand_includes)

Name

Integer Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer expand_includes)

Description
Page 623Plot Parameters

12d Model Programming Manual
Reads from disk a binary plot parameter file of file name filename and load the data into the
Plot_Parameter_File ppf. The type of the Plot_Parameter_File is determined by the file extension
of filename.

If expand_includes is no-zero then any Includes listed in filename will be read in.

Any information that is already in ppf is cleared before loading the data from filename.

A function return value of zero indicates the file was successfully read and loaded into ppf.

Write_parameter_file(Plot_Parameter_File ppf,Text filename)

Name

Integer Write_parameter_file(Plot_Parameter_File ppf,Text filename)

Description

Write out to a file on disk, the information in the Plot_Parameter_File ppf.

The name of the disk file is filename, plus the appropriate extension given by the type of ppf (see
Plot_Parameter_File Types)

A function return value of zero indicates the file was successfully written.

Set_parameter(Plot_Parameter_File ppf,Text parameter_name, Element
parameter_value)

Name

Integer Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Element parameter_value)

Description

Sets the value of the plot parameter parameter_name in the Plot_Parameter_File ppf to be the
Element parameter_value.

For example, setting the plot parameter string_to_plot to be a selected string. Aside - in the plot
parameter file written to the disk, an element is stored with three things - the string name, the
string id and the model id of the model containing the element.

If the plot parameter does not require an Element, then a non-zero return function return value is
returned.

A function return value of zero indicates the parameter value is successfully set.

Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element
¶meter_value)

Name

Integer Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element ¶meter_value)

Description

Get the value for the plot parameter parameter_name in the Plot_Parameter_File ppf and return
it as the Element parameter_value.

If the value for the plot parameter is not of type Element, then a non-zero return function return
value is returned.

A function return value of zero indicates the parameter value is successfully found.

Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text
parameter_value)
Page 624 Plot Parameters

Chapter
Name

Integer Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text parameter_value)

Description

Sets the value of the plot parameter parameter_name in the Plot_Parameter_File ppf to be the
Text parameter_value.

For example, setting the plot parameter box_titles_x to have the value 24.5

Note - even though a plot parameter file may be used as a real number or an integer, it is stored
in the Plot_Parameter_File as a Text.

A function return value of zero indicates the parameter value is successfully set.

Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text
¶meter_value)

Name

Integer Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text ¶meter_value)

Description

so get back as text and you need to decode it.

Get the value for the plot parameter parameter_name in the Plot_Parameter_File ppf and return
it as the Text parameter_value.

Note - if the parameter value is to be used as say an Integer, then the returned Text
parameter_value will need to be decoded.

If the value for the plot parameter is not of type Text, then a non-zero return function return value
is returned.

A function return value of zero indicates the parameter value is successfully found.

Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)

Name

Integer Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)

Description

Check to see if a plot parameter of name parameter_name exists in the Plot_Parameter_File ppf.

returns no-zero if exists

A non-zero function return value indicates that an plot parameter exists.

Warning this is the opposite of most 4DML function return values.

Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)

Name

Integer Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)

Description

Remove the plot parameter of name parameter_name and its value from the
Plot_Parameter_File ppf.

Note - the Plot_Parameter_File ppf does not necessarily contain values for all the possible plot
parameters that are available for a given Plot_Parameter_File. Many parameters can have
default values which are used if the plot parameter is not set.
Page 625Plot Parameters

12d Model Programming Manual
A function return value of zero indicates the parameter was successfully removed.

Plot_parameter_file(Plot_Parameter_File ppf)

Name

Integer Plot_parameter_file(Plot_Parameter_File ppf)

Description

Plot the Plot_Parameter_File ppf.

Note - ppf needs to contain all the appropriate information on where the plot is plotted to.

A function return value of zero indicates the plot was successfully created

Plot_parameter_file(Text file)

Name

Integer Plot_parameter_file(Text file)

Description

Plot the plot parameter file in the binary plot parameter disk file name.

Note - the file needs to contain all the appropriate information on where the plot is plotted to.

A function return value of zero indicates the plot was successfully created.

Plot_ppf_file(Text name)

Name

Integer Plot_ppf_file(Text name)

Description

Plot the plot parameter file in the ascii plot parameter disk file name.

Note - the file needs to contain all the appropriate information on where the plot is plotted to.

A function return value of zero indicates the plot was successfully created.
Page 626 Plot Parameters

Chapter
Undos
12d Model has an Undo system which allows operations to be undone (option Edit =>Undo or
using <Ctrl>-Z) and the Undo macro calls gives access to the 12d Model Undo system.

For an operation to be undone, enough information must be stored to allow for the operation to
be reversed.

For example, if an Element elt is created, then the undo of this operation it to delete elt.

Or if an Element original is modified to create a new Element changed, then the original
element and the new element both need to be recorded so that the undo operation can replace
the original Element.

To correctly create items for undos, 4DML has an Undo structure and calls to create the Undo
structure with the appropriate information for an undo. Creating the Undo also automatically adds
it to the 12d Model Undo system.

Creating an undo for even a simple operation, may need a number of pieces of information
stored.

For example, if you were splitting a string into two pieces and only leaving the two pieces, for an
undo to work, you would need to have a copy of the original string that is being split (since the
macro would delete it after is did the split), plus information about the two strings that are created
by the split. This is because the undo must find and delete the two strings created by the split,
and then bring the original string back.

So the calls needed would be

Undo a = Add_undo_delete("deleted string",original_string,1);
Undo b = Add_undo_add("split 1",split_1);
Undo c = Add_undo_add("split 2",split_2);

where original_string is the string what is split and split_1 and split_2 are the two pieces that are
created by the split (See Functions to Create Undos for the documentation on each call).

However, each call automatically adds the operation to the 12d Model Undo system so making
the three calls actually places three items on the 12d Model Undo system with the text "Deleted
string", "split 1" and "split 2".

So as it stands, to make the undo happen would need three Edit =>Undo’s, or three <ctrl>-z’s.

To wrap the three items into one item on the 12d Model Undo system, you need to use a 4DML
Undo_List.

Basically you just add the three items that are to be done as one 12d Model Undo onto a
Undo_List, add the three Undos to the Undo_list, and then add the Undo_List to the 12d Model
Undo system:

Undo_List ul;
Append (a,ul);
Append (b,ul);
Append (c,ul);
Add_undo_list ("split",ul);

Note: Add_undo_list adds the Undo_List with three items to the 12d Model Undo system and
gives it the name "split". At the same time, it removes the three separate Undos a, b, c from the
12d Model Undo system so only the item called "split" is left on the 12d Model Undo system.

Important Note: Leaving the three Undo’s a, b, c without combining them is a great way of
Page 627Undos

12d Model Programming Manual
debugging your creation of an 12d Model Undo. You will see them as three separate items and
they can be undone one at a time to see what is going on.

For information on the Undo function calls:

See Functions to Create Undos
See Functions for a 4DML Undo_List

Functions to Create Undos

Add_undo_add(Text name,Element elt)

Name

Undo Add_undo_add(Text name,Element elt)

Description

Create an Undo from the Element elt and give it the name name.

The Undo is automatically added to the 12d Model Undo system.

Return the created Undo as the function return value.

This is telling the 12d Model Undo system that a new element has been created in 12d Model.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

Add_undo_add(Text name,Dynamic_Element de)

Name

Undo Add_undo_add(Text name,Dynamic_Element de)

Description

Create an Undo from the Dynamic_Element de and give it the name name.

The Undo is automatically added to the 12d Model Undo system.

Return the created Undo as the function return value.

This is telling the Undo system that a list of new element (stored in the Dynamic_Element de)
has been created in 12d Model.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

Add_undo_change(Text name,Element original,Element changed)

Name

Undo Add_undo_change(Text name,Element original,Element changed)

Description

Create an Undo from a copy of the original Element original and the modified Element
changed, and give it the name name.

The Undo is automatically added to the 12d Model Undo system.

Return the created Undo called name as the function return value.

The Element original should not exist in a Model. The Element changed does exist in a Model.
Page 628 Undos

Chapter
This is telling the Undo system that an Element original has been modified to create the Element
changed. If the Model for original is ever needed then the parent structure of original can be
used to get it.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

 Add_undo_delete(Text name,Element original,Integer make_copy)

Name

Undo Add_undo_delete(Text name,Element original,Integer make_copy)

Description

If make_copy is non zero, create a copy of the Element original and transfer the Uid from
original to the copy.

If make_copy is zero, then a reference to original is use. Warning - make_copy = 0 should
never be used because if original is then deleted in 12d Model, the Undo list could be corrupted.

The Undo is given the name name.

The Undo is automatically added to the 12d Model Undo system.

Return the created Undo called name as the function return value.

This is telling the Undo system that an Element original has been deleted.

Note: name is the text that appears when the Undo is displayed in the 12d Model Uno List.

Add_undo_range(Text name,Integer id1,Integer id2)

Name

Undo Add_undo_range(Text name,Integer id1,Integer id2)

Description

Important note - Id’s are no longer used is 12d Model and have been replaced by Uids. This
macro has been deprecated (i.e. won’t exist) unless the macro is compiled with a special flag.
This function has been replaced by Undo Add_undo_range(Text name,Uid id1,Uid id2).

Create an Undo that consists of the id range form 1d1 to id2.

The Undo is given the name name.

The Undo is automatically added to the 12d Model Undo system.

Return the created Undo called name as the function return value.

This is telling the Undo system that all the Elements in the id range from Id1 to Id2 have been
created.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

Add_undo_range(Text name,Uid id1,Uid id2)

Name

Undo Add_undo_range(Text name,Uid id1,Uid id2)

Description

Create an Undo that consists of the Uid range form id1 to id2.

The Undo is given the name name.
Page 629Undos

12d Model Programming Manual
The Undo is automatically added to the 12d Model Undo system.

Return the created Undo called name as the function return value.

This is telling the Undo system that all the Elements in the Uid id range from Id1 to Id2 have been
created.

Note: name is the text that appears when the Undo is displayed in the 12d Model Undo List.

For information on adding/removing Undo’s to an internal 4DML list and how it interacts with the 12d
Model Undo system, go to the next section Functions for a 4DML Undo_List

Functions for a 4DML Undo_List

Get_number_of_items(Undo_List &undo_list,Integer &count)

Name

Integer Get_number_of_items(Undo_List &undo_list,Integer &count)

Description

Get the number of items in the Undo_List undo_list and return the number in count.

A function return value of zero indicates the number was successfully returned.

Get_item(Undo_List &undo_list,Integer n,Undo &undo)

Name

Integer Get_item(Undo_List &undo_list,Integer n,Undo &undo)

Description

Get the n’th item from the Undo_List undo_list and return the item (which is an Undo) as undo.

A function return value of zero indicates the Undo was successfully returned.

Set_item(Undo_List &undo_list,Integer n,Undo undo)

Name

Integer Set_item(Undo_List &undo_list,Integer n,Undo undo)

Description

Set the n’th item in the Undo_List undo_list to be the Undo undo.

A function return value of zero indicates the Undo was successfully set.

Append(Undo undo,Undo_List &undo_list)

Name

Integer Append(Undo undo,Undo_List &undo_list)

Description

Append the Undo undo to the Undo_List undo_list.
Page 630 Undos

Chapter
That is, the Undo undo is added to the end of the Undo_List and so the number of items in the
Undo_List is increased by one.

A function return value of zero indicates the Undo was successfully appended.

Append(Undo_List list,Undo_List &to_list)

Name

Integer Append(Undo_List from_list,Undo_List &to_list)

Description

Append the Undo_list list to the Undo_List to_list.

A function return value of zero indicates the Undo_List was successfully appended.

Null(Undo_List &undo_list)

Name

Integer Null(Undo_List &undo_list)

Description

Removes and nulls all the Undo’s from the Undo_list undo_list and sets the number of items in
undo_list to zero.

That is, all the items on the Undo_List are nulled and the number of items in the Undo_List is set
back to zero.

A function return value of zero indicates the Undo_List was successfully nulled.

Add_undo_list(Text name,Undo_List list)

Name

Undo Add_undo_list(Text name,Undo_List list)

Description

Adds the Undo_List list to the 12d Model Undo system and gives it the name name.

At the same time, it automatically removes each of the Undo’s in list from the 12d Model Undo
system. So all the items in list are removed from the 12d Model Undo system and replaced by
the one item called name.
Page 631Undos

12d Model Programming Manual
ODBC Macro Calls
The ODBC (Open Database Connectivity) macro calls allow a macro to interface with external
data sources via ODBC. These data sources include any ODBC enabled database or
spreadsheets such as Excel. This is particularly useful for custom querying of GIS databases.

Terminology
s A Connection refers to a connection to a known data source.

s A Query refers to an operation against the database (See Query Types for more information)

s A Query Condition is a set of conditions applied against a query to constrain the information being
returned.

s A Transaction refers to an atomic, discrete operation that has a known start and end. Any changes to
your data source will not apply until the transaction is committed.

s A Parameter refers to a known keyword pair for supplied values, which is important for security
purposes

See Connecting to an external data source
See Querying against a data source
See Navigating results with Database_Result
See Insert Query
See Update Query
See Delete Query
See Manual Query
See Query Conditions
See Transactions
See Parameters

Connecting to an external data source
Before running queries, a connection must be made to the database. It is also good practise to
close the connection when you are finally finished with it.

Create_ODBC_connection()

Name

Connection Create_ODBC_connection()

Description

Creates an ODBC connection object, which may then by used to connect to a database.

Connect(Connection connection,Text connection_string,Text user,Text password)

Name

Integer Connect(Connection connection,Text connection_string,Text user,Text password)

Description

This call attempts to connect to an external data source, with a username and password. A
connection string must also be supplied. This is data source specific and ODBC driver specific.
For more information on connection strings, see the vendor of the data source or data source
driver.

This call returns 0 if successful.
Page 632 ODBC Macro Calls

Chapter
Connect(Connection connection,Text connection_string)

Name

Integer Connect(Connection connection, Text connection_string)

Description

This call attempts to connect to an external data source. A connection string must also be
supplied. This is data source specific and ODBC driver specific. For more information on
connection strings, see the vendor of the data source or data source driver.

This call returns 0 if successful.

Close(Connection connection)

Name

Integer Close(Connection connection)

Description

This call determines if there was an error performing an operation against the connection. This
call will return 1 if there was an error.

Has_error(Connection connection)

Name

Integer Has_error(Connection connection)

Description

This call will check if an error has occurred as the result of an operation. Has_error should
always be called after any operation. If there is an error, Get_last_error can be used to retrieve
the result.

This call will return 0 if there is no error, and 1 if there is.

Get_last_error(Connection connection,Text &status,Text &message)

Name

Integer Get_last_error(Connection connection,Text &status,Text &message)

Description

This call will get the last error, if there is one, and retrieve the status and message of the error.
This call will return 0 if successful.

Return to ODBC Macro Calls

Querying against a data source
Once connected, you may query the data source in a number of ways. Queries are typically
implemented in SQL (the Structured Query Language). To make it easier to use, the macro
language provides an interface to building up queries without having to use SQL. There are
several types of query building objects.

The query is not run until the appropriate Execute function is called.
Page 633ODBC Macro Calls

12d Model Programming Manual
s Select_Query - Used to retrieve information from the data source

s Insert_Query - Used to insert new information into the data source

s Update_Query - Used to update existing information in the data source

s Delete_Query - Used to delete information from a data source

A Manual_Query also exists, if you wish to define the SQL yourself.

Note that a query execution may return as successful even if no data was changed.

Select Query
Select queries are used to retrieve information, with or without constraints, from the data source.
Select queries are defined by tables and columns, from which to retrieve results, and optional
query conditions to constrain them.

Create_select_query()

Name

Select_Query Create_select_query()

Description

Creates and returns a select query object.

Add_table(Select_Query query,Text table_name)

Name

Integer Add_table(Select_Query query,Text table_name)

Description

This call adds a table of a given name to the supplied query. The query will look at this table
when retrieving data.

This call returns 0 if successful.

Add_result_column(Select_Query query,Text table,Text column_name)

Name

Integer Add_result_column(Select_Query query,Text table,Text column_name)

Description

This call adds a result column that belongs to a given table to the query. Note that the table must
already be added for this to work. The query will retrieve that column from the supplied table
when it runs.

The call returns 0 if successful.

Add_result_column(Select_Query query,Text table,Text column_name,Text
 return_as)
Page 634 ODBC Macro Calls

Chapter
Name

Integer Add_result_column(Select_Query query,Text table,Text column_name,Text return_as)

Description

This call adds a result column that belongs to a given table to the query. Note that the table must
already be added for this to work. The query will retrieve that column from the supplied table
when it runs, but in the results it will be called by the name you supply.

The call returns 0 if successful.

Add_order_by(Select_Query query,Text table_name,Text column_name,Integer
 sort_ascending)

Name

Integer Add_order_by(Select_Query query,Text table_name,Text column_name,Integer sort_ascending)

Description

This call will instruct the query to order the results for a column in a table. Set sort_ascending to
1 if you wish the results to be sorted in ascending order.

This call returns 0 if successful.

Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)

Name

Integer Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)

Description

This call will set an upper limit on the number of results to read, as well as defining the start index
of the returned results. This is useful when you have many results that you wish to return in
discrete sets or pages.

This call returns 0 if successful.

Add_group_by(Select_Query query,Text table_name,Text column_name)

Name

Integer Add_group_by(Select_Query query,Text table_name,Text column_name)

Description

This call will group results by a given table and column name. This is useful if your data provider
allows aggregate functions for your queries.

This call returns 0 if successful.

Add_condition(Select_Query query,Query_Condition condition)

Name

Integer Add_condition(Select_Query query,Query_Condition condition)

Description

This call will add a query condition to a select query. A query condition will allow you to constrain
your results to defined values. See the section Query Conditions on how to create and defined
Query Conditions.

This call returns 0 if successful.
Page 635ODBC Macro Calls

12d Model Programming Manual
 Execute(Connection connection,Select_Query query)

Name

Integer Execute(Connection connection,Select_Query query)

Description

This call will execute a created select query for a scalar value. The return value of the call will be
the result of the query.

Execute(Connection connection,Select_Query query,Database_Result &result)

Name

Integer Execute(Connection connection,Select_Query query,Database_Result &result)

Description

This call will execute a created select query and return a set of results in the result argument.
See the section on Navigating results with Database_Result for more information on the
Database_Result object.

This call will return 0 if successful.

Return to ODBC Macro Calls

Navigating results with Database_Result
If a select or manual query returns results, they will be stored in a Database_Result object. A
Database_Result may be visualised as a table of rows and columns. The Database_Result can
be used to access these results in a sequential fashion, in a forward only direction.

Move_next(Database_Result result)

Name

Integer Move_next(Database_Result result)

Description

This call moves a database result to the next row. Depending on your provider, you may need to
call this before reading the first row.

This call will return 0 if the Database_Result was able to move to the next row.

Close(Database_Result result)

Name

Integer Close(Database_Result result)

Description

This call will close a database result. This is generally good practise as your data provider may
not allow more than one Database_Result to exist at one time.

This call will return 0 if successful.
Page 636 ODBC Macro Calls

Chapter
Get_result_column(Database_Result result,Integer column,Text &res)

Name

Integer Get_result_column(Database_Result result,Integer column,Text &res)

Description

This call will retrieve a text value from a Database_Result, at the current index as given by
column. The value will be stored in res.

This call will return 0 if successful.

Get_result_column(Database_Result result,Integer column,Integer &res)

Name

Integer Get_result_column(Database_Result result,Integer column,Integer &res)

Description

This call will retrieve an Integer value from a Database_Result, at the current index as given by
column. The value will be stored in res.

This call will return 0 if successful.

Get_result_column(Database_Result result,Integer column,Real &res)

Name

Integer Get_result_column(Database_Result result,Integer column,Real &res)

Description

This call will retrieve a Real value from a Database_Result, at the current index as given by
column. The value will be stored in res.

This call will return 0 if successful.

Get_time_result_column(Database_Result result,Integer column,Integer &time)

Name

Integer Get_time_result_column(Database_Result result,Integer column,Integer &time)

Description

This call will retrieve a timestamp, as an Integer value, from a Database_Result, at the current
index as given by column. The value will be stored in res.

This call will return 0 if successful.

Get_result_column(Database_Result result,Text column,Text &res)

Name

Integer Get_result_column(Database_Result result,Text column,Text &res)

Description

This call will retrieve a text value from a Database_Result, from the column named by the
argument column. The value will be stored in res.

This call will return 0 if successful.

Get_result_column(Database_Result result,Database_Result result,Text column,
 Integer &res)
Page 637ODBC Macro Calls

12d Model Programming Manual
Name

Integer Get_result_column(Database_Result result,Database_Result result,Text column,Integer &res)

Description

This call will retrieve an Integer value from a Database_Result, from the column named by the
argument column. The value will be stored in res.

This call will return 0 if successful.

Get_result_column(Database_Result result,Text column,Real &res)

Name

Integer Get_result_column(Database_Result result,Text column,Real &res)

Description

This call will retrieve a Real value from a Database_Result, from the column named by the
argument column. The value will be stored in res.

This call will return 0 if successful.

 Get_time_result_column(Database_Result result,Text column,Integer &time)

Name

Integer Get_time_result_column(Database_Result result,Text column,Integer &time)

Description

This call will retrieve a timestamp value, as an Integer, from a Database_Result, from the
column named by the argument column. The value will be stored in res.

This call will return 0 if successful.

Return to ODBC Macro Calls

Insert Query

An insert query is used to insert new data into a data provider. Typically, this will insert one row of
data into one table at a time.

Create_insert_query(Text table)

Name

Insert_Query Create_insert_query(Text table)

Description

This call creates and returns an insert query object. The insert will be applied against the value
supplied in table.

 Add_data(Insert_Query query,Text column_name,Integer value)

Name

Integer Add_data(Insert_Query query,Text column_name,Integer value)

Description

This call will add Integer data to be inserted to a created Insert_Query when it is executed. The
Page 638 ODBC Macro Calls

Chapter
data will be inserted into the column named by the column_name argument.

This call returns 0 if successful.

Add_data(Insert_Query query,Text column_name,Text value)

Name

Integer Add_data(Insert_Query query,Text column_name,Text value)

Description

This call will add Text data to be inserted to a created Insert_Query when it is executed. The
data will be inserted into the column named by the column_name argument.

This call returns 0 if successful.

Add_data(Insert_Query query,Text column_name,Real value)

Name

Integer Add_data(Insert_Query query,Text column_name,Real value)

Description

This call will add Real data to be inserted to a created Insert_Query when it is executed. The
data will be inserted into the column named by the column_name argument.

This call returns 0 if successful.

Add_time_data(Insert_Query query,Text column_name,Integer time)

Name

Integer Add_time_data(Insert_Query query,Text column_name,Integer time)

Description

This call will add timestamp data, stored as an Integer value, to be inserted to a created
Insert_Query when it is executed. The data will be inserted into the column named by the
column_name argument.

This call returns 0 if successful.

Execute(Connection connection,Insert_Query query)

Name

Integer Execute(Connection connection,Insert_Query query)

Description

This call will execute a created Insert_Query against the data provider to insert some new data.

This call will return 0 if successful.

Return to ODBC Macro Calls

Update Query

An update query is used to update existing data in a table in a data provider. One or more rows
Page 639ODBC Macro Calls

12d Model Programming Manual
may be updated by using query conditions to constrain which rows the update should be applied
against.

Create_update_query(Text table)

Name

Update_Query Create_update_query(Text table)

Description

This call creates and returns an Update_Query. The update query will be applied against the
table given by the table argument.

Add_data(Update_Query query,Text column_name,Integer value)

Name

Integer Add_data(Update_Query query,Text column_name,Integer value)

Description

This call will add Integer data for a column update, when the Update_Query is executed. The
data will be updated for the column named by the column_name argument.

This call returns 0 if successful.

Add_data(Update_Query query,Text column_name,Text value)

Name

Integer Add_data(Update_Query query,Text column_name,Text value)

Description

This call will add Text data for a column update, when the Update_Query is executed. The data
will be updated for the column named by the column_name argument.

This call returns 0 if successful.

Add_data(Update_Query query,Text column_name,Real value)

Name

Integer Add_data(Update_Query query,Text column_name,Real value)

Description

This call will add Real data for a column update, when the Update_Query is executed. The data
will be updated for the column named by the column_name argument.

This call returns 0 if successful.

Add_time_data(Update_Query query,Text column_name,Integer time)

Name

Integer Add_time_data(Update_Query query,Text column_name,Integer time)

Description

This call will add timestamp data, stored as an Integer value, for a column update, when the
Update_Query is executed. The data will be updated for the column named by the
column_name argument.

This call returns 0 if successful.
Page 640 ODBC Macro Calls

Chapter
Add_condition(Update_Query query,Query_Condition condition)

Name

Integer Add_condition(Update_Query query,Query_Condition condition)

Description

This call will add a created Query_Condition to an update query. Using a Query_Condition
enables the operation to be constrained to a number of rows, rather than applying to an entire
table.

This call will return 0 if successful.

Execute(Connection connection,Update_Query query)

Name

Integer Execute(Connection connection,Update_Query query)

Description

This call will execute a created Update_Query against the data provider to update existing data.

This call will return 0 if successful.

Return to ODBC Macro Calls

Delete Query

A delete query will delete data from a table in a data provider. It should always be constrained
using a Query Condition, or you may delete all data from a table.

Create_delete_query(Text table)

Name

Delete_Query Create_delete_query(Text table)

Description

This call will create and return a Delete_Query. When it is executed, it will delete data from the
table named by the table argument.

Add_condition(Delete_Query query,Query_Condition condition)

Name

Integer Add_condition(Delete_Query query,Query_Condition condition)

Description

This call will add a Query_Condition to a Delete_Query. Adding a Query_Condition will allow
you to constrain which rows of data are deleted from the table.

This call will return 0 if successful.

Execute(Connection connection,Delete_Query query)

Name

Integer Execute(Connection connection,Delete_Query query)
Page 641ODBC Macro Calls

12d Model Programming Manual
Description

This call will execute a created Delete_Query against the data provider to delete existing data.

This call will return 0 if successful.

Return to ODBC Macro Calls

Manual Query

Using a manual query gives you direct access to the underlying SQL used by most data
providers. If you are familiar with SQL, it may be faster for you to use this method. This also gives
you access to Parameters, for secure and sanitized inputs. See the section on Parameters for
more information.

 Create_manual_query(Text query_text)

Name

Manual_Query Create_manual_query(Text query_text)

Description

This call will create a new Manual_Query. The SQL for the query must be supplied in the
query_text argument.

Get_parameters(Manual_Query query,Parameter_Collection parameters)

Name

Integer Get_parameters(Manual_Query query,Parameter_Collection parameters)

Description

This call will retrieve the set of Parameters that a Manual Query uses. Parameters are not
required but provide greater security when using user input. See the section on Parameters for
more details.

This call will return 0 if successful.

Execute(Connection connection,Manual_Query query)

Name

Integer Execute(Connection connection,Manual_Query query)

Description

This call will execute a created Manual_Query against the data provider to perform a custom
operation.

This call will return 0 if successful.

Execute(Connection connection,Manual_Query query,Database_Result &result)

Name

Integer Execute(Connection connection,Manual_Query query,Database_Result &result)

Description
Page 642 ODBC Macro Calls

Chapter
This call will execute a created Manual_Query against the data provider to perform a custom
operation. If the Manual Query returns results, they will be stored in the result argument.

This call will return 0 if successful.

Return to ODBC Macro Calls

Query Conditions

A query condition constrains the results of a select, update or delete query. They are generally
optimised and much more efficient that attempting to cull down a large result set on your own, as
the operation is performed by the data provider. For those familiar with SQL, a Query Condition
helps build up the 'WHERE' clause in an SQL statement.

One or more query conditions can be used to constrain a query.

The following Query Conditions are available:

s A value condition - Constrains by checking if a column value matches a constant, user defined
value

s Column match condition - Performs an 'explicit join'. If you are retrieving results from more than
one table, this can be used to determine which rows from each table are related to one another. Typ-
ically you would match id columns from each table.

s Value in list condition - Checks if a column value is inside a list of values

s Value in sub query - Checks if a column value is inside the result of another select query

s Manual condition - A manual condition, defined by SQL. This gives greater flexibility and pro-
vides access to the Parameter functions, for security and sanitization of inputs.

Value and Column match conditions allow various operators to be used.

These operators are defined below:

Match_Equal = 0
Match_Greater_Than = 1
Match_Less_Than = 2
Match_Greater_Than_Equal = 3
Match_Less_Than_Equal = 4
Match_Not_Equal = 5
Match_Like = 6
Match_Not_Like = 7

Create_value_condition(Text table_name,Text column_name,Integer operator,Text
value)

Name

Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Text
value)

Description

This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Text value. See the list of operators for available values of operator.

When executed, the data provider will check that the value in column colum_name inside table
Page 643ODBC Macro Calls

12d Model Programming Manual
table_name matches (as appropriate for the given operator) against the supplied value.

 Create_value_condition(Text table_name,Text column_name,Integer operator,
 Integer value)

Name

Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Integer
value)

Description

This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Integer value. See the list of operators for available values of operator.

When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.

 Create_value_condition(Text table_name,Text column_name,Integer operator,
 Real value)

Name

Query_Condition Create_value_condition(Text table_name,Text column_name,Integer operator,Real
value)

Description

This call creates and returns a Value Condition Query Condition for a given table, column,
operation and Real value. See the list of operators for available values of operator.

When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.

 Create_time_value_condition(Text table_name,Text column_name,Integer
 operator,Integer value)

Name

Query_Condition Create_time_value_condition(Text table_name,Text column_name,Integer
operator,Integer value)

Description

This call creates and returns a Value Condition Query Condition for a given table, column,
operation and timestamp value, as defined by an Integer. See the list of operators for available
values of operator.

When executed, the data provider will check that the value in column colum_name inside table
table_name matches (as appropriate for the given operator) against the supplied value.

Create_column_match_condition(Text left_table,Text left_column,Integer
 operator,Text right_table,Text right_column)

Name

Query_Condition Create_column_match_condition(Text left_table,Text left_column,Integer operator,Text
right_table,Text right_column)

Description

This call will create and return a Column Match Query Condition to match two columns in two
tables against each other, using a supplied operator.

When executed, the data provider will check that the left_column in table left_table matches (as
appropriate for the given operator) against the right_column in table right_table.

Create_value_in_sub_query_condition(Text table_name,Text column_name,
 Integer not_in,Select_Query sub_query)
Page 644 ODBC Macro Calls

Chapter
Name

Query_Condition Create_value_in_sub_query_condition(Text table_name,Text column_name,Integer
not_in,Select_Query sub_query)

Description

This call will create and return a Value In Sub Query Query_Condition, to match the value of a
column against the results of another query.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the results of the Select Query, sub_query.

 Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Integer values)

Name

Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Integer values)

Description

This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of integers.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.

Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Text values)

Name

Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Text values)

Description

This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of Text values.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.

Create_value_in_list_condition(Text table_name,Text column_name,Integer
 not_in,Dynamic_Real values)

Name

Query_Condition Create_value_in_list_condition(Text table_name,Text column_name,Integer
not_in,Dynamic_Real values)

Description

This call will create and return a Value In List Query_Condition, to see if the value of a column is
in a list of Real values.

When executed, the data provider will check that the value in column column_name in table
table_name is or is not inside (as defined by not_in) the list defined by values.

Create_manual_condition(Text sql)

Name

Manual_Condition Create_manual_condition(Text sql)
Page 645ODBC Macro Calls

12d Model Programming Manual
Description

This call will create a Manual Query_Condition. The operation of the manual condition is totally
defined by the SQL fragment defined in argument sql.

 Add_table(Manual_Condition manual,Text table)

Name

Integer Add_table(Manual_Condition manual,Text table)

Description

This call will add a table to be used by a Manual Condition. This is required when using
Parameters.

This call will return 0 if successful.

Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)

Name

Integer Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)

Description

This call will add a table to be used by a Manual Condition. This is required when using
Parameters. See the section on Parameters for more information.

This call will return 0 if successful.

Return to ODBC Macro Calls

Transactions

A transaction is an atomic operation. While a transaction is running against a connection, a
series of queries can be made and executed. Using a transaction, the final result (updates,
deletes, inserts) will not actually be applied until the transaction is committed. This gives the user
the opportunity to rollback the changes a transaction has made if they are no longer required.

To use a transaction, create it using Create_Transaction.

You must then call Begin_Transaction.

Create and execute all your queries.

Finally, choose to either commit it (Commit_transaction) or roll it back (Rollback_transaction)

 Create_transaction(Connection connection)

Name

Transaction Create_transaction(Connection connection)

Description

This call creates and returns a transaction object for a given Connection.

Begin_transaction(Transaction transaction)

Name
Page 646 ODBC Macro Calls

Chapter
Integer Begin_transaction(Transaction transaction)

Description

This call begins a new transaction. It will return 0 if successful.

Commit_transaction(Transaction transaction)

Name

Integer Commit_transaction(Transaction transaction)

Description

This call will commit the operations performed inside a transaction to the data provider. The call
will return 0 if successful.

 Rollback_transaction(Transaction transaction)

Name

Integer Rollback_transaction(Transaction transaction)

Description

This call will cancel or rollback the operations performed inside a transaction from the data
provider. The call will return 0 if successful.

Return to ODBC Macro Calls

Parameters

Parameters can be used for extra security. When you are working with user input to your queries,
you may wish to consider using parameters to 'sanitize' them. If you are working with untrusted
users, users may be able to use the SQL to perform malicious queries against your data
provider.

To prevent this from happening, it is generally recommended that you use Parameters.

When you are using parameters, instead of specifying column names in your Manual Query or
Manual Query Condition, simply use a ? instead.

You should then add your parameters for those columns in the same order.

To start, you must retrieve the Parameter_Collection using the appropriate Get_Parameters
function for either a Manual_Query or Manual_Condition.

Add_parameter(Parameter_Collection parameters,Integer value)

Name

Integer Add_parameter(Parameter_Collection parameters,Integer value)

Description

This call will add a new Integer parameter to a Parameter_Collection.

This will return 0 if successful.

Add_parameter(Parameter_Collection parameters,Text value)
Page 647ODBC Macro Calls

12d Model Programming Manual
Name

Integer Add_parameter(Parameter_Collection parameters,Text value)

Description

This call will add a new Text parameter to a Parameter_Collection.

This will return 0 if successful.

Add_parameter(Parameter_Collection parameters,Real value)

Name

Integer Add_parameter(Parameter_Collection parameters,Real value)

Description

This call will add a new Real parameter to a Parameter_Collection.

This will return 0 if successful.

Add_time_parameter(Parameter_Collection parameters,Integer value)

Name

Integer Add_time_parameter(Parameter_Collection parameters,Integer value)

Description

This call will add a new timestamp parameter, from an Integer value, to a
Parameter_Collection.

This will return 0 if successful.
Page 648 ODBC Macro Calls

Chapter
Macro Console
Before Panels where introduced into the 12d Model macro Language, a macro console panel
was the only method for writing information to the user, and soliciting answers from the user.

The Macro Console is no longer used in newer macros.

When a macro is invoked, a macro console panel is placed on the screen.

The macro console panel has three distinct areas
 information/error message area
 prompt message area
 user reply area.

and optionally, three buttons, restart, abort and finish.

Using functions in this section, information can be written to the information/error message
area and the prompt message area, and user input read in from the user reply area of the
macro console panel.

Some of the functions have pop-ups defined (of models, tins etc.) so that information can be
selected from pop-ups rather than being typed in by the user.

Also the information/error message area is used to display progress information. This
information can be standard 4DML messages or user defined messages.

Set_message_mode(Integer mode)

Name

Integer Set_message_mode(Integer mode)

Description

When macros are running, progress information can be displayed in the information/error
message area. Most 4DML computational intensive functions have standard messages that can
be displayed. For example, when triangulating, regular messages showing the number of points
triangulated can be displayed.

The user can have the standard 4DML messages displayed, or replace them at any time by a
user defined message (set using the function Set_message_text).

If mode is set to

0 the user defined message
1 the standard 4DML message
is displayed in the information/error message area.

A function return value of zero indicates the mode was successfully set.

Set_message_text(Text msg)

Name

void Set_message_text(Text msg)

Description

Set the user defined information message to msg. This is a prefix for the ticker "/".

When the message mode is set to 0 (using the function Set_message_mode), msg is displayed
in the information/error message area. The message msg is followed by a rotating ticker (|/-\)
to indicate to the user that the macro is running.

A function return value of zero indicates the message was successfully set.
Page 649Macro Console

12d Model Programming Manual
Prompt(Text msg)

Name

void Prompt(Text msg)

Description

Print the message msg to the prompt message area of the macro console

A function return value of zero indicates success.

Prompt(Text msg,Text &ret)

Name

Integer Prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the console panel.

That is, write out the message msg and get a Text reply from the console panel. The reply is
terminated by a <CR> or <enter>.

The reply is returned in Text ret.

A function return value of zero indicates the text is returned successfully.

Prompt(Text msg,Integer &ret)

Name

Integer Prompt(Text msg,Integer &ret)

Description

Print the message msg to the prompt message area and then read back an Integer from the
user reply area of the macro console panel.

That is, write out the message msg and get an integer reply from the console panel. The reply is
terminated by a <CR> or <enter>.

The reply is returned in Integer ret.

A function return value of zero indicates that the Integer was returned successfully.

Prompt(Text msg,Real &ret)

Name

Integer Prompt(Text msg,Real &ret)

Description

Print the message msg to the prompt message area and then read back a Real from the user
reply area of the macro console panel. The reply is terminated by a <CR> or <enter>.

The reply is returned in Real ret.

A function return value of zero indicates that the Real was returned successfully.

Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)

Name

Integer Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)
Page 650 Macro Console

Chapter
Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, the list of text given in the Text array choices is placed in
a pop-up. If one of the choices is selected from the pop-up (using LB), the choice is placed in the
user reply area.

The reply, either typed or selected from the choice pop-up, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Choice_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a choice
pop-up.

The reply is returned in Text ret.

A function return value of zero indicates the text is returned successfully.

Colour_prompt(Text msg,Text &ret)

Name

Integer Colour_prompt(Text msg,Text &ret)

Description

Print the message msg to the macro console and then read back a Text from the console panel.

If RB is pressed in the user reply area, a list of all existing colours is placed in a pop-up. If a
colour is selected from the pop

-up (using LB), the colour name is placed in the user reply area.

The reply, either typed or selected from the colour pop-up, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Colour_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a colour
pop-up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Error_prompt(Text msg)

Name

Integer Error_prompt(Text msg)

Description

Print the message msg to the information/error message area of the macro console, and
writes press return to continue to the prompt message area and then waits for an <enter> in the
user reply area before the macro continue.

A function return value of zero indicates the function terminated successfully.

File_prompt(Text msg,Text key,Text &ret)

Name

Integer File_prompt(Text msg,Text key,Text &ret)

Description
Page 651Macro Console

12d Model Programming Manual
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all files in the current area which match the wild
card key (for example, *.dat) is placed in a pop-up. If a file is selected from the pop-up (using
LB), the file name is placed in the user reply area.

The reply, either typed or selected from the file pop-up, must be terminated by a <CR> or <enter>
for the macro to continue.

Hence the File_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a file pop-
up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Model_prompt(Text msg,Text &ret)

Name

Integer Model_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing models is placed in a pop-up. If a
model is selected from the pop-up (using LB), the model name is placed in the user reply area.

The reply, either typed or selected from the model pop-up, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Model_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a model
pop

-up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Template_prompt(Text msg,Text &ret)

Name

Integer Template_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing templates is placed in a pop-up. If a
template is selected from the pop-up (using LB), the template name is placed in the user reply
area.

The reply, either typed or selected from the template popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Template_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a template
popup.

The reply is returned in Text ret.
Page 652 Macro Console

Chapter
A function return value of zero indicates the text is returned successfully.

Tin_prompt(Text msg,Text &ret)

Name

Integer Tin_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing templates is placed in a pop-up. If a
tin is selected from the pop-

up (using LB), the Tin name is placed in the user reply area.

The reply, either typed or selected from the Tin popup, must be terminated by a <CR> or <enter>
for the macro to continue.

Hence the Tin_prompt writes out the message msg and gets a Text reply from the console panel.
The reply is terminated by a <CR> or <enter>. The reply may be selected from a tin popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Tin_prompt(Text msg,Integer mode,Text &ret)

Name

Integer Tin_prompt(Text msg,Integer mode,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing templates is placed in a pop-up. If a
tin is selected from the pop-

up (using LB), the Tin name is placed in the user reply area.

The value of mode determines whether the SuperTin is listed in the pop-up.

Mode Description

0 Don’t list SuperTin.

1 List SuperTin.

The reply, either typed or selected from the Tin pop-up, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Tin_prompt writes out the message msg and gets a Text reply from the console panel.
The reply is terminated by a <CR> or <enter>. The reply may be selected from a tin popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

View_prompt(Text msg,Text &ret)

Name

Integer View_prompt(Text msg,Text &ret)

Description
Page 653Macro Console

12d Model Programming Manual
Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing views is placed in a pop-up. If a view
is selected from the pop-

up (using LB), the view name is placed in the user reply area.

The reply, either typed or selected from the view popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the View_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a view
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Yes_no_prompt(Text msg,Text &ret)

Name

Integer Yes_no_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a yes/no pop-up is placed on the screen. If yes or no is
selected from the pop-up (using LB), the selected test is placed in the user reply area.

The reply, either typed or selected from the yes/no popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Yes_no_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a yes-no
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Plotter_prompt(Text msg,Text &ret)

Name

Integer Plotter_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing plotter is placed in a pop-up. If a
plotter is selected from the pop-up (using LB), the plotter name is placed in the user reply area.

The reply, either typed or selected from the plotter popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the plotter_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a plotter
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.
Page 654 Macro Console

Chapter
Sheet_size_prompt(Text msg,Text &ret)

Name

Integer Sheet_size_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing sheet_size is placed in a pop-up. If a
sheet_size is selected from the pop-up (using LB), the sheet_size name is placed in the user
reply area.

The reply, either typed or selected from the sheet_size popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the sheet_size_prompt writes out the message msg and gets a Text reply from the
console panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a
sheet_size popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Linestyle_prompt(Text msg,Text &ret)

Name

Integer Linestyle_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing linestyle is placed in a pop-up. If a
linestyle is selected from the pop-up (using LB), the linestyle name is placed in the user reply
area.

The reply, either typed or selected from the linestyle popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the linestyle_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a linestyle
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Textstyle_prompt(Text msg,Text &ret)

Name

Integer Textstyle_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing textstyle is placed in a pop-up. If a
textstyle is selected from the pop-up (using LB), the textstyle name is placed in the user reply
area.

The reply, either typed or selected from the textstyle popup, must be terminated by a <CR> or
<enter> for the macro to continue.
Page 655Macro Console

12d Model Programming Manual
Hence the textstyle_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a textstyle
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Justify_prompt(Text msg,Text &ret)

Name

Integer Justify_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Justify is placed in a pop-up. If a
Justify is selected from the pop-up (using LB), the Justify name is placed in the user reply area.

The reply, either typed or selected from the Justify popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Justify_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Justify
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Angle_prompt(Text msg,Text &ret)

Name

Integer Angle_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of Angle measure options is placed in a pop-up. If a
Angle is selected from the pop

-up (using LB), the Angle name is placed in the user reply area.

The reply, either typed or selected from the Angle popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Angle_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Angle
pop-

up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Function_prompt(Text msg,Text &ret)

Name

Integer Function_prompt(Text msg,Text &ret)
Page 656 Macro Console

Chapter
Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Function is placed in a pop-up. If a
Function is selected from the pop-up (using LB), the Function name is placed in the user reply
area.

The reply, either typed or selected from the Function popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Function_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Function
popup.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Project_prompt(Text msg,Text &ret)

Name

Integer Project_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Project is placed in a pop-up. If a
Project is selected from the pop-up (using LB), the Project name is placed in the user reply
area.

The reply, either typed or selected from the Project popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Project_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Project
pop-up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

Directory_prompt(Text msg,Text &ret)

Name

Integer Directory_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Directory is placed in a pop-up. If a
Directory is selected from the pop-up (using LB), the Directory name is placed in the user reply
area.

The reply, either typed or selected from the Directory pop-up, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Directory_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Directory
pop-up.

The reply is returned in Text ret.
Page 657Macro Console

12d Model Programming Manual
A function return value of zero indicates the Text ret is returned successfully.

Text_units_prompt(Text msg,Text &ret)

Name

Integer Text_units_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Text_units is placed in a pop-up. If a
Text_units is selected from the pop-up (using LB), the Text_units name is placed in the user
reply area.

The reply, either typed or selected from the Text_units popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Text_units_prompt writes out the message msg and gets a Text reply from the
console panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a
Text_units pop-up.

The reply is returned in Text ret.

A function return value of zero indicates the Text ret is returned successfully.

XYZ_prompt(Text msg,Real &x,Real &y,Real &z)

Name

Integer XYZ_prompt(Text msg,Real &x,Real &y,Real &z)

Description

Print the message msg to the prompt message area and then read back what must be x-
value y-value z- value with the three values separated by one or more spaces.

The values are returned in x, y and z.

A function return value of zero indicates values x, y and z are successfully returned.

Name_prompt(Text msg,Text &ret)

Name

Integer Name_prompt(Text msg,Text &ret)

Description

Print the message msg to the prompt message area and then read back a Text from the user
reply area of the macro console panel.

If RB is pressed in the user reply area, a list of all existing Name is placed in a pop-up. If a Name
is selected from the pop-

up (using LB), the Name is placed in the user reply area.

The reply, either typed or selected from the Name popup, must be terminated by a <CR> or
<enter> for the macro to continue.

Hence the Name_prompt writes out the message msg and gets a Text reply from the console
panel. The reply is terminated by a <CR> or <enter>. The reply may be selected from a Name
pop-up.

The reply is returned in Text ret.
Page 658 Macro Console

Chapter
A function return value of zero indicates the Text ret is returned successfully.

Panel_prompt(Text panel_name, Integer interactive, Integer no_field,Text
field_name[], Text field_value[])

Name

Integer Panel_prompt(Text panel_name,Integer interactive,Integer no_field,Text field_name[],Text
field_value[])

Description

Pop up a panel of the name panel_name.

No_field specifies how many fields you wish to fill in for the panel.

The name of each field is specified in Field_name array.

The value of each field is specified in field_value array.

If interactive is 1, the panel is displayed and remains until the finish button is selected.
If interactive is 0, the panel is displayed, runs the option and then closes.

A function return value of zero indicates success.

See example

Example of defining and using Panel_prompt.

Defining and Using Panel_prompt
 Text panel_name;
 Integer interactive = 1;
 Integer no_fields;
 Integer code;
 Text field_name [20];
 Text field_value[20];

 panel_name = "Contour a Tin";
 no_fields = 0;
 no_fields++; field_name[no_fields] = "Tin to contour";
 field_value[no_fields] = "terrain";
 no_fields++; field_name[no_fields] = "Model for conts";
 field_value[no_fields] = "terrain contours";
 no_fields++; field_name[no_fields] = "Cont min";
 field_value[no_fields] = "";
 no_fields++; field_name[no_fields] = "Cont max";
 field_value[no_fields] = "";
 no_fields++; field_name[no_fields] = "Cont inc";
 field_value[no_fields] = "0.5";
 no_fields++; field_name[no_fields] = "Cont ref";
 field_value[no_fields] = "0.0";
 no_fields++; field_name[no_fields] = "Cont colour";
 field_value[no_fields] = "purple";
 no_fields++; field_name[no_fields] = "Model for bolds";
 field_value[no_fields] = "terrain bold contours";
 no_fields++; field_name[no_fields] = "Bold inc";
 field_value[no_fields] = "2.5";
 no_fields++; field_name[no_fields] = "Bold colour";
 field_value[no_fields] = "orange";
 Prompt("Contouring");

 code = Panel_prompt(panel_name,interactive,no_fields,field_name,field_value);
Page 659Macro Console

12d Model Programming Manual
Page 660 Macro Console

Chapter 6 Examples
6 Examples
When using these code examples check the ends of lines for wordwrapping.

Example 1

A macro to select a string and write outs out to the console how many points there are in the
string.

See Example 1 OR open 4dm file

Example 2

Macro to select a string and ask if its ok to delete it.

See Example 2 OR open 4dm file

Example 3

Write four lines of data out to a file and then read it back in again.

See Example 3 OR open 4dm file

Example 4

Read a file in and calculate the number of lines and words.

See Example 4 OR open 4dm file

Example 5

1. select a pad

2. ask for cut and fill interface slopes

3. ask for a separation between the interface calcs

4. ask if interface is to left or right of pad

5. ask for a tin to interface against

Then

s calculate the interface string

s display the interface on all the views the pad is on

s ·check if the interface is ok to continue processing

s check for intersections in the interface and if so, ask for a good point so loop removal can be done.

s display the cleaned interface

s calculate the tin for the pad and the cleaned interface

s calculate and display the volumes between the original tin and the new tin

The macro includes a called function as well as main.

See Example 5 OR open 4dm file

Example 6

Macro to label each point of a user selected string with the string id and the string point number.
Page 661

12d Model Programming Manual
The labels are created as a 4d string.

See Example 6 OR open 4dm file

Example 7

A macro that exercises many of the Text functions

See Example 7 OR open 4dm file

Example 8

A macro to label the spiral and curve lengths of an Alignment string

See Example 8 OR open 4dm file

Example 9

Macro to write out a line style or titleblock file from a 12d Model.

See Example 9 OR open 4dm file

Example 10

Macro to take the (x,y) position for each point on a string and then produce a text string of the z-
values at each point on the tin

See Example 10 OR open 4dm file

Example 11

Macro to delete a selected empty model or all empty models in a project.

See Example 11 OR open 4dm file

Example 12

Macro to change names of selected strings

See Example 12 OR open 4dm file

Example 13

Macro to use the x,y,z of a text string and create a new 3d point string at the same point.

See Example 13 OR open 4dm file

Example 14

This is an example of the 4DML functions for a dialogue that contains most of the common wigit
controls. The text for the wigits and the on/off switch are contained in the function call go_panel.

Set_ups.h

See Set_ups.h
Page 662

Chapter 6 Examples
Set Ups.h
#ifndef set_ups_included

#define set_ups_included

#define CHECK_MODEL_MUST_EXIST 7

#define CHECK_MODEL_EXISTS 3

#define CHECK_MODEL_CREATE 4

#define CHECK_DISK_MODEL_MUST_EXIST 33

#define CHECK_EITHER_MODEL_EXISTS 38

#define GET_MODEL 10

#define GET_MODEL_CREATE 5

#define GET_MODEL_ERROR 13

#define GET_DISK_MODEL_ERROR 34

#define CHECK_MODEL_MUST_NOT_EXIST 60

#define CHECK_FILE 22

#define CHECK_FILE_MUST_EXIST 1

#define CHECK_FILE_CREATE 14

#define CHECK_FILE_NEW 20

#define CHECK_FILE_APPEND 21

#define CHECK_FILE_WRITE 23

#define GET_FILE 16

#define GET_FILE_MUST_EXIST 17

#define GET_FILE_CREATE 15

#define GET_FILE_NEW 18

#define GET_FILE_APPEND 19

#define GET_FILE_WRITE 24

#define CHECK_VIEW_MUST_EXIST 2

#define CHECK_VIEW_MUST_NOT_EXIST 25

#define GET_VIEW 11

#define GET_VIEW_ERROR 6

#define CHECK_TIN_MUST_EXIST 8

#define CHECK_TIN_EXISTS 61

#define CHECK_EITHER_TIN_EXISTS 39

#define CHECK_TIN_NEW 12

#define GET_TIN_ERROR 9

#define CHECK_DISK_TIN_MUST_EXIST 16

#define GET_TIN_CREATE 24
Page 663Set Ups.h

12d Model Programming Manual
#define GET_DISK_TIN_ERROR 35

#define CHECK_TIN_MUST_NOT_EXIST 91

#define GET_TIN 10

#define CHECK_TEMPLATE_EXISTS 17

#define CHECK_TEMPLATE_CREATE 18

#define CHECK_TEMPLATE_NEW 19

#define CHECK_TEMPLATE_MUST_EXIST 20

#define CHECK_TEMPLATE_MUST_NOT_EXIST 59

#define GET_TEMPLATE 21

#define GET_TEMPLATE_CREATE 22

#define GET_TEMPLATE_ERROR 23

#define GET_DISK_TEMPLATE_ERROR 40

#define CHECK_DISK_TEMPLATE_MUST_EXIST 48

#define CHECK_EITHER_TEMPLATE_EXISTS 49

#define CHECK_PROJECT_EXISTS 26

#define CHECK_PROJECT_CREATE 27

#define CHECK_PROJECT_NEW 28

#define CHECK_PROJECT_MUST_EXIST 29

#define CHECK_DISK_PROJECT_MUST_EXIST 36

#define GET_PROJECT 30

#define GET_PROJECT_CREATE 31

#define GET_PROJECT_ERROR 32

#define GET_DISK_PROJECT_ERROR 37

#define CHECK_DIRECTORY_EXISTS 41

#define CHECK_DIRECTORY_CREATE 42

#define CHECK_DIRECTORY_NEW 43

#define CHECK_DIRECTORY_MUST_EXIST 44

#define GET_DIRECTORY 45

#define GET_DIRECTORY_CREATE 46

#define GET_DIRECTORY_ERROR 47

#define CHECK_FUNCTION_MUST_EXIST 50

#define CHECK_FUNCTION_EXISTS 51

#define CHECK_FUNCTION_CREATE 52

#define CHECK_DISK_FUNCTION_MUST_EXIST 53

#define CHECK_EITHER_FUNCTION_EXISTS 54

#define GET_FUNCTION 55
Page 664 Set Ups.h

Chapter 6 Examples
#define GET_FUNCTION_CREATE 56

#define GET_FUNCTION_ERROR 57

#define GET_DISK_FUNCTION_ERROR 58

#define CHECK_FUNCTION_MUST_NOT_EXIST 90

#define CHECK_LINESTYLE_MUST_EXIST 82

#define CHECK_LINESTYLE_MUST_NOT_EXIST 83

#define GET_LINESTYLE 84

#define GET_LINESTYLE_ERROR 85

// return codes

#define NO_NAME 10

#define NO_MODEL 1

#define MODEL_EXISTS 2

#define DISK_MODEL_EXISTS 19

#define NEW_MODEL 3

#define NO_FILE 4

#define FILE_EXISTS 5

#define NO_FILE_ACCESS 6

#define NO_VIEW 6

#define VIEW_EXISTS 7

#define NO_CASE 8

#define NO_TIN 9

#define TIN_EXISTS 11

#define DISK_TIN_EXISTS 12

#define NO_TEMPLATE 13

#define TEMPLATE_EXISTS 14

#define DISK_TEMPLATE_EXISTS 20

#define NEW_TEMPLATE 15

#define NO_PROJECT 16

#define PROJECT_EXISTS 17

#define NEW_PROJECT 18
Page 665Set Ups.h

12d Model Programming Manual
#define NO_DIRECTORY 21

#define DIRECTORY_EXISTS 22

#define NEW_DIRECTORY 23

#define NO_FUNCTION 24

#define FUNCTION_EXISTS 25

#define DISK_FUNCTION_EXISTS 26

#define NEW_FUNCTION 27

#define LINESTYLE_EXISTS 80

#define NO_LINESTYLE 81

#define SELECT_STRING 5509

#define SELECT_STRINGS 5510

#define TRUE 1

#define FALSE 0

#define OK 1

// snap controls

#define Ignore_Snap 0

#define User_Snap 1

#define Program_Snap 2

// snap modes

#define Failed_Snap -1

#define No_Snap 0

#define Point_Snap 1

#define Line_Snap 2

#define Grid_Snap 3

#define Intersection_Snap 4

#define Cursor_Snap 5

#define Name_Snap 6

#define Tin_Snap 7

#define Model_Snap 8

#define Height_Snap 9
Page 666 Set Ups.h

Chapter 6 Examples
#define Segment_Snap 11

#define Att_ZCoord_Value 1

#define Att_ZCoord_Array 2

#define Att_Radius_Array 3

#define Att_Major_Array 4

#define Att_Diameter_Value 5

#define Att_Diameter_Array 6

#define Att_Vertex_Text_Array 7

#define Att_Segment_Text_Array 8

#define Att_Colour_Array 9

#define Att_Vertex_Text_Value 10

#define Att_Point_Array 11

#define Att_Visible_Array 12

#define Att_Contour_Array 13

#define Att_Vertex_Annotate_Value 14

#define Att_Vertex_Annotate_Array 15

#define Att_Vertex_Attribute_Array 16

#define Att_Symbol_Value 17

#define Att_Symbol_Array 18

#define Att_Segment_Attribute_Array 19

#define Att_Segment_Annotate_Value 20

#define Att_Segment_Annotate_Array 21

#define Att_Segment_Text_Value 22

#define Att_World_Annotate 30

#define Att_Annotate_Type 31

#define concat(a,b) a##b

#define String_Super_Bit(n) (1 << concat(Att_,n))

#define All_String_Super_Bits 65535

#define APPLY_TEMPLATE_MACRO_T 4100

#define APPLY_TEMPLATES_MACRO_T 4102

#define INTERFACE_MACRO_T 4103

#define TURKEY_NEST_MACRO_T 4104

#define KERB_RETURN_MACRO_T 4105

#define RETRIANGULATE_MACRO_T 4106

#define RUN_MACRO_T 4107

#define STRING_MODIFIERS_MACRO_T 4108
Page 667Set Ups.h

12d Model Programming Manual
#endif
Page 668 Set Ups.h

Chapter 6 Examples
Example 1
//--

// Programmer Lee Gregory

// Date 26/5/94

// Description of Macro

// Macro to select a string and write outs out to the console

// how many points there are in the string.

// This is then repeated.

// The macro terminates if cancel is selected from pick ops menu

//--

void main (){

 Element string;

 Integer ret,no_pts;

 Text text;

ask:

 ret = Select_string("Select a string",string);

 if(ret == -1) {

 Prompt("Macro finished - cancel selected");

 return;

 } else if (ret == 1) {

 if(Get_points(string,no_pts) !=0) goto ask;

 text = To_text(no_pts);

 text = "There are " + text + " points in the string";

 Prompt(text);

 goto ask;

 } else {

 goto ask;

 }

}

Page 669Example 1

12d Model Programming Manual
Example 2
// --

// Programmer Lee Gregory

// Date 26/5/94

// Description of Macro

// Macro to select a string and ask if its ok to delete it.

// The macro loops round until cancel is selected from

// the pick ops menu.

// --

void main (){

 Element string;

 Integer ret,no_pts;

 Text text;

ask:

 ret = Select_string("Select a string to delete",string);

 if(ret == -1) {

 Prompt("Macro finished - cancel selected");

 return;

 } else if (ret == 1) {

 Prompt("ok to delete the string y or n",text);

 if(text == "y") Element_delete(string);

 }

 goto ask;

}

Page 670 Example 2

Chapter 6 Examples
Example 3
//---

// Programmer Alan Gray

// Date 27/5/94

// Description of Macro

// Write four lines of data out to a file

// and then read it back in again.

// Report the number of lines read in.

//---

void main()

{

 File file;

 File_open("report.rpt","w+",file);

 File_write_line(file,"1st line of file");

 File_write_line(file,"2nd line of file");

 File_write_line(file,"3rd line of file");

 File_write_line(file,"4th line of file");

 File_flush(file);

 File_rewind(file);

 Integer count = 0;

 while(1) {

 Text line;

 if(File_read_line(file,line) == -1) break;

 ++count;

 }

 File_close(file);

// display # lines read

 Prompt(To_text(count) + " lines read");

}

Page 671Example 3

12d Model Programming Manual
Example 4
//---

// Programmer Alan Gray

// Date 27/5/94

// Description of Macro

// Read a file in and calculate the number of lines and words.

// Write to the console the number of lines and words.

//---

void main()

{

 File file;

 File_open("report.rpt","r",file);

 Integer eof,count = 0 , wordc = 0;

 while(1) {

 Text line;

 if(File_read_line(file,line) == -1) break;

 ++count;

// break line into words

 Dynamic_Text words;

 Integer no_words = From_text(line,words);

 wordc += no_words;

 Get_number_of_items(words,no_words);

 for(Integer i=1;i<=no_words;i++) {

 Text t;

 Get_item(words,i,t);

 Prompt(t);

 }

 }

 File_close(file);

// display data read

 Prompt(To_text(count) + " lines & " + To_text(wordc) + "words read");

}

Page 672 Example 4

Chapter 6 Examples
Example 5
//--

// Programmer Lee Gregory

// Date 26/5/94

// Description of Macro

// (a) select a pad

// (b) ask for cut and fill interface slopes

// (c) ask for a separation between the interface calcs

// (d) ask if interface is to left or right of pad

// (d) ask for a tin to interface against

// Then

// (a) calculate the interface string

// (b) display the interface on all the views the pad is on

// (c) check if the interface is ok to continue processing

// (d) check for intersections in the interface and if so, ask

// for a good point so loop removal can be done.

// (e) display the cleaned interface

// (f) calculate the tin for the pad and the cleaned interface

// (g) calculate and display the volumes between the original tin

// and the new tin

// The macro includes a called function as well as main.

//--

// Function to add new_model to all the non-section views that

// old_model is on

void add_to_view(Model new_model,Model old_model)

{

 Dynamic_Text dtviews;

 Integer no_views;

// get all the views that old_model is on

 Model_get_views(old_model,dtviews);

// add new_model to all the views

 Get_number_of_items(dtviews,no_views);

 View view;

 Text view_name,type;

 if(no_views <= 0) return;

 for (Integer i=1;i <= no_views;i++) {

 Get_item(dtviews,i,view_name);

 view = Get_view(view_name);
Page 673Example 5

12d Model Programming Manual
 Get_type(view,type);

 if(type == "Section") continue;

 View_add_model(view,new_model);

 }

}

// Main program to calculate the interface for a pad

// and then do volumes on it

void main ()

{

 Element pad,int_string,clean_string,sgood;

 Point pt;

 Model ljg_model,pad_model;

 Integer ret,side,error,closed;

 Text text,tside,ok;

 Real cut,fill,sep;

 Tin tin;

ask:

 ret = Select_string("Select a pad",pad);

 if(ret == -1) {

 Prompt("Macro finished - cancel selected");

 return;

 } else if (ret != 1) {

 Prompt("bad pick, try again");

 goto ask;

 } else { // case of valid pick

// check if pad is closed

 error = String_closed(pad,closed);

 if(closed !=1) {

 Prompt("Pad not a closed string");

 goto ask;

 }

// get cut and fill slopes, side to interface

// and separation between sections

 Prompt("Cut slope",cut);

 Prompt("Fill slope",fill);

 Prompt("Separation",sep);

 Prompt("Left or Right (l or r)",tside);

 side = (tside == "l") ? -1 : 1;

tin:

 Prompt("Tin name",text);

 if(text == "") return;
Page 674 Example 5

Chapter 6 Examples
 if(!Tin_exists(text)) goto tin;

 tin = Get_tin(text);

// calculate the interface

 Interface(tin,pad,cut,fill,sep,1000.0,side,int_string);

// draw the interface to see if l or r was ok

// Get the model for the selected pad string,

// add the interface string onto the same views

// and check that its ok to continue

 Model_delete(Get_model("LJG")); // delete model LJG

 ljg_model = Get_model_create("LJG");

 Set_model(int_string,ljg_model);

 Get_model(pad,pad_model);

 add_to_view(ljg_model,pad_model); // user defined function

 Prompt("OK to continue (y or n)",ok);

 if(ok == "n") {

 Element_delete(int_string);

 goto ask;

 }

// check if the interface needs cleaning

 Integer no_self;

 String_self_intersects(int_string,no_self);

 if(no_self < 1) {

 clean_string = int_string;

 goto cleaned;

 }

// clean the interface string

 Real x,y,z,ch,ht;

good:

 ret = Select_string("pick a good point",sgood,x,y,z,ch,ht);

 Set_x(pt,x);

 Set_y(pt,y);

 Set_z(pt,z);

 Loop_clean(int_string,pt,clean_string);

 String_self_intersects(clean_string,no_self);

 if(no_self < 1) goto cleaned;

// still not a clean interface

 Element_delete(clean_string);

 goto good;

// add the interface string to a new model which is added to the

// same views as the model containing the string was on
Page 675Example 5

12d Model Programming Manual
cleaned:

 Element_delete(int_string);

 Set_model(clean_string,ljg_model);

// add the cleaned string onto it

 add_to_view(ljg_model,pad_model);

 }

// triangulate the pad and interface

 Dynamic_Element detin;

 Append(clean_string,detin);

 Append(pad,detin);

 Integer no_pts;

 Get_points(clean_string,no_pts);

 Tin pad_tin;

 Integer no_items;

 Tin_delete(Get_tin("pad")); // delete the tin pad

 Triangulate(detin,"pad",1,1,1,pad_tin);

// do volumes between the ground and pad

 Real cut_vol,fill_vol,bal_vol;

 Volume_exact(tin,pad_tin,clean_string,cut_vol,fill_vol,bal_vol);

// display the volumes

 Text out_text,cut_text,fill_text,bal_text;

 cut_text = To_text(cut_vol,3);

 fill_text = To_text(fill_vol,3);

 bal_text = To_text(bal_vol,3);

 out_text = "cut " + cut_text + " fill " + fill_text + " bal " + bal_text;

 Prompt(out_text);

 return;

}

Page 676 Example 5

Chapter 6 Examples
Example 6
//--

// Programmer Andre Mazzone

// Date 3rd June 1994

// Description of Macro

// Macro to label each point of a user selected string with

// the string id and the string point number.

// The labels are created as a 4d string.

//--

void Gen_get(Element string,Real& x,Real& y,Real& z,Integer i)

// a function that extracts the x, y, and z for the ith point in

// any string (this routine reused from drape line

// point sexample)

// in: string,i

// out: x,y,z

{

 Text type;

 Element result;

 // get the type

 Get_type(string, type);

 if(type == "2d") {

 // 2d strings have only one z value

 // (this is not needed for this example

 // and is only here for completeness)

 Get_2d_data(string, i, x, y);

 Get_2d_data(string, z);

 } else if(type == "3d") {

 // 3d strings have all the information

 Get_3d_data(string, i, x, y, z);

 } else if(type == "4d") {

 // 4d strings have too much information

 // so any text is thrown away

 Text tmp;

 Get_4d_data(string, i, x, y, z, tmp);

 } else if(type == "Interface") {

 // interface strings have too much information

 // so the flags are thrown away

 Integer tmp;

 Get_interface_data(string, i, x, y, z, tmp);

 }
Page 677Example 6

12d Model Programming Manual
}

Element create_label_string(Element string)

// create a 4d string with labels for string id and point num

// in: string

// out: return value

{

 Integer npts, i, id;

 Real x[200], y[200], z[200];

 Text t[200], buf;

 Element str4d;

 // get number of points

 Get_points(string, npts);

 // get the id

 Get_id(string, id);

 // convert id to text

 buf = To_text (id) + "-";

 // loop through all points

 for (i = 1; i <= npts; i++) {

 // get x, y, z data

 Gen_get(string, x[i], y[i], z[i], i);

 // create text message with id-pt no

 t [i] = buf + To_text (i);

 }

 // create the string and return it

 return Create_4d(x, y, z, t, npts);

}

void main ()

// Asks for a model to use plus a string to be picked.

// The program then creates a label string and adds

// it to the model.

{

 Integer ret;

 Element poly;

 // get the model to use

 Text model_name;

 ret = Prompt ("model to store labels", model_name);

 while (ret != 0) {

 // loop until there are no errors in input

 Text x;

 Prompt ("error in input, press return", x);

 ret = Prompt ("model to store labels", model_name);
Page 678 Example 6

Chapter 6 Examples
 }

 // get a handle to a new or existing model

 Model model = Get_model_create (model_name);

 // get the polyline from user

 Text select_msg = "Id_string: string to label";

 Prompt ("Select a polygon from a view");

 ret = Select_string (select_msg, poly);

 // loop until success or cancel

 Integer done = 0;

 while ((ret != -1) && (ret !=1) && (!done)) {

 if (ret == 0) {

 // this means the select failed, so try again

 Prompt ("select failed, please try again");

 Prompt ("Select a polygon from a view");

 ret = Select_string (select_msg, poly);

 } else if (!Element_exists (poly)) {

 // this means that there were no selections, so try again

 Prompt ("no polygon selected, please try again");

 ret = Select_string (select_msg, poly);

 }

 }

 // if user chooses cancel from the select box then end

 if (ret == -1) {

 Prompt ("action cancelled");

 return;

 }

 // create string

 Element labels = create_label_string(poly);

 // add to model

 Set_model (labels, model);

 // finished processing

 Prompt("Finished labelling");

}

Page 679Example 6

12d Model Programming Manual
Example 7
//---

// Programmer Alan Gray

// Date 14/7/94

// Description of Macro

// A macro which exercises many of the Text functions

//---

void main()

{

 Text t1 = " A very very long string with lots of simple words";

 Integer l1 = Text_length(t1);

 Print("<"); Print(t1); Print(">\n");

 Text t2 = Get_subtext(t1,1,10);

 Integer l2 = Text_length(t2);

 Print("<"); Print(t2); Print(">\n");

 Text t3 = Text_justify(t1);

 Integer l3 = Text_length(t3);

 Print("<"); Print(t3); Print(">\n");

 Text t4 = Text_upper(t1);

 Integer l4 = Text_length(t4);

 Print("<"); Print(t4); Print(">\n");

 Text t5 = Text_lower(t1);

 Integer l5 = Text_length(t5);

 Print("<"); Print(t5); Print(">\n");

 Integer p = Find_text(t1,"words");

 Print("p=<"); Print(p); Print(">\n");

 Text t6 = t1; Set_subtext(t6,p,"mindless words");

 Integer l6 = Text_length(t6);

 Print("<"); Print(t6); Print(">\n");

 Text t7 = t1; Set_subtext(t7,10,"[mindless words]");

 Integer l7 = Text_length(t7);

 Print("<"); Print(t7); Print(">\n");

 Text t8 = t1; Insert_text(t8,p,"mindless ");

 Integer l8 = Text_length(t8);

 Print("<"); Print(t8); Print(">\n");

// formatting

 Integer l = 1234567;

 Real r = 987654.321;

 Text b = To_text(l,"l = %8ld") + " "+ To_text(r,"r = %12.4lf") + " :";

 Print("<"); Print(b); Print(">\n");
Page 680 Example 7

Chapter 6 Examples
// decoding

 Integer ll;

 From_text(Get_subtext(b,Find_text(b,"l = "),9999),ll,"l = %ld");

 Print("ll = "); Print(ll); Print("\n");

 Real rr;

 From_text((Get_subtext(b,Find_text(b,"r = "),9999),rr,"r = %lf");

 Print("rr = "); Print(rr); Print("\n");

}

Page 681Example 7

12d Model Programming Manual
Example 8
//---

// Programmer Lee Gregory

// Date 30/9/94

// Description of Macro

// A macro to label the spiral and curve lengths of

// an Alignment string

//---

void get_hip_info(Element align,Integer hip,Integer &type,

 Real xval[],Real yval[],Real lengths[])

// --

// Get the horizontal info for an horizontal ip

// - the co-ordinates of the special points

// - the curve radius and curve length

// - the left and right spiral lengths

//

// Type of HIP is returned as type where

// type = 0 HIP only

// 1 Curve only

// 2 LH Spiral only

// 3 LH spiral and curve

// 4 RH spiral only

// 5 curve, RH spiral

// 6 LH spiral, RH spiral

// 7 LH spiral, curve, RH spiral

// Co-ordinates of special points returned in

// xval[1...6],yval[1...6]

// where the array position gives

// position 1 LH tangent, TS or TC

// 2 RH tangent, ST or CT

// 3 curve centre

// 4 SC

// 5 CS

// 6 HIP

// NOTE -

// If the IP is an HIP only, 1-5 are all given the HIP co-ords.

// If the IP has a curve and no spirals, 1 is set equal
Page 682 Example 8

Chapter 6 Examples
// to 4 (TC=SC), and 2 is set equal to 5 (CT=CS).

// The curve radius, curve and spiral lengths are returned in

// the array lengths[1...4]

// position 1 circle radius

// 2 circle length

// 3 left spiral length

// 4 right spiral length

//

// --

{

 Text hip_type;

 Integer ret;

 ret = Get_hip_type(align,hip,hip_type);

// Get the co-ordinates of the special points for the HIP

 if(hip_type == "IP") {

// case of HIP only with no curve or spiral

 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);

 xval[6] = xip; yval[6] = yip;

 type = 0;

// fill in other array positions - set them all to the HIP

// position

 xval[1] = xip; yval[1] = yip;

 xval[2] = xip; yval[2] = yip;

 xval[3] = xip; yval[3] = yip;

 xval[4] = xip; yval[4] = yip;

 xval[5] = xip; yval[5] = yip;

 } else if(hip_type == "Curve") {

// case of HIP with and curve and no spirals

 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);

 Real xtc,ytc; ret = Get_hip_geom(align,hip,1,xtc,ytc);

 Real xct,yct; ret = Get_hip_geom(align,hip,2,xct,yct);

 Real xcc,ycc; ret = Get_hip_geom(align,hip,3,xcc,ycc);

 xval[1] = xtc; yval[1] = ytc;

 xval[2] = xct; yval[2] = yct;

 xval[3] = xcc; yval[3] = ycc;

 xval[6] = xip; yval[6] = yip;

 type = 2;

// fill in the other array positions
Page 683Example 8

12d Model Programming Manual
 xval[4] = xtc; yval[4] = ytc;

 xval[5] = xct; yval[5] = yct;

 } else if(hip_type == "Spiral") {

 Real xip,yip; ret = Get_hip_geom(align,hip,0,xip,yip);

 Real xts,yts; ret = Get_hip_geom(align,hip,1,xts,yts);

 Real xsc,ysc; ret = Get_hip_geom(align,hip,4,xsc,ysc);

 Real xcs,ycs; ret = Get_hip_geom(align,hip,5,xcs,ycs);

 Real xst,yst; ret = Get_hip_geom(align,hip,2,xst,yst);

 Real xcc,ycc; ret = Get_hip_geom(align,hip,3,xcc,ycc);

 Integer left_spiral = ((xts != xsc) || (yts != ysc)) ? 1 : 0;

 Integer right_spiral= ((xst != xcs) || (yst != ycs)) ? 1 : 0;

 Integer curve = ((xsc != xcs) || (ysc != ycs)) ? 1 : 0;

 xval[1] = xts; yval[1] = yts;

 xval[2] = xst; yval[2] = yst;

 xval[3] = xcc; yval[3] = ycc;

 xval[4] = xsc; yval[4] = ysc;

 xval[5] = xcs; yval[5] = ycs;

 xval[6] = xip; yval[6] = yip;

 type = 2*curve + 2*left_spiral + 2*right_spiral;

 }

// Get the curve radius, curve and spiral lengths

 Real x,y,radius,left_spiral,right_spiral;

 Get_hip_data(align,hip,x,y,radius,left_spiral,right_spiral);

 Real ch1,ch2,xf,yf,zf,dir,off; // to get curve length

 if(radius != 0) {

 Drop_point(align,xval[4],yval[4],0.0,xf,yf,zf,ch1,dir,off);

 Drop_point(align,xval[5],yval[5],0.0,xf,yf,zf,ch2,dir,off);

 lengths[2] = ch2 - ch1;

 } else {

 lengths[2] = 0.0;

 }

 lengths[1] = radius;

 lengths[3] = left_spiral;

 lengths[4] = right_spiral;

 return;

}

Element position_text(Text text,Real size,Integer colour,Real x1,Real y1,Real x2,Real y2)

// --
Page 684 Example 8

Chapter 6 Examples
// Routine to position text

// At the moment it centres it between (x1,y1) and (x2,y2)

// with (bottom,centre) justification

// ---

{

 Real xpos,ypos,angle;

 xpos = 0.5 * (x1 + x2);

 ypos = 0.5 * (y1 + y2);

 angle = Atan2(y2 - y1,x2 - x1);

 Element elt = Create_text(text,xpos,ypos,size,colour,angle,4,1);

 return (elt);

}

void main()

// ---

// Select an alignment string and then label it in plan with

// spiral lengths, curve radii and tangent length.

//

// The positions of the labels is midway between the

// two critical points.

// This should be changed to whatever is required

// ---

{

 Integer ret;

 Element cl;

 Real text_size;

 Integer colour;

 Text colour_name,model_name;

 Model model;

 Real x_prev_tangent,y_prev_tangent;

// Get model for text

model :

 Model_prompt("Model name for text ? ",model_name);

 if(!Model_exists(model_name)) goto model;

 model = Get_model(model_name);

// Get text size

text_size :

 if(Prompt("Text size ? ",text_size) != 0) goto text_size;

// Get text colour
Page 685Example 8

12d Model Programming Manual
text_colour:

 Colour_prompt("Colour for text ? ",colour_name);

 if(!Colour_exists(colour_name)) goto text_colour;

 if(Convert_colour(colour_name,colour) != 0) goto text_colour;

// Get alignment string

 Prompt("Select alignment string");

align:

 ret = Select_string("Select alignment string",cl);

 if(ret == -1) {

 Prompt("Finished");

 return;

 } else if(ret != 1) {

 Prompt("Try again ");

 goto align;

 }

 Text type_name; Get_type(cl,type_name);

 if(type_name != "Alignment") {

 Prompt("not an alignment string - try again");

 goto align;

 }

// query all alignment info

 Integer no_hip;

 Get_hip_points(cl,no_hip);

 if(no_hip <= 1) {

 Prompt("<= 1 HIP point");

 return;

 }

// label the alignment

 for(Integer i=1;i<= no_hip;i++) {

 Integer type;

 Real xval[6],yval[6],lengths[4];

 get_hip_info(cl,i,type,xval,yval,lengths);

// label the spiral lengths and curve radius

 Real xpos,ypos,angle;

 Text text;

 Element elt;

 Integer curve = (lengths[1] == 0) ? 0 : 1;

 Integer left_spiral = (lengths[3] == 0) ? 0 : 1;

 Integer right_spiral = (lengths[4] == 0) ? 0 : 1;
Page 686 Example 8

Chapter 6 Examples
// label the left spiral length

 if(left_spiral) {

 text = "spiral length = " + To_text(lengths[3],1) + "m";

 elt = position_text(text,text_size,colour,xval[1],yval[1],xval[4],yval[4]);

 Set_model(elt,model);

 }

// label the curve radius

 if(curve) {

 text = "Radius = " + To_text(lengths[1],1) + "m";

 elt = position_text(text,text_size,colour,xval[4],yval[4],xval[5],yval[5]);

 Set_model(elt,model);

 }

// label the right spiral length

 if(right_spiral) {

 text = "spiral length = " + To_text(lengths[4],1) + "m";

 elt = position_text(text,text_size,colour,xval[5],yval[5],xval[2],yval[2]);

 Set_model(elt,model);

 }

// label the tangent

 if(i==1) {

 x_prev_tangent = xval[6];

 y_prev_tangent = yval[6];

 } else {

 Real xx,yy,tangent;

 xx = xval[1] - x_prev_tangent;

 yy = yval[1] - y_prev_tangent;

 tangent = Sqrt(xx*xx+ yy*yy);

 text = "tangent length = " + To_text(tangent,1) + "m";

 elt = position_text(text,text_size,colour,x_prev_tangent,y_prev_tangent,xval[1],yval[1]);

 Set_model(elt,model);

 x_prev_tangent = xval[2];

 y_prev_tangent = yval[2];

 }

 }

 Prompt ("Finished");

}

Page 687Example 8

12d Model Programming Manual
Example 9
//---

// Programmer Lee Gregory

// Date 6/9/94

// Description of Macro

// Macro to write out a line style or titleblock file from

// a 12d Model.

// Only 2d, 3d line strings, circles, arcs and text will

// be used for the style.

//--

// Routine to take the plot_type and create the appropriate

// linestyle name

Text get_plot_type (Integer plot_type)

{

 switch (plot_type) {

 case 0 : {

 return("plot_frame_title_box");

 }

 case 1 : {

 return("long_section_title_box");

 }

 case 2 : {

 return("x_section_title_box");

 }

 }

 return("plot_frame_title_box");

}

// Routine to write out a

// move (mode = 0) or draw (mode != 0)

// to the co-ordinates (x,y) with "prec" being the

// number of decimal places tp write x and y out to.

void move_draw(File file,Integer mode,Real x,Real y,

 Integer prec)

{

 Text output,type;

 if(mode == 0) {

 type = " move ";
Page 688 Example 9

Chapter 6 Examples
 } else {

 type = " draw ";

 }

 output = type + To_text(x,prec) + " " + To_text(y,prec);

 File_write_line(file,output);

}

// Routine to take a text string justification and

// create the equivalent linestyle text justification

Text text_justification (Integer justify)

{

 switch (justify) {

 case 1 : {

 return("\"bottom-left\"");

 }

 case 2 : {

 return("\"middle-left\"");

 }

 case 3 : {

 return("\"top-left\"");

 }

 case 4 : {

 return("\"bottom-centre\"");

 }

 case 5 : {

 return("\"middle-centre\"");

 }

 case 6 : {

 return("\"top-centre\"");

 }

 case 7 : {

 return("\"bottom-right\"");

 }

 case 8 : {

 return("\"middle-right\"");

 }

 case 9 : {

 return("\"top-right\"");

 }

 }
Page 689Example 9

12d Model Programming Manual
 return("\"bottom-left\"");

}

// Main program

void main()

{

// Get the model, scale, style type, file to write

// the style to.

 Text model_name,report_name,style_name,output;

 Real scale,factor;

 File file;

 Integer err,plot;

// get the model to use

model:

 Model_prompt("Model to create a style from :",model_name);

 if(!Model_exists(model_name)) goto model;

// get the scale

scale:

 err = Prompt("Scale for model 1: x (def 1000)",scale);

 if(err != 0) scale = 1000.0;

 if (Absolute(scale) < 1.0e-9) scale = 1000.0;

 factor = 1000.0/Absolute(scale);

// get Style name for titleblock or linestyle

plot_type:

 err = Prompt("Plot type : frame = 0 long = 1 x = 2"+

 " style = 3",plot);

 if(err != 0) goto plot_type;

 if((plot < 0) || (plot > 3)) goto plot_type;

 if(plot < 3) {

 style_name = "linestyle " + get_plot_type(plot) + " {";

 } else {

 if(Prompt("Style name",style_name) != 0) goto plot_type;

 style_name = "linestyle " + "\"" + style_name + "\" {";

 }

// get the file to write the style out to

report:

 Prompt("File for titleblock",report_name);

 if(File_exists(report_name)) goto report;

 if(File_open(report_name,"w",file) != 0) goto report;

 File_write_line(file,style_name);
Page 690 Example 9

Chapter 6 Examples
 output = " factor " + To_text(factor,3);

 File_write_line(file,output);

// Do the processing :

// Get handles to all the strings (Elements) in the model

 Model model;

 model = Get_model(model_name);

// Check in case the model has been deleted since

// first selected it.

 if(!Model_exists(model)) goto model;

 Dynamic_Element model_elts;

 Integer no_elts;

// Go through all the elements in the model

// and whenever possible, convert strings to

// line style commands.

 Get_elements(model,model_elts,no_elts)

;

 for (Integer i=1;i<=no_elts;i++) {

 Element elt;

 Text type,colour,text;

 Integer break_type,num_pts,colour_num,justif,size_type;

 Real
x,y,z,radius,xs,ys,zs,xe,ye,ze,start,end,size,angle,degrees,offset,rise,cosang,sinang,xpos,ypos;

 Get_item(model_elts,i,elt);

 Get_type(elt,type);

 Get_points(elt,num_pts);

 Get_breakline(elt,break_type);

 Get_colour(elt,colour_num);

 Convert_colour(colour_num,colour);

 if(type == "2d") {

 if(break_type != 1) continue;

 if(num_pts <2) continue;

 output = " colour " + colour;

 File_write_line(file,output);

 Get_2d_data(elt,1,x,y);

 move_draw(file,0,x,y,3);

 for(Integer j=2;j<=num_pts;j++) {

 Get_2d_data(elt,j,x,y);

 move_draw(file,1,x,y,3);
Page 691Example 9

12d Model Programming Manual
 }

 File_write_line(file," ");

 } else if(type == "3d") {

 if(break_type != 1) continue;

 if(num_pts <2) continue;

 File_write_line(file," colour " + colour);

 Get_3d_data(elt,1,x,y,z);

 move_draw(file,0,x,y,3);

 for(Integer j=2;j<=num_pts;j++) {

 Get_3d_data(elt,j,x,y,z);

 move_draw(file,1,x,y,3);

 }

 File_write_line(file," ");

 } else if(type == "Circle") {

 File_write_line(file," colour " + colour);

 Get_circle_data(elt,x,y,z,radius);

 move_draw(file,0,x,y,3);

 File_write_line(file," circle " +

 To_text(radius,3));

 } else if(type == "Arc") {

 File_write_line(file," colour " + colour);

 err = Get_arc_data(elt,x,y,z,radius,xs,ys,zs,xe,ye,ze);

 angle = Atan2(ys-y,xs-x);

 Radians_to_degrees(angle,start);

 angle = Atan2(ye-y,xe-x);

 Radians_to_degrees(angle,end);

 move_draw(file,0,x,y,3);

 output = " arc " + To_text(radius,3) +" " +

 To_text(start,3) + " " + To_text(end,3);

 File_write_line(file,output);

 } else if(type == "Text") {

 File_write_line(file," colour " + colour);

 Get_text_data(elt,text,x,y,size,colour_num,angle,justif,size_type,offset,rise);

// work out start of text with rise and offset

 cosang = Cos(angle);

 sinang = Sin(angle);

 xpos = x + offset*cosang + rise*sinang;

 ypos = y + offset*sinang - rise*cosang;
Page 692 Example 9

Chapter 6 Examples
 move_draw(file,0,xpos,ypos,3);

 Radians_to_degrees(angle,degrees);

 output = " text " + "\"" +text + "\" " +To_text(degrees,3) +" " + To_text(size,3) + " "
+text_justification(justif);

 File_write_line(file,output);

 }

 File_write_line(file," ");

 }

 File_write_line(file,"}");

 File_close(file);

 Prompt("Finished writing titleblock");

}

Page 693Example 9

12d Model Programming Manual
Example 10
//--

// Programmer Andre Mazzone

// Date 3rd September 1994

// Description of Macro

// Macro to take the (x,y) position for each point on a

// string and then produce a text string of the z-values

// at each point on the tin

//--

void process_elt(Tin tin,Element elt,Model model,Real size,Integer colour,Real angle,Real
offset,Integer decimals)

// --

// Find the z-value on the tin for each point in elt.

// Only process 2d, 3d strings.

// --

{

 Text type,number;

 Integer i,no_pts,justif;

 Real x,y,z,height,rise;

 Element text_elt;

 Get_type(elt,type);

 Get_points(elt,no_pts);

 justif = 1;

 rise = 0.0;

 if(!(type =="2d" || type == "3d")) return;

 for (i=1;i<=no_pts;i++) {

 if(type == "2d") {

 Get_2d_data(elt,i,x,y);

 } else if (type == "3d") {

 Get_3d_data(elt,i,x,y,z);

 }

// get value on the tin at (x,y)

 if(Tin_height(tin,x,y,height) != 0) continue;

 number = To_text(height,decimals);

 text_elt = Create_text(number,x,y,size,colour,angle,justif,1,offset,rise);

 Set_model(text_elt,model);

 }

 return;
Page 694 Example 10

Chapter 6 Examples
}

void main ()

// --

// Macro to take the (x,y) position for each point on a

// string and then produce a text string of the z-values

// at each point on the tin

// --

{

 Text tin_name,model_name,text_model_name,colour_name;

 Tin tin;

 Model model,text_model;

 Real text_size,offset,angle,radians;

 Integer colour,decimals;

// Get the name of the tin

get_tin:

 Tin_prompt("Give the name of the tin :",tin_name);

 if(!Tin_exists(tin_name)) goto get_tin;

 tin = Get_tin(tin_name);

// Get model for text

model1 :

 Model_prompt("Model to drape :",model_name);

 if(!Model_exists(model_name)) goto model1;

 model = Get_model(model_name);

// Get model for text

model2 :

 Model_prompt("Model for text :",text_model_name);

 text_model = Get_model_create(text_model_name);

 if(!Model_exists(text_model)) goto model2;

// Get text size

text_size :

 if(Prompt("Text size :",text_size) != 0) goto text_size;

// Get text colour

text_colour:

 Colour_prompt("Colour for text :",colour_name);

 if(!Colour_exists(colour_name)) goto text_colour;

 if(Convert_colour(colour_name,colour) != 0)

 goto text_colour;

angle:
Page 695Example 10

12d Model Programming Manual
 if(Prompt("Angle for text(degrees) :",angle) != 0)

goto angle;

 Degrees_to_radians(angle,radians);

offset:

 if(Prompt("Offset for text :",offset) != 0) goto offset;

decimals:

 if(Prompt("No. decimal places for text :",decimals) != 0)

 goto decimals;

 decimals = Absolute(decimals);

// Get all the strings in the model and drop their nodes

// onto the tin

 Dynamic_Element strings;

 Integer no_strings,i;

 Element elt;

 Prompt("Processing");

 Get_elements(model,strings,no_strings);

 for (i=1;i<=no_strings;i++) {

 Get_item(strings,i,elt);

 process_elt(tin,elt,text_model,text_size,colour,radians,offset,decimals);

 }

 Prompt("Finished");

}

Page 696 Example 10

Chapter 6 Examples
Example 11
//---

// Programmer Van Hanh Cao

// Date 14/07/99

// 12d Model V4.0

// Version 1.0

// Macro Name Del_empty_model_panel

// Description

// Delete a selected empty model or all empty models in a project.

//---

// Update/Modification

// (C) Copyright 1990-2003 by 12D Solutions Pty Ltd. All Rights Reserved

// This macro, or parts thereof, may not be reproduced in any form

// without

// permission of 12D Solutions Pty Ltd

//---

#include "set_ups.H"

Integer delete_model(Text model_name,Integer &no_deleted)

{

 Model model = Get_model(model_name);

 Integer no_elts;

 Get_number_of_items(model,no_elts);

 if(!Model_exists(model)) return(-1);

// if model empty then delete it

 if(no_elts == 0) {

 Model_delete(model);

 no_deleted++;

 }

 return(0);

}

Integer delete_all_model(Integer &no_deleted)

{

 Integer no_models;

 Dynamic_Text project_models;

 Get_project_models (project_models);

 Get_number_of_items(project_models,no_models);

 no_deleted = 0;

 for(Integer i;i<=no_models;i++) {
Page 697Example 11

12d Model Programming Manual
 Text model_name;

 Model model;

 Integer no_elts;

 Get_item(project_models,i,model_name);

 delete_model(model_name,no_deleted);

 }

 return(0);

}

Integer update_list(Choice_Box &model_list)

{

 Integer no_models;

 Dynamic_Text project_models;

 Get_project_models (project_models);

 Get_number_of_items(project_models,no_models);

 if(no_models == 0) return(-1);

 Dynamic_Text empty_models;

 for(Integer i=1;i<=no_models;i++) {

// validate model

 Text model_name;

 Get_item(project_models,i,model_name);

 Model model = Get_model(model_name);

 if(!Model_exists(model)) continue;

 Integer no_elts;

 Get_number_of_items(model,no_elts);

 if(no_elts == 0) Append(model_name,empty_models);

 }

 Integer no_empty = 0;

 Get_number_of_items(empty_models,no_empty);

// add to choice box

 Text list[no_empty];

 for(Integer j=1;j<=no_empty;j++) Get_item(empty_models,j,list[j]);

 Set_data(model_list,no_empty,list);

 return(0);

}

void manage_a_panel()

{

// create the panel

 Panel panel = Create_panel("Set new string name(s)");
Page 698 Example 11

Chapter 6 Examples
 Message_Box message = Create_message_box(" ");

 Choice_Box model_list = Create_choice_box("Empty model",message);

 update_list(model_list);

// buttons along the bottom

 Horizontal_Group bgroup = Create_button_group();

 Button delete = Create_button

("&Delete" ,"delete");

 Button delete_all = Create_button("Delete &All","delete all");

 Button finish = Create_button("&Finish" ,"finish");

 Append(delete ,bgroup);

 Append(delete_all,bgroup);

 Append(finish ,bgroup);

 Append(model_list,panel);

 Append(message,panel);

 Append(bgroup,panel);

 Show_widget(panel);

 Integer doit = 1;

 Integer no_deleted = 0;

 while(doit) {

 Integer id;

 Text cmd;

 Text msg;

 Integer ret = Wait_on_widgets

(id,cmd,msg);

 if(cmd == "keystroke") continue;

 switch(id) {

 case Get_id(panel) : {

 if(cmd == "Panel Quit") doit = 0;

 } break;

 case Get_id(finish) : {

 if(cmd == "finish") doit = 0;

 } break;

 case Get_id(model_list) : {

 update_list(model_list);

 Set_data(message,"Update");

 } break;

// delete the selected model

 case Get_id(delete) : {

 Integer ierr;
Page 699Example 11

12d Model Programming Manual
 Text model_name;

 ierr = Validate(model_list,model_name);

 if(ierr != TRUE) break;

 delete_model(model_name,no_deleted);

 Set_data(message,"empty model \"" + model_name + "\" deleted");

 update_list(model_list);

 Set_data(model_list,"");

 } break;

// delete all empty models

 case Get_id(delete_all): {

 delete_all_model(no_deleted);

 Set_data(message,To_text(no_deleted) + " empty model(s) deleted");

 update_list(model_list);

 Set_data(model_list,"");

 } break;

 }

 }

}

void main()

{

 manage_a_panel();

}

Page 700 Example 11

Chapter 6 Examples
Example 12
//---

// Programmer Van Hanh Cao

// Date 14 Jul 2003

// 12d Model V4.0

// Version 1.0

// Macro Name Newname_panel

// Description

// routine to change names of selected strings

//---

// Update/Modification

// (C) Copyright 1990-2003 by 12D Solutions Pty Ltd. All Rights Reserved

// This macro, or parts thereof, may not be reproduced in any form

// without

// permission of 12D Solutions Pty Ltd

//---

#include "set_ups.H"

void set_names(Element string,Text stem,Integer &number)

{

 Text new_name = stem + To_text(number);

 Set_name(string,new_name);

 number++;

}

void set_names(Model model,Text stem,Integer &number)

{

 Integer no_items;

 Dynamic_Element items;

 Get_elements(model,items,no_items);

 for(Integer i=1;i<=no_items;i++) {

 Element elt;

 Get_item(items,i,elt);

 set_names(elt,stem,number);

 }

}

void set_names(View view,Text stem,Integer &number)

{

 Integer no_items;

 Dynamic_Text items;
Page 701Example 12

12d Model Programming Manual
 View_get_models (view,items);

 Get_number_of_items (items,no_items);

 for(Integer i=1;i<=no_items;i++) {

 Text model_name;

 Get_item(items,i,model_name);

 Model model = Get_model(model_name);

 if(!Model_exists(model)) continue;

 set_names(model,stem,number);

 }

}

void manage_a_panel()

// --

{

// create the panel

 Panel panel = Create_panel("Set new string name(s)");

 Vertical_Group vgroup = Create_vertical_group(0);

 Message_Box message = Create_message_box(" ");

 Integer no_choices = 3;

 Text choices[5];

 choices[1] = "String";

 choices[2] = "Model";

 choices[3] = "View";

 Choice_Box pages_box = Create_choice_box("Data source",message);

 Set_data(pages_box,no_choices,choices);

 Set_data(pages_box,choices[2]);

 Append(pages_box,vgroup);

// create 3 vertical groups for each page of widgets

 Horizontal_Group g1 = Create_button_group(); Set_border(g1,0,0);

 Vertical_Group g2 = Create_vertical_group(-1); Set_border(g2,0,0);

 Vertical_Group g3 = Create_vertical_group(-1); Set_border(g3,0,0);

// add these groups to the pages widget

 Widget_Pages pages = Create_widget_pages();

 Append(g1,pages);

 Append(g2,pages);

 Append(g3,pages);

// page 1

 Select_Box select_box = Create_select_box("&Pick a string","Pick a string", SELECT_STRING,
message);
Page 702 Example 12

Chapter 6 Examples
 Append(select_box,g1);

// page 2

 Model_Box model_box =
Create_model_box("Model",message,CHECK_MODEL_MUST_EXIST);

 Append(model_box,g2);

// page 3

 View_Box view_box = Create_view_box

("View",message,CHECK_VIEW_MUST_EXIST);

 Append(view_box,g3);

// top of panel

 Append(pages_box,vgroup);

 Append(pages ,vgroup);

// setting

 Vertical_Group ogroup = Create_vertical_group(0);

 Name_Box name_box = Create_name_box("Name stem" ,message);

 Integer_Box integer_box = Create_integer_box("Next number",message);

// Default values

 Set_data(name_box,"new name");

 Set_data(integer_box ,1);

 Append(name_box ,ogroup);

 Append(integer_box,ogroup);
Page 703Example 12

12d Model Programming Manual
// buttons along the bottom

 Horizontal_Group bgroup = Create_button_group();

 Button process = Create_button("&Process","count");

 Button finish = Create_button("&Finish" ,"finish");

 Append(process,bgroup);

 Append(finish ,bgroup);

 Append(vgroup ,panel);

 Append(ogroup ,panel);

 Append(message,panel);

 Append(bgroup ,panel);

// set page 2 active

 Integer page = 2;

 Set_page(pages,page);

 Show_widget(panel);

 Integer doit = 1;

 while(doit) {

 Integer id;

 Text cmd;

 Text msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

 if(cmd == "keystroke") continue;
Page 704 Example 12

Chapter 6 Examples
 switch(id) {

 case Get_id(panel) : {

 if(cmd == "Panel Quit") doit = 0;

 } break;

 case Get_id(finish) : {

 if(cmd == "finish") doit = 0;

 } break;

 case Get_id(pages_box) : {

 Text page_text;

 Integer ierr = Validate(pages_box,page_text);

 if(ierr != TRUE) break;

 if(page_text == choices[1]) {

 page = 1;

 } else if(page_text == choices[2]) {

 page = 2;

 } else if(page_text == choices[3]) {

 page = 3;

 } else {

 page = 0;

 }
Page 705Example 12

12d Model Programming Manual
 Set_page(pages,page);

 } break;

 case Get_id(select_box) : {

 Integer ierr;

 if(cmd == "accept select") {

// validate name and text size

 Integer next;

 ierr = Validate(integer_box,next);

 if(ierr != TRUE) break;

 Text name;

 ierr = Validate(name_box,name);

 if(ierr != TRUE) break;

 Element string;

 ierr = Validate(select_box,string);

 if(ierr != TRUE) break;

// set the new name

 set_names(string,name,next);

// restart select

 Select_start(select_box);

 Set_data(integer_box,next);

 Set_data(message,"new name \"" + name + To_text(next-1) + "\" ok");
Page 706 Example 12

Chapter 6 Examples
 }

 } break;

 case Get_id(process) : {

 Integer ierr;

// validate name and text size

 Integer next;

 ierr = Validate(integer_box,next);

 if(ierr != TRUE) break;

 Text name;

 ierr = Validate(name_box,name);

 if(ierr != TRUE) break;

// validate model

 if(page == 1) {

 Element string;

 ierr = Validate(select_box,string);

 if(ierr != TRUE) break;

 set_names(string,name,next);

 Set_data(message,"new name \"" + name + To_text(next-1) + "\" ok");

 } else if(page == 2) {
Page 707Example 12

12d Model Programming Manual
 Model model;

 ierr = Validate(model_box,GET_MODEL_ERROR,model);

 if(ierr != MODEL_EXISTS) break;

 Integer no_strings = next;

 set_names(model,name,next);

 no_strings = next - no_strings;

 Set_data(message, To_text(no_strings) + " new name(s) were set");

 } else if(page == 3) {

 View view;

 ierr = Validate

(view_box,GET_VIEW_ERROR,view);

 if(ierr != VIEW_EXISTS) break;

 Integer no_strings = next;

 set_names(view,name,next);

 no_strings = next - no_strings;

 Set_data(message, To_text(no_strings) + " new name(s) were set");

 }

 Set_data(integer_box,next);

// display data

 } break;

 }
Page 708 Example 12

Chapter 6 Examples
 }

}

void main()

//---

{

 manage_a_panel();

}

Page 709Example 12

12d Model Programming Manual
Example 13
//---

// Programmer Van Hanh Cao

// Date 16/07/99

// 12d Model V4.0

// Version 1.0

// Macro Name Textto3d_panel

// Description

// User is asked to select view, model or a text string that contains

// the text strings. The macro will create a 3d point string at those text

// positions, and then put this string in a user selected model.If there

// is no user specified model, the default model "0", will be created

// and used.

//---

// Update/Modification

// (C) Copyright 1990-2003 by 12D Solutions Pty Ltd. All Rights Reserved

// This macro, or parts thereof, may not be reproduced in any form without

// permission of 12D Solutions Pty Ltd

//---

#include "set_ups.H"

#define MAX_NO_POINTS 1000

Integer get_text_points(Model model,Dynamic_Element &strings)

{

 Dynamic_Element elts;

 Integer no_elts;

 Get_elements(model,elts,no_elts);

 for(Integer i=1;i<=no_elts;i++) {

 Element string;

 Get_item(elts,i,string);

 Text string_type;

 Get_type(string,string_type);

 if(string_type == "Text") Append(string,strings);

 }

 return(0);

}

Integer get_text_points(View view,Dynamic_Element &strings)

{

Page 710 Example 13

Chapter 6 Examples
 Dynamic_Text models;

 Integer no_models;

 View_get_models(view,models);

 Get_number_of_items(models,no_models);

 for(Integer i=1;i<=no_models;i++) {

 Text model_name;

 Get_item(models,i,model_name);

 Model model;

 Get_model(model_name);

 if(!Model_exists(model)) continue;

 get_text_points(model,strings);

 }

 return(0);

}

Integer make_string(Model &tmodel,Dynamic_Element &strings,Real dx,

 Real dy,Real maxz,Real minz)

//---

// Create a 4d string with point numbers for each point in the strings

// from setout_model.

// Begin the point numbers at start_no and leave start_no as the next

// point number.

//---

{

 Integer no_strings;

 Get_number_of_items(strings,no_strings);

 if(no_strings == 0) return(-1);

 Integer count = 1;

 Real x[MAX_NO_POINTS],y[MAX_NO_POINTS],z[MAX_NO_POINTS];

 for (Integer i=1;i<=no_strings;i++) {

 Text string_type;

 Element string;

 Get_item(strings,i,string);

 Get_type(string,string_type);

 if(string_type == "Text") {

 Text t_z;
Page 711Example 13

12d Model Programming Manual
 Get_text_value(string, t_z);

 Dynamic_Text dtext;

 From_text(t_z,dtext);

 Integer no_text;

 Get_number_of_items(dtext,no_text);

 if(no_text != 1) continue;

 Real temp;

 if (From_text(t_z,temp) == 0) {

 z[count] = temp;

 if(z[count]<maxz && z[count]>minz) {

 Get_text_xy(string,x[count],y[count]);

 x[count] += dx;

 y[count] += dy;

 count++;

 }

 }

 }

 }

 count--;
Page 712 Example 13

Chapter 6 Examples
 Element new_string;

 new_string = Create_3d(x,y,z,count);

 Set_model(new_string, tmodel);

 Set_breakline(new_string, 0);

 Calc_extent(tmodel);

 return(0);

}

void manage_a_panel()

// --

{

 Panel panel = Create_panel

("Convert text strings to 3d string");

 Vertical_Group vgroup = Create_vertical_group(0);

 Message_Box message = Create_message_box(" ");

 Integer no_choices = 2;

 Text choices[5];

 choices[1] = "Model";

 choices[2] = "View";

 Choice_Box pages_box = Create_choice_box("Data source",message);

 Set_data(pages_box,no_choices,choices);

 Set_data(pages_box,choices[1]);
Page 713Example 13

12d Model Programming Manual
 Append(pages_box,vgroup);

// create 3 vertical groups for each page of widgets

 Vertical_Group g1 = Create_vertical_group(-1); Set_border(g1,0,0);

 Vertical_Group g2 = Create_vertical_group(-1); Set_border(g2,0,0);

// add these groups to the pages widget

 Widget_Pages pages = Create_widget_pages();

 Append(g1,pages);

 Append(g2,pages);

// page 1

 Model_Box model_box = Create_model_box("Model containing text", message,
CHECK_MODEL_MUST_EXIST);

 Append(model_box,g1);

// page 2

 View_Box view_box = Create_view_box("View name", message,
CHECK_VIEW_MUST_EXIST);

 Append(view_box,g2);

 Model_Box model_box2 = Create_model_box("Model for 3d points" , message,

CHECK_MODEL_CREATE);

 Real_Box dx_box = Create_real_box

("Horizontal offset (dx)" ,message);

 Real_Box dy_box = Create_real_box("Vertical offset (dy)" ,message);

 Real_Box maxz_box = Create_real_box("Max z value" ,message);

 Real_Box minz_box = Create_real_box("Min z value" ,message);

 Set_optional(maxz_box,1);

 Set_optional(minz_box,1);
Page 714 Example 13

Chapter 6 Examples
// default data

 Set_data(dx_box ,0.0);

 Set_data(dy_box ,0.0);

 Append(pages_box ,vgroup);

 Append(pages ,vgroup);

 Append(model_box2,vgroup);

 Append(dx_box ,vgroup);

 Append(dy_box ,vgroup);

 Append(maxz_box ,vgroup);

 Append(minz_box ,vgroup);

 Append(message ,vgroup);

// buttons along the bottom

 Horizontal_Group bgroup = Create_button_group();

 Button process = Create_button("&Process" ,"count");

 Button finish = Create_button("&Finish" ,"finish");

 Append(process ,bgroup);

 Append(finish ,bgroup);

 Append(vgroup ,panel);

 Append(bgroup ,panel);

// set page 1 active
Page 715Example 13

12d Model Programming Manual
 Integer page = 1;

 Set_page(pages,page);

 Show_widget(panel);

 Integer doit = 1;

 while(doit) {

 Integer id;

 Text cmd;

 Text msg;

 Integer ret = Wait_on_widgets(id,cmd,msg);

 if(cmd == "keystroke") continue;

 Dynamic_Element strings;

 switch(id) {

 case Get_id(panel) : {

 if(cmd == "Panel Quit") doit = 0;

 } break;

 case Get_id(finish) : {

 if(cmd == "finish") doit = 0;

 } break;

 case Get_id(pages_box) : {

 Text page_text;

 Integer ierr = Validate(pages_box,page_text);
Page 716 Example 13

Chapter 6 Examples
 if(ierr != TRUE) {

 Set_data(message,"bad page");

 break;

 }

 if(page_text == choices[1]) {

 page = 1;

 } else if(page_text == choices[2]) {

 page = 2;

 } else {

 page = 0;

 }

 Set_page(pages,page);

 } break;

 case Get_id(process) : {

 Integer ierr;

// validate model box

 Model tmodel;

 ierr = Validate(model_box2,GET_MODEL_CREATE,tmodel);

 if(ierr != MODEL_EXISTS) break;

 Real dx,dy;
Page 717Example 13

12d Model Programming Manual
 ierr = Validate(dx_box,dx);

 if(ierr != TRUE) break;

 ierr = Validate(dy_box,dy);

 if(ierr != TRUE) break;

 Real maxz = 9999.9,

 minz = -9999.9;

 Text temp_max,temp_min;

 Get_data(maxz_box,temp_max);

 if(temp_max != "") {

 Real temp;

 ierr = Validate(maxz_box,temp);

 if(ierr != TRUE) break;

 maxz = temp;

 }

 Get_data(minz_box,temp_min);

 if(temp_min != "") {

 Real temp;

 ierr = Validate(minz_box,temp);

 if(ierr != TRUE) break;

 minz = temp;

 }
Page 718 Example 13

Chapter 6 Examples
 if(minz >= maxz) {

 Set_data(message,"max z must be greater than min z");

 break;

 }

 if(page == 1) {

 Model model;

 ierr = Validate(model_box,GET_MODEL_ERROR,model);

 if(ierr != MODEL_EXISTS) break;

 get_text_points(model,strings);

 } else if(page == 2) {

 View view;

 ierr = Validate(view_box,GET_VIEW_ERROR,view);

 if(ierr != VIEW_EXISTS) break;

 get_text_points(view,strings);

 } else {

 Set_data(message,"bad choice");

 break;

 }

 make_string(tmodel,strings,dx,dy,maxz,minz);

 Text tmodel_name;
Page 719Example 13

12d Model Programming Manual
 Get_name(tmodel,tmodel_name);

 Set_data(message,"model " + tmodel_name + " created");

 Null(strings);

 } break;

 }

 }

}

void main()

//---

{

 manage_a_panel();

}

Page 720 Example 13

Chapter 6 Examples
Example 14
#include "set_ups.H"

Integer my_function(Model model1_model ,File file1_file ,Tin tin1_tin ,Real real1_value
,

 View view1_view ,Text input1_text ,Integer colour1_value ,Integer tick1_value,

 Text select1_text ,Real select1_x ,Real select1_y ,Real select1_z ,

 Real select1_prof_chainage ,Real select1_prof_z ,Element select1_string,

 Integer xyz1_value)

{

 return 0;

}

Integer go_panel(

 Text panel_title , Text panel_help , Text file_default ,

 Integer draw1_on ,Text draw1_name , Integer draw1_box_width, Integer
draw1_box_height,

 Integer choice1_on ,Text choice1_title , Text choice1_name , Text choice1_help, Text
choice1_title_default , Text choice1[] , Integer no_choice1,

 Integer model1_on ,Text model1_title , Text model1_name , Text model1_help , Text
model1_title_default , Text model1_ceme ,

 Integer file1_on ,Text file1_title , Text file1_name , Text file1_help , Text
file1_title_default , Text file1_rw , Text file1_ext ,

 Integer tin1_on ,Text tin1_title , Text tin1_name , Text tin1_help , Text
tin1_title_default , Integer tin1_supertin ,

 Integer real1_on ,Text real1_title , Real real1_value , Text real1_help , Text
real1_title_default , Text real1_check , Real real1_low , Real real1_high ,

 Integer view1_on ,Text view1_title , Text view1_name , Text view1_help , Text
view1_title_default ,

 Integer input1_on ,Text input1_title , Text input1_text , Text input1_help , Text
input1_title_default , Text input1_not_blank ,

 Integer colour1_on ,Text colour1_title , Text colour1_text , Text colour1_help, Text
colour1_title_default ,

 Integer select1_on ,Text select1_title , Text select1_text , Text select1_help, Text
select1_title_default , Text select1_type,Text select1_go,

 Integer tick1_on ,Text tick1_title , Integer tick1_value , Text tick1_help , Text
tick1_title_default ,

 Integer xyz1_on ,Text xyz1_title , Integer xyz1_value , Text xyz1_help , Text
Page 721Example 14

12d Model Programming Manual
xyz1_title_default ,

 Integer process_on, Text process_title , Text process_finish_help)

{

 //
==
====================================

 // get defaults at the start of a routine and set up the panel

 Integer ok=0;

 //--

 // CREATE THE PANEL

 //--

 Panel panel = Create_panel(panel_title);

 Vertical_Group vgroup = Create_vertical_group(0);

 Message_Box message_box = Create_message_box("");

 //--

 // draw1_box

 //--

 Horizontal_Group hgroup_box = Create_horizontal_group(0);

 Draw_Box draw1_box = Create_draw_box(draw1_box_width,draw1_box_height,0);

 if (draw1_on) Append(draw1_box,hgroup_box);

 // ----------------- choice1_ name ---

 Choice_Box choice1_box = Create_choice_box(choice1_title,message_box);

 Set_data(choice1_box,no_choice1,choice1);

 ok += Set_help(choice1_box,choice1_help);

 if (choice1_on) Append(choice1_box,vgroup);

 // ----------------- model1_ name ---

 // model1_name
Page 722 Example 14

Chapter 6 Examples
 Model_Box model1_box;

 switch (model1_ceme) {

 case "c" : {

 model1_box = Create_model_box(model1_title,message_box,CHECK_MODEL_CREATE);

 } break;

 case "e" : {

 model1_box = Create_model_box(model1_title,message_box,CHECK_MODEL_EXISTS);

 } break;

 case "me" : {

 model1_box =
Create_model_box(model1_title,message_box,CHECK_MODEL_MUST_EXIST);

 } break;

 }

 ok += Set_help(model1_box,model1_help);

 if (model1_on) Append(model1_box,vgroup);

 // ----------------- file1_ name ---

 File_Box file1_box;

 switch (file1_rw) {

 case "c" : {

 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_CREATE,file1_ext);

 } break;

 case "w" : {

 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_WRITE,file1_ext);

 } break;

 case "n" : {

 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_NEW,file1_ext);

 } break;

 case "r" : {

 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_MUST_EXIST,file1_ext);
Page 723Example 14

12d Model Programming Manual
 } break;

 case "a" : {

 file1_box = Create_file_box(file1_title,message_box,CHECK_FILE_APPEND,file1_ext);

 } break;

 }

 ok += Set_help(file1_box,file1_help);

 if (file1_on) Append(file1_box,vgroup);

 // ----------------- tin1_ ---

 Tin_Box tin1_box = Create_tin_box(tin1_title,message_box,CHECK_TIN_MUST_EXIST);

 ok += Set_supertin(tin1_box,tin1_supertin);

 ok += Set_help(tin1_box,tin1_help);

 if (tin1_on) Append(tin1_box,vgroup);

 // ----------------- real1_ data ---

 Real_Box real1_box = Create_real_box(real1_title,message_box);

 ok += Set_help(real1_box,real1_help);

 if (real1_on) Append(real1_box,vgroup);

 // ----------------- view1_ data ---

 View_Box view1_box =
Create_view_box(view1_title,message_box,CHECK_VIEW_MUST_EXIST);

 ok += Set_help(view1_box,view1_help);

 if (view1_on) Append(view1_box,vgroup);

 // ----------------- input1_ ---

 Input_Box input1_box = Create_input_box(input1_title,message_box);

 ok += Set_help(input1_box,input1_help);

 ok += Set_optional(input1_box,(input1_not_blank != "not blank"));
Page 724 Example 14

Chapter 6 Examples
 if (input1_on) Append(input1_box,vgroup);

 // ----------------- colour1_ ---

 Colour_Box colour1_box = Create_colour_box(colour1_title,message_box);

 ok += Set_help(colour1_box,colour1_help);

 if (colour1_on) Append(colour1_box,vgroup);

 // ----------------- select1_ ---

 Element select1_string;

 Real select1_x,select1_y,select1_z,select1_prof_chainage,select1_prof_z;

 Select_Button select1_button =
Create_select_button(select1_title,SELECT_STRING,message_box);

 ok += Set_help(select1_button,select1_help);

 if(select1_type != "") ok += Set_select_type(select1_button,select1_type);

 if (select1_on) Append(select1_button,vgroup);

 // ----------------- tick1_ ---

 Named_Tick_Box tick1_box = Create_named_tick_box(tick1_title,tick1_value,"");

 ok += Set_help(tick1_box,tick1_help);

 if (tick1_on) Append(tick1_box,vgroup);

 // ----------------- xyz1_ ---

 Real xyz1_xvalue,xyz1_yvalue,xyz1_zvalue;

 XYZ_Box xyz1_box = Create_xyz_box(xyz1_title,message_box);

 ok += Set_help(xyz1_box,xyz1_help);

 if (xyz1_on) Append(xyz1_box,vgroup);

// ----------------- message area ---

 Append(message_box,vgroup);
Page 725Example 14

12d Model Programming Manual
 // ----------------- bottom of panel buttons ---

 Horizontal_Group button_group = Create_button_group();

 Button process_button = Create_button(process_title,"process");

 ok += Set_help(process_button,process_finish_help);

 if(process_on) Append(process_button,button_group);

 Button finish_button = Create_button("Finish","finish");

 ok += Set_help(finish_button,process_finish_help);

 Append(finish_button,button_group);

 Append(button_group,vgroup);

 Append(vgroup,hgroup_box);

 Append(hgroup_box,panel);

 // ----------------- display the panel ---

 Integer wx = 100,wy = 100;

 Show_widget(panel,wx,wy);

 //--

 // draw bit map

 //--

 if (draw1_on) {

 Get_size(draw1_box,draw1_box_width,draw1_box_height);

 Start_batch_draw(draw1_box);

 ////the following RGB values match my screen setup

 ////set it to Clear(draw_box,-1,0,0) to see if you can get the window default

 ////or if that doesn't work set it to your RGB values

 Clear(draw1_box,192,192,192);

 Draw_transparent_BMP(draw1_box,draw1_name,0,draw1_box_height);

 End_batch_draw(draw1_box);
Page 726 Example 14

Chapter 6 Examples
 }

 // --

 // GET AND VALIDATE DATA

 // --

 Integer done = 0;

 while (1) {

 Integer id,ierr;

 Text cmd,msg;

 Wait_on_widgets(id,cmd,msg);

 #if DEBUG

 Print(" id <"+To_text(id));

 Print("> cmd <"+cmd);

 Print("> msg <"+msg+">\n");

 #endif

//--

// first process the command that are common to all wgits or are rarely processed by the wigit ID

//--

 switch(cmd) {

 case "keystroke" : {

 continue;

 } break;

 case "set_focus" :

 case "kill_focus" : {

 continue;

 } break;

 case "Help" : {
Page 727Example 14

12d Model Programming Manual
 Winhelp(panel,"4d.hlp",'a',msg);

 continue;

 } break;

 }

//--

// process each event by the wigit id

// most wigits do not need to be processed until the PROCESS button is pressed

// only the ones that change the appearance of the panel need to be processed in this loop

//--

 switch(id) {

 case Get_id(panel) :{

 if(cmd == "Panel Quit") return 1;

 if(cmd == "Panel About") continue;

 } break;

 case Get_id(finish_button) : {

 Print("Normal Exit\n");

 return(0);

 } break;

 case Get_id(select1_button) : {

 switch (cmd) {

 case "accept select" : {

 if(Get_subtext(select1_go,1,2) != "go") continue;

 } break;

/*

// other select cmds

 case "cancel select" : {

 continue;

 } break;

*/
Page 728 Example 14

Chapter 6 Examples
 }

 continue;

 } break;

 case Get_id(process_button) : {

//--

// verify / retrieve all the data in the panel

//--

//--

// select box

//--

 Validate(select1_button,select1_string);

Get_select_coordinate(select1_button,select1_x,select1_y,select1_z,select1_prof_chainage,sel
ect1_prof_z);

 // create the file handle

//--

// MODEL CHECK

//--

 Model model1_model;

 if(model1_on) {

 switch (model1_ceme) {

 case "c" : {

 if(Validate(model1_box,GET_MODEL_CREATE,model1_model) != MODEL_EXISTS)
continue;

 } break;

 case "e" : {

 if(Validate(model1_box,GET_MODEL,model1_model) != MODEL_EXISTS) continue;

 } break;

 case "me" : {

 if(Validate(model1_box,GET_MODEL_ERROR,model1_model) != MODEL_EXISTS)
continue;

 } break;

 }
Page 729Example 14

12d Model Programming Manual
 }

 Tin tin1_tin;

 if(tin1_on) {

 if(Validate(tin1_box,CHECK_TIN_MUST_EXIST,tin1_tin) != TIN_EXISTS) continue;

 ok += Get_data(tin1_box,tin1_name);

 }

 View view1_view;

 if(view1_on) {

 if(Validate(view1_box,CHECK_VIEW_MUST_EXIST,view1_view) != VIEW_EXISTS)
continue;

 ok += Get_data(view1_box,view1_name);

 }

 if(real1_on) {

 if(Validate(real1_box,real1_value) == !OK) continue;

 }

 if(input1_on) {

 input1_text = "*******";

 if(!Validate(input1_box,input1_text)) continue;

 if ((input1_text == "") && (input1_not_blank == "not blank")) {

 Set_data(message_box,"Text must be entered");

 continue;

 }

 }

 Integer colour1_value;

 if(colour1_on) {

 if(!Validate(colour1_box,colour1_value)) continue;

 Get_data(colour1_box,colour1_text);

 }

// save the file checks for last

 //--

 // FILE CHECK BEFORE PROCESSING

 //--
Page 730 Example 14

Chapter 6 Examples
 // if the file already exists

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_CREATE,file1_name)));

 // replace y/n n=NO_FILE_ACCESS y = NO_FILE

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_WRITE,file1_name)));

 // append y/n n= NO_FILE y = FILE_EXISTS

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_NEW,file1_name)));

 // new error_message = FILE_EXISTS

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name)));

 // must exist ok message = FILE_EXISTS

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_APPEND,file1_name)));

 // append y/n n = NO_FILE y = FILE_EXISTS

 // if the file does not exist

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_CREATE,file1_name)));

 // message will be created = NO_FILE

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_WRITE,file1_name)));

 // message will be created = NO_FILE

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_NEW,file1_name)));

 // message will be created = NO_FILE

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name)));

 // error message = NO_FILE

 //Error_prompt(To_text(Validate(file1_box,GET_FILE_APPEND,file1_name)));

 // message will be created = NO_FILE

 File file1_file;

 if(file1_on) {

 switch (file1_rw) {
Page 731Example 14

12d Model Programming Manual
 case "c" : {

 if(Validate(file1_box,GET_FILE_CREATE,file1_name) == NO_FILE_ACCESS) continue;

 } break;

 case "w" : {

 if(Validate(file1_box,GET_FILE_WRITE,file1_name) == NO_FILE_ACCESS) continue;

 } break;

 case "n" : {

 if(Validate(file1_box,GET_FILE_NEW,file1_name) != NO_FILE) continue;

 } break;

 case "r" : {

 if(Validate(file1_box,GET_FILE_MUST_EXIST,file1_name) != FILE_EXISTS) continue;

 } break;

 case "a" : {

 if(Validate(file1_box,GET_FILE_APPEND,file1_name) == NO_FILE_ACCESS) continue;

 } break;

 }

 ok += File_open(file1_name,file1_rw,file1_file);

 } // if file1_on

//--

// this is the function call to your program

//--

 my_function(model1_model ,file1_file ,tin1_tin ,real1_value,

 view1_view ,input1_text ,colour1_value ,tick1_value,

 select1_text ,select1_x ,select1_y ,select1_z,

 select1_prof_chainage ,select1_prof_z ,select1_string,

 xyz1_value);

 if(select1_on && (select1_go == "go again")) {

 Set_data(message_box,"select another "+select1_type+" string: <RB> to cancel");

 Select_start(select1_button);

 continue;

 } else Set_data(message_box,"Processing complete");
Page 732 Example 14

Chapter 6 Examples
 } break; // process

 default : {

 continue;

 }

 } // switch id

 } // while !done

 return ok;

}

void main() {

 Clear_console();

 Text macro_help = "help";

 //--

 // Example call

 //--

 Integer no_choice1 = 3;

 Text choice1[no_choice1];

 choice1[1] = "choice 1";

 choice1[2] = "choice 2";

 choice1[3] = "choice 3";

// wigit label , default data , help assoc key , default data name , check data

 go_panel(

 "Sample Panel" , macro_help , "sample.mdf" ,

 1,"12dlogo2.bmp" , 180, 180,

 1,"Choice1_title" , choice1[1] , macro_help , "choice1" , choice1, no_choice1,

 1,"Model_title" , "" , macro_help , "model1" , "c" ,

 1,"Input file" , "" , macro_help , "file1" , "r" , "*.txt" ,

 1,"tin1_title" , "tin name xx" , macro_help , "tin1" , 1,

 1,"real1_title" , 99.9 , macro_help , "real1" , "check data", 0.0 , 100.0 ,

 1,"view1_title" , "1" , macro_help , "view1" ,

 1,"input1_title" , "input text" , macro_help , "input1" , "not blank" ,

 1,"Section colour" , "red" , macro_help , "colour1" ,
Page 733Example 14

12d Model Programming Manual
 1,"select1_title" , "" , macro_help , "select1" ,"" ,"no go again",

 1,"tick title" , 0 , macro_help , "tick1" ,

 1,"xyz1_title" , 0 , macro_help , "xyz1" ,

 1,"Process", macro_help);

// Select codes

 // go executes the process command automatically after an accept

 // go again start another select immediately after the last accept

// Model codes

 // c message it exists or a create message if it does not exist

 // e message it exists or a message that it does not exist

 // me message it exists or a error message if the model does not exist

//File codes

 // n create a new file and will not overwrite an existing file

 // c asks if you want to overwrite

 // w asks if you want to append (overwrites if you say no)

 // a asks if you want to append

 // r the file must exist

}

Page 734 Example 14

Chapter A Appendix - Set_ups.h File
A Appendix - Set_ups.h File
See Model Mode
See File Mode
See View Mode
See Tin Mode
See Template Mode
See Project Mode
See Directory Mode
See Function Mode
See Linestyle Mode
See Symbol Mode
See Snap Mode
See Super String Use Mode
See Select Mode
Page 735

12d Model Programming Manual
Model Mode
MODE MODE NUMBER

NO_MODEL 1

MODEL_EXISTS 2

DISK_MODEL_EXISTS 19

NEW_MODEL 3

CHECK_MODEL_MUST_EXIST 7

CHECK_MODEL_EXISTS 3

CHECK_MODEL_CREATE 4

CHECK_DISK_MODEL_MUST_EXIST 33

CHECK_EITHER_MODEL_EXISTS 38

GET_MODEL 10

GET_MODEL_CREATE 5

GET_MODEL_ERROR 13

GET_DISK_MODEL_ERROR 34

CHECK_MODEL_MUST_NOT_EXIST 60

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 736 Model Mode

Chapter A Appendix - Set_ups.h File
File Mode
MODE MODE NUMBER

NO_FILE 4

FILE_EXISTS 5

CHECK_FILE_MUST_EXIST 1

CHECK_FILE_CREATE 14

GET_FILE_CREATE 15

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 737File Mode

12d Model Programming Manual
View Mode
MODE MODE NUMBER

NO_VIEW 6

VIEW_EXISTS 7

CHECK_VIEW_MUST_EXIST 2

CHECK_VIEW_MUST_NOT_EXIST 25

GET_VIEW 11

GET_VIEW_ERROR 6

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 738 View Mode

Chapter A Appendix - Set_ups.h File
Tin Mode
MODE MODE NUMBER

NO_TIN 9

TIN_EXISTS 11

DISK_TIN_EXISTS 12

CHECK_TIN_MUST_EXIST 8

CHECK_TIN_EXISTS 61

CHECK_EITHER_TIN_EXISTS 39

CHECK_TIN_NEW 12

GET_TIN_ERROR 9

CHECK_DISK_TIN_MUST_EXIST 16

GET_TIN_CREATE 24

GET_DISK_TIN_ERROR 35

CHECK_TIN_MUST_NOT_EXIST 91

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 739Tin Mode

12d Model Programming Manual
Template Mode
MODE MODE NUMBER

NO_TEMPLATE 13

TEMPLATE_EXISTS 14

DISK_TEMPLATE_EXISTS 20

NEW_TEMPLATE 15

CHECK_TEMPLATE_EXISTS1 7

CHECK_TEMPLATE_CREATE 18

CHECK_TEMPLATE_NEW 19

CHECK_TEMPLATE_MUST_EXIST 20

CHECK_TEMPLATE_MUST_NOT_EXIST59

GET_TEMPLATE 21

GET_TEMPLATE_CREATE 22

GET_TEMPLATE_ERROR 23

GET_DISK_TEMPLATE_ERROR 40

CHECK_DISK_TEMPLATE_MUST_EXIST48

CHECK_EITHER_TEMPLATE_EXISTS 49

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 740 Template Mode

Chapter A Appendix - Set_ups.h File
Project Mode
MODE MODE NUMBER

NO_PROJECT 16

PROJECT_EXISTS 17

NEW_PROJECT 18

CHECK_PROJECT_EXISTS 26

CHECK_PROJECT_CREATE 27

CHECK_PROJECT_NEW 28

CHECK_PROJECT_MUST_EXIST 29

CHECK_DISK_PROJECT_MUST_EXIST36

GET_PROJECT 30

GET_PROJECT_CREATE 31

GET_PROJECT_ERROR 32

GET_DISK_PROJECT_ERROR 37

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 741Project Mode

12d Model Programming Manual
Directory Mode
MODE MODE NUMBER

NO_DIRECTORY 21

DIRECTORY_EXISTS 22

NEW_DIRECTORY 23

CHECK_DIRECTORY_EXISTS 41

CHECK_DIRECTORY_CREATE 42

CHECK_DIRECTORY_NEW 43

CHECK_DIRECTORY_MUST_EXIST 44

GET_DIRECTORY 45

GET_DIRECTORY_CREATE 46

GET_DIRECTORY_ERROR 47

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 742 Directory Mode

Chapter A Appendix - Set_ups.h File
Function Mode
MODE MODE NUMBER

NO_FUNCTION 24

FUNCTION_EXISTS 25

DISK_FUNCTION_EXISTS 26

NEW_FUNCTION 27

CHECK_FUNCTION_MUST_EXIST 50

CHECK_FUNCTION_EXISTS 51

CHECK_FUNCTION_CREATE 52

CHECK_DISK_FUNCTION_MUST_EXIST 53

CHECK_EITHER_FUNCTION_EXISTS 54

GET_FUNCTION 55

GET_FUNCTION_CREATE 56

GET_FUNCTION_ERROR 57

GET_DISK_FUNCTION_ERROR 58

CHECK_FUNCTION_MUST_NOT_EXIST 90

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 743Function Mode

12d Model Programming Manual
Linestyle Mode
MODE MODE NUMBER

LINESTYLE_EXISTS 80

NO_LINESTYLE 81

CHECK_LINESTYLE_MUST_EXIST 82

CHECK_LINESTYLE_MUST_NOT_EXIST 83

GET_LINESTYLE 84

GET_LINESTYLE_ERROR 85

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 744 Linestyle Mode

Chapter A Appendix - Set_ups.h File
Symbol Mode
MODE MODE NUMBER
Page 745Symbol Mode

12d Model Programming Manual
Snap Mode
MODE MODE NUMBER

Ignore_Snap 0

User_Snap 1

Program_Snap 2

Failed_Snap -1

No_Snap 0

Point_Snap 1

Line_Snap 2

Grid_Snap 3

Intersection_Snap 4

Cursor_Snap 5

Name_Snap 6

Tin_Snap 7

Model_Snap 8

Height_Snap 9
Page 746 Snap Mode

Chapter A Appendix - Set_ups.h File
Super String Use Mode
MODE MODE NUMBER

Att_ZCoord_Value 1

Att_ZCoord_Array 2

Att_Radius_Array 3

Att_Major_Array 4

Att_Diameter_Value 5

Att_Diameter_Array 6

Att_Text_Array 7

Att_Colour_Value 8

Att_Colour_Array 9

Att_Point_Array 11

Att_Visible_Array 12

Att_Contour_Array 13

Att_Annotate_Value 14

Att_Annotate_Array 15

Att_Attribute_Array 16

Att_Symbol_Value 17

Att_Symbol_Array 18

Att_Segment_Attribute_Array 19

Att_Segment_Annotate_Value 20

Att_Segment_Annotate_Array 21

Att_Segment_Text_Value 22

Att_Pipe_Justify 23

Att_Culvert_Value 24

Att_Culvert_Array 25

Att_Hole_Value 26

Att_Hatch_Value 27

Att_Solid_Value 28

Att_Bitmap_Value 29

Att_World_Annotate 30

Att_Annotate_Type 31

Att_XCoord_Array 32

Att_YCoord_Array 33

Att_Pattern_Value 33 ??

Att_Vertex_UID_Array 35

Att_Segment_UID_Array 36

Att_Vertex_Tinable_Value 37

Att_Vertex_Tinable_Array 38

Att_Segment_Tinable_Value 39
Page 747Super String Use Mode

12d Model Programming Manual
Att_Segment_Tinable_Array 40

Att_Vertex_Visible_Value 41

Att_Vertex_Visible_Array 42

Att_Segment_Visible_Value 43

Att_Segment_Visible_Array 44

Att_Vertex_Paper_Annotate 45

Att_Segment_Paper_Annotate 46

Att_Database_Point_Array 47

Att_Extrude_Value 48

Att_Interval_Value 50

Att_Vertex_Image_Value 51

Att_Vertex_Image_Array 52

Att_Matrix_Value 53

Att_Autocad_Pattern_Value 54

 Att_Null_Levels_Value 55
Page 748 Super String Use Mode

Chapter A Appendix - Set_ups.h File
Select Mode
MODE MODE NUMBER

SELECT_STRING 5509

SELECT_STRINGS 5510

NO_NAME 10

NO_CASE 8

TRUE 1

FALSE 0

OK 1
Page 749Select Mode

12d Model Programming Manual
Page 750 Select Mode

Index

Index
Symbols
, Integer num_pts) 372
,Integer max_pts,Integer &num_pts,Integer start_pt) 250, 253, 263, 293, 297, 342
,Integer max_pts,Integer &num_pts) 249, 253, 263, 293, 296, 342, 371
,Integer num_pts, Integer num_pits) 296
,Integer num_pts,Integer offset) 373
,Integer num_pts,Integer start_pt) 247, 251, 258, 265, 294, 297, 343
,Integer num_pts) 247, 248, 250, 252, 258, 262, 264, 292, 294, 296, 341, 342, 369
,Message_Box message) 532
,Real &zvalue,Integer max_pt,Integer &num_pts,Integer start_pt) 246
,Real &zvalue,Integer max_pts,Integer &num_pts) 245
,Real zvalue,Integer num_pts) 245
,Text &ret) 650
) 222, 498, 595, 596, 659

A
Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real dx,Real dy) 579
Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p) 164
Angle_prompt(Text msg,Text &ret) 656
Append (Widget widget,Widget_Pages pages) 489
Append_hip(Element elt,Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 267
Append_hip(Element elt,Real x,Real y,Real radius) 266
Append_hip(Element elt,Real x,Real y) 266
Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode) 271
Append_vip(Element elt,Real ch,Real ht,Real parabolic) 271
Append_vip(Element elt,Real ch,Real ht) 270
Append(Dynamic_Element from_de,Dynamic_Element &to_de) 129
Append(Dynamic_Text from_dt,Dynamic_Text &to_dt) 131
Append(Element &elt,Dynamic_Element de) 129
Append(Text text,Dynamic_Text &dt) 131
Append(Widget widget,Horizontal_Group group) 482
Append(Widget widget,Vertical_Group group) 484
Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut_volume,Real

&fill_volume,Real &balance_volume,Text report) 592
Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &bal-

ance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element
§ions,Integer section_colour,Integer do_polygons,D 592

Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance)
592

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer
do_sections,Dynamic_Element §ions,Integer section 591

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance,Text report) 591

Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real
&cut,Real &fill,Real &balance) 591

Apply(Real xpos,Real ypos,Real zpos,Real angle,Tin tin,Text template, Element &xsect) 591
Attribute_debug(Element elt) 244
Attribute_delete_all(Element elt) 240
Attribute_delete(Element elt,Integer att_no) 240
Attribute_delete(Element elt,Text att_name) 240
Page 751

12d Model Programming Manual
Attribute_dump(Element elt) 244
Attribute_exists(Element elt,Text att_name,Integer &att_no) 239
Attribute_exists(Element elt,Text att_name) 239

B
Breakline (Tin tin,Integer p1,Integer p2) 223
buttons 11

C
Calc_alignment(Element elt) 273
Calc_extent(Element elt) 236
Calc_extent(Model model) 201
Calc_extent(View view) 214
Change_of_angle(Line l1,Line l2,Real &angle) 169
Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3, Real &angle) 169
Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element &left_string,Element

&mid_string,Element &right_string) 594
Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element &mid_string,Element

&right_string) 594
Colour_exists(Integer col_number) 170
Colour_exists(Text col_name) 170
Colour_prompt(Text msg,Text &ret) 651
Colour_triangles(Tin tin,Integer colour, Element poly,Integer mode) 226
Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element &cont_de,Real

bold_inc,Integer bold_col,Dynamic_Element &bold_de) 584
Convert_colour(Integer col_number, Text &col_name) 170
Convert_colour(Text col_name,Integer &col_number) 170
Convert_time(Integer t1,Text &t2) 111
Convert_time(Integer t1,Text format,Text &t2) 112
Convert_time(Text &t1,Integer t2) 112
Convert(Dynamic_Element in_de,Integer mode, Integer pass_others, Dynamic_Element &out_de) 575
Convert(Element elt,Text type,Element &newelt) 575
Create_2d(Integer num_pts,Element seed) 245
Create_2d(Integer num_pts) 245
Create_3d(Integer num_pts,Element seed) 249
Create_3d(Integer num_pts) 249
Create_3d(Line line) 248
Create_4d(Integer num_pts,Element seed) 252
Create_4d(Integer num_pts) 252
Create_align() 266
Create_align(Element seed) 266
Create_angle_box(Text title,Message_Box message) 491
Create_arc_2(Real xs,Real ys,Real zs,Real radius,Real arc_length,Real start_angle) 277
Create_arc_3(Real xs,Real ys,Real zs,Real radius,Real arc_length,Real chord_angle) 277
Create_arc(Arc arc) 275
Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3) 275
Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 275
Create_arc(Real xc,Real yc,Real zc,Real radius,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 276
Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep) 276
Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir) 276
Create_button(Menu menu,Text button_text,Text button_reply) 125
Create_button(Text title,Text reply) 550
Create_child_button(Text title) 551
Create_choice_box(Text title,Message_Box message) 497
Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3) 280
Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp) 279
Page 752

Index
Create_circle(Real xc,Real yc,Real zc,Real radius) 279
Create_colour_box(Text title,Message_Box message) 498
Create_directory_box(Text title,Message_Box message,Integer mode) 502
Create_drainage(Integer num_pts,Integer num_pits) 295
Create_draw_box (Integer width,Integer height,Integer border) 503
Create_feature() 359
Create_feature(Element seed) 359
Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real radius) 360
Create_file_box(Text title,Message_Box message,Integer mode,Text wild) 504
Create_finish_button (Text title,Text reply) 551
Create_input_box(Text title,Message_Box message) 509
Create_integer_box(Text title,Message_Box message) 510
Create_interface(Integer num_pts,Element seed) 263
Create_interface(Integer num_pts) 262
Create_justify_box(Text title,Message_Box message) 511
Create_linestyle_box(Text title,Message_Box message,Integer mode) 512
Create_list_box (Text title,Message_Box message,Integer nlines) 513
Create_map_file_box(Text title,Message_Box message,Integer mode) 514
Create_menu(Text menu_title) 125
Create_message_box(Text title) 516
Create_model_box(Text title,Message_Box message,Integer mode) 516
Create_model(Text model_name) 200
Create_name_box(Text title,Message_Box message) 517
Create_named_tick_box(Text title,Integer state,Text response) 518
Create_pipe(Integer num_pts,Element seed) 341
Create_pipe(Integer num_pts) 341
Create_pipeline() 290
Create_pipeline(Element seed) 290
Create_plot_frame(Text name) 351
Create_plotter_box(Text title,Message_Box message) 522
Create_polyline(Integer num_pts,Element seed) 292
Create_polyline(Integer num_pts) 292
Create_polyline(Segment segment) 292
Create_real_box(Text title,Message_Box message) 526
Create_report_box(Text title,Message_Box message,Integer mode) 527
Create_screen_text (Text text) 528
Create_select_box(Text title,Text select_title,Integer mode,Message_Box message) 528
Create_select_button(Text title,Integer mode,Message_Box box) 551
Create_sheet_size_box(Text title,Message_Box message) 535
Create_super(Integer flag,Integer npts) 370
Create_super(Integer flag,Segment seg) 370
Create_super(Integer npts,Element seed) 370
Create_template_box(Text title,Message_Box message,Integer mode) 539
Create_text_edit_box(Text name,Message_Box box,Integer no_lines) 544
Create_text_style_box(Text title,Message_Box message) 540
Create_text_units_box(Text title,Message_Box message) 541
Create_text(Text text,Real x,Real y,Real size, Integer colour,Real angle) 281
Create_text(Text text,Real x,Real y,Real size, Integer colour) 281
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif, Integer size_mode) 282
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif,Integer size_mode,Real

offset_distance,Real rise_distance) 282
Create_text(Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif) 281
Create_tick_box(Message_Box message) 546
Create_tin_box(Text title,Message_Box message,Integer mode) 547
Create_view_box(Text title,Message_Box message,Integer mode) 548
Create_xyz_box(Text title,Message_Box message) 549
Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result) 597
Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result) 597
Page 753

12d Model Programming Manual
D
Date(Integer &d,Integer &m,Integer &y) 110
Date(Text &date) 110
Delete_hip(Element elt,Integer i) 269
Delete_vip(Element elt,Integer i) 273
Destroy_on_exit() 71
direction text 402, 412
Directory_prompt(Text msg,Text &ret) 657
Display_relative(Menu menu, Integer &across_rel,Integer &down_rel,Text &reply) 126
Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply) 126
Drainage_pipe_attribute_debug (Element elt,Integer pipe) 312
Drainage_pipe_attribute_delete (Element elt,Integer pipe,Integer att_no) 311
Drainage_pipe_attribute_delete (Element elt,Integer pipe,Text att_name) 311
Drainage_pipe_attribute_delete_all (Element elt,Integer pipe) 311
Drainage_pipe_attribute_dump (Element elt,Integer pipe) 311
Drainage_pipe_attribute_exists (Element elt, Integer pipe,Text name,Integer &no) 310
Drainage_pipe_attribute_exists (Element elt,Integer pipe,Text att_name) 310
Drainage_pit_attribute_debug (Element elt,Integer pit) 335
Drainage_pit_attribute_delete (Element elt,Integer pit,Integer att_no) 335
Drainage_pit_attribute_delete (Element elt,Integer pit,Text att_name) 334
Drainage_pit_attribute_delete_all (Element elt,Integer pit) 335
Drainage_pit_attribute_dump (Element elt,Integer pit) 335
Drainage_pit_attribute_exists (Element elt,Integer pit,Text att_name) 334
Drainage_pit_attribute_exists (Element elt,Integer pit,Text name,Integer &no) 334
Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts) 586
Drape(Tin tin,Model model,Dynamic_Element &draped_elts) 586
Draw_triangle (Tin tin,Integer tri,Integer c) 222
Draw_triangles_about_point(Tin tin,Integer pt ,Integer c) 222
Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real

&off,Segment &segment) 459
Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off)

459
Drop_point(Segment segment,Point pt_to_drop, Point &dropped_pt,Real &dist) 167
Drop_point(Segment segment,Point pt_to_drop, Point &dropped_pt) 167

E
Element_delete(Element elt) 236
Element_draw(Element elt, Integer colour) 457
Element_draw(Element elt) 457
Element_duplicate(Element elt,Element &dup_elt) 236
Element_exists(Element elt) 229
Error_prompt(Text msg) 651
Exit(Integer code) 71
Exit(Text msg) 71
Extend_string(Element elt,Real before,Real after,Element &newelt) 594

F
Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings) 586
Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts) 586
Factor(Dynamic_Element elements, Real xf,Real yf,Real zf) 577
Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element polygon_list,Dynamic_Element

&ret_inside,Dynamic_Element &ret_outside) 573
Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element

&ret_inside,Dynamic_Element &ret_outside) 573
File_close(File file) 122
Page 754

Index
File_delete(Text file_name) 121
File_exists(Text file_name) 121
File_flush(File file) 123
File_open(Text file_name, Text mode,File &file) 121
File_prompt(Text msg,Text key,Text &ret) 651
File_read_line(File file,Text &text_in) 122
File_rewind(File file) 122
File_seek(File file,Integer pos) 122
File_tell(File file,Integer &pos) 122
File_write_line(File file,Text text_out) 122
Filter(Dynamic_Element in_de,Integer mode, Integer pass_others,Real tolerance,Dynamic_Element &out_de) 576
Find_system_file (file_name,"colour_map.def","COLOUR_4D") 113
Find_system_file (Text new_file_name,Text old_file_name,Text env) 113
Find_text(Text text,Text tofind) 75
Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet) 159
Fitarc(Segment seg_1,Segment seg_2,Point start_tp, Arc &fillet) 160
Fitarc(Segment seg_1,Segment seg_2,Real radius, Point cpt,Arc &fillet) 160
Flip_triangles(Tin tin,Integer t1,Integer t2) 223
From_text(Text text, Dynamic_Text &de) 77
From_text(Text text, Integer &value,Text format) 76
From_text(Text text, Integer &value) 76
From_text(Text text, Real &value,Text format) 76
From_text(Text text, Real &value) 76
From_text(Text text, Text &value,Text format) 77
Function_prompt(Text msg,Text &ret) 656
Function_rename(Text original_name,Text new_name) 599

G
Get_2d_data(Element elt,Integer i,Real &x,Real &y) 246
Get_2d_data(Element elt,Real &z) 247
Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z) 250
Get_4d_angle(Element elt,Real &angle) 254
Get_4d_data(Element elt,Integer i, Real &x,Real &y,Real &z, Text &t) 253
Get_4d_height(Element elt,Real &height) 256
Get_4d_justify(Element elt,Integer &justify) 254
Get_4d_offset(Element elt,Real &offset) 255
Get_4d_rise(Element elt,Real &rise) 255
Get_4d_size(Element elt,Real &size) 254
Get_4d_slant(Element elt,Real &slant) 257
Get_4d_style(Element elt,Text &style) 257
Get_4d_units(Element elt,Integer &units_mode) 254
Get_4d_x_factor(Element elt,Real &xfact) 257
Get_4dmodel_version(Integer &major,Integer &minor,Text &patch) 113
Get_all_linestyles(Dynamic_Text &linestyles) 131
Get_all_textstyles(Dynamic_Text &textstyles) 131
Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc) 277
Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc, Real &radius,Real &xs,Real &ys,Real &zs,Real &xe,Real

&ye,Real &ze) 278
Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze) 278
Get_arc_radius(Element elt,Real &radius) 277
Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs) 277
Get_arc(Segment segment, Arc &arc) 154
Get_attribute_length(Element elt,Integer att_no,Integer &att_len) 243
Get_attribute_length(Element elt,Text att_name,Integer &att_len) 242
Get_attribute_name(Element elt,Integer att_no,Text &name) 242
Get_attribute_type(Element elt,Integer att_no,Integer &att_type) 242
Get_attribute_type(Element elt,Text att_name,Integer &att_type) 242
Page 755

12d Model Programming Manual
Get_attribute(Element elt,Integer att_no,Integer &att) 241
Get_attribute(Element elt,Integer att_no,Real &att) 242
Get_attribute(Element elt,Integer att_no,Text &att) 241
Get_attribute(Element elt,Text att_name,Integer &att) 241
Get_attribute(Element elt,Text att_name,Real &att) 241
Get_attribute(Element elt,Text att_name,Text &att) 241
Get_breakline(Element elt,Integer &break_type) 231
Get_centre(Arc arc) 140
Get_chainage(Element elt,Real &start_chain) 232
Get_char(Text t,Integer pos, Integer &c) 78
Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &radius) 280
Get_colour(Element,Integer &colour) 230
Get_colour(Tin tin,Integer &colour) 226
Get_command_argument(Integer i,Text &argument) 70
Get_cursor_position(Integer &x,Integer &y) 474
Get_data (Screen_Text widget,Text &data) 528
Get_data (Text_Edit_Box widget,Text &data) 544
Get_data(Angle_Box box,Text &data) 492
Get_data(Choice_Box box,Text &data) 498
Get_data(Colour_Box box,Text &data) 499
Get_data(Directory_Box box,Text &data) 503
Get_data(Element elt,Integer i,Real &x,Real &y,Real &z) 232
Get_data(File_Box box,Text &data) 505
Get_data(Input_Box box,Text &data) 510
Get_data(Integer_Box box,Text &data) 511
Get_data(Justify_Box box,Text &data) 512
Get_data(Linestyle_Box box,Text &data) 513
Get_data(Map_File_Box box,Text &data) 515
Get_data(Message_Box box,Text &data) 516
Get_data(Model_Box box,Text &data) 517
Get_data(Name_Box box,Text &data) 518
Get_data(Named_Tick_Box box,Text &data) 519
Get_data(Plotter_Box box,Text &data) 523
Get_data(Real_Box box,Text &data) 526
Get_data(Report_Box box,Text &data) 527
Get_data(Select_Box select,Text &string) 530
Get_data(Select_Boxes select,Integer n,Text &string) 533
Get_data(Select_Button select,Text &string) 553
Get_data(Sheet_Size_Box box,Text &data) 536
Get_data(Template_Box box,Text &data) 540
Get_data(Text_Style_Box box,Text &data) 541
Get_data(Text_Units_Box box,Text &data) 542
Get_data(Tick_Box box,Text &data) 546
Get_data(Tin_Box box,Text &data) 547
Get_data(View_Box box,Text &data) 548
Get_data(XYZ_Box box,Text &data) 549
Get_directory (File_Box box,Text &data) 506
Get_distance_3d(Point p1,Point p2) 165
Get_distance(Point p1,Point p2) 165
Get_drainage_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 298
Get_drainage_float (Element,Integer &float) 298
Get_drainage_flow(Element elt,Integer &dir) 300
Get_drainage_fs_tin (Element,Tin &tin) 299
Get_drainage_hc_adopted_level(Element elt,Integer h,Real &level) 336
Get_drainage_hc_bush(Element elt,Integer h,Text &bush) 336
Get_drainage_hc_chainage(Element elt,Integer h,Real &chainage) 340
Get_drainage_hc_colour(Element elt,Integer h,Integer &colour) 337
Get_drainage_hc_depth(Element elt,Integer h,Real &depth) 337
Page 756

Index
Get_drainage_hc_diameter(Element elt,Integer h,Real &diameter) 337
Get_drainage_hc_grade(Element elt,Integer h,Real &grade) 338
Get_drainage_hc_hcb(Element elt,Integer h,Integer &hcb) 338
Get_drainage_hc_length(Element elt,Integer h,Real &length) 338
Get_drainage_hc_level(Element elt,Integer h,Real &level) 339
Get_drainage_hc_material(Element elt,Integer h,Text &material) 339
Get_drainage_hc_name(Element elt,Integer h,Text &name) 339
Get_drainage_hc_side(Element elt,Integer h,Integer &side) 340
Get_drainage_hc_type(Element elt,Integer h,Text &type) 340
Get_drainage_hc(Element elt,Integer h,Real &x,Real &y,Real &z) 336
Get_drainage_hcs(Element elt,Integer &no_hcs) 336
Get_drainage_ns_tin (Element,Tin &tin) 299
Get_drainage_outfall_height(Element elt,Real &ht) 299
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Integer &att) 310
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Real &att) 310
Get_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Text &att) 309
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Integer &att) 309
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Real &att) 309
Get_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Text &att) 308
Get_drainage_pipe_attribute_length (Element elt,Integer pipe,Integer att_no,Integer &att_len) 312
Get_drainage_pipe_attribute_length (Element elt,Integer pipe,Text att_name,Integer &att_len) 312
Get_drainage_pipe_attribute_name (Element elt,Integer pipe,Integer att_no,Text &name) 312
Get_drainage_pipe_attribute_type (Element elt,Integer pipe,Integer att_name,Integer &att_type 313
Get_drainage_pipe_attribute_type (Element elt,Integer pipe,Text att_name,Integer &att_type) 313
Get_drainage_pipe_cover (Element,Integer pipe,Real &minc,Real &maxc) 301
Get_drainage_pipe_diameter(Element elt,Integer p,Real &diameter) 301
Get_drainage_pipe_flow(Element elt,Integer p,Real &flow) 303
Get_drainage_pipe_grade(Element elt,Integer p,Real &grade) 304
Get_drainage_pipe_hgls(Element elt,Integer p,Real &lhs,Real &rhs) 302
Get_drainage_pipe_inverts(Element elt,Integer p,Real &lhs,Real &rhs) 301
Get_drainage_pipe_length(Element elt,Integer p,Real &length) 304
Get_drainage_pipe_name(Element elt,Integer p,Text &name) 302
Get_drainage_pipe_number_of_attributes(Element elt,Integer pipe,Integer &no_atts) 312
Get_drainage_pipe_type(Element elt,Integer p,Text &type) 303
Get_drainage_pipe_velocity(Element elt,Integer p,Real &velocity) 303
Get_drainage_pit_angle (Element,Integer pit,Real &angle,Integer trunk) 316
Get_drainage_pit_angle(Element elt,Integer p,Real &angle) 316
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Integer &att) 328
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Real &att) 328
Get_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Text &att) 328
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Integer &att) 329
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Real &att) 329
Get_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Text &att) 329
Get_drainage_pit_attribute_length (Element elt,Integer pit,Integer att_no,Integer &att_len) 327
Get_drainage_pit_attribute_length (Element elt,Integer pit,Text att_name,Integer &att_len) 327
Get_drainage_pit_attribute_name (Element elt,Integer pit,Integer att_no,Text &name) 327
Get_drainage_pit_attribute_type (Element elt,Integer pit,Integer att_name,Integer &att_type) 327
Get_drainage_pit_attribute_type (Element elt,Integer pit,Text att_name,Integer &att_type) 327
Get_drainage_pit_branches(Element,Integer pit,Dynamic_Element &branches) 320
Get_drainage_pit_chainage(Element elt,Integer p,Real &chainage) 320
Get_drainage_pit_depth(Element elt,Integer p,Real &depth) 320
Get_drainage_pit_diameter(Element elt,Integer p,Real &diameter) 316
Get_drainage_pit_drop(Element elt,Integer p,Real &drop) 320
Get_drainage_pit_float (Element,Integer pit,Integer &float) 317
Get_drainage_pit_hgls(Element elt,Integer p,Real &lhs,Real &rhs) 318
Get_drainage_pit_inverts(Element elt,Integer p,Real &lhs,Real &rhs) 317
Get_drainage_pit_name(Element elt,Integer p,Text &name) 318
Get_drainage_pit_number_of_attributes(Element elt,Integer pit,Integer &no_atts) 329
Page 757

12d Model Programming Manual
Get_drainage_pit_road_chainage(Element elt,Integer p,Real &chainage) 319
Get_drainage_pit_road_name(Element elt,Integer p,Text &name) 319
Get_drainage_pit_type(Element elt,Integer p,Text &type) 320
Get_drainage_pit(Element elt,Integer p,Real &x,Real &y,Real &z) 316
Get_drainage_pits(Element elt,Integer &npits) 321
Get_drainage_trunk (Element,Element &trunk) 300
Get_elements(Model model,Dynamic_Element &de, Integer &total_no) 200
Get_enable(Widget widget,Integer &mode) 477
Get_end_chainage(Element elt,Real &chainage) 232
Get_end(Arc arc) 141
Get_end(Line line) 138
Get_end(Segment segment,Point &point) 155
Get_extent_x(Element elt,Real &xmin,Real &xmax) 235
Get_extent_x(Model model,Real &xmin,Real &xmax) 200
Get_extent_y(Element elt,Real &ymin,Real &ymax) 236
Get_extent_y(Model model,Real &ymin,Real &ymax) 201
Get_extent_z(Element elt,Real &zmin,Real &zmax) 236
Get_extent_z(Model model,Real &zmin,Real &zmax) 201
Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc) 360
Get_feature_radius(Element elt,Real &radius) 360
Get_help (Widget widget,Integer &help) 486
Get_help (Widget widget,Text &help) 487
Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &radius,Real &left_spiral,Real &right_spiral) 268
Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &radius) 267
Get_hip_data(Element elt,Integer i,Real &x,Real &y) 267
Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y) 270
Get_hip_id (Element,Integer position,Integer &id) 274
Get_hip_points(Element elt,Integer &num_pts) 267
Get_hip_type(Element elt,Integer hip_no,Text &type) 270
Get_id(Element elt,Integer &id) 230
Get_id(Widget) 481
Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f) 264
Get_item(Dynamic_Element &de,Integer i,Element &elt) 129
Get_item(Dynamic_Text &dt,Integer i,Text &text) 130
Get_length_3d(Element elt,Real &length) 458
Get_length_3d(Segment segment,Real &length) 158
Get_length(Element elt,Real &length) 458
Get_length(Segment segment,Real &length) 158
Get_line(Segment segment, Line &line) 154
Get_macro_name() 112
Get_model_attribute (Model model,Integer att_no,Integer &att) 207
Get_model_attribute (Model model,Integer att_no,Real &att) 208
Get_model_attribute (Model model,Integer att_no,Text &att) 207
Get_model_attribute (Model model,Text att_name,Integer &att) 207
Get_model_attribute (Model model,Text att_name,Real &att) 207
Get_model_attribute (Model model,Text att_name,Text &att) 207
Get_model_attribute_length (Model model,Integer att_no,Integer &att_len) 210
Get_model_attribute_length (Model model,Text att_name,Integer &att_len) 210
Get_model_attribute_name (Model model,Integer att_no,Text &name) 209
Get_model_attribute_type (Model model,Integer att_name,Integer &att_type) 209
Get_model_create(Text model_name) 200
Get_model_number_of_attributes(Model model,Integer &no_atts) 210
Get_model(Element elt,Model &model) 233
Get_model(Text model_name) 197
Get_module_license(Text module_name) 112
Get_name(Element elt,Text &elt_name) 231
Get_name(Function func,Text &name) 599
Get_name(Model model,Text &model_name) 198
Page 758

Index
Get_name(Tin tin,Text &tin_name) 215
Get_name(View view,Text &view_name) 211
Get_name(Widget widget,Text &text) 478
Get_number_of_attributes(Element elt,Integer &no_atts) 240
Get_number_of_command_arguements 70
Get_number_of_items(Dynamic_Element &de,Integer &no_items) 128
Get_number_of_items(Dynamic_Text &dt,Integer &no_items) 130
Get_number_of_items(Model model,&num) 200
Get_optional(Widget widget,Integer &mode) 478
Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z) 343
Get_pipe_diameter(Element elt, Real &diameter) 344
Get_pipe_justify(Element elt,Integer &justify) 344
Get_pipeline_diameter(Element pipeline,Real &diameter) 291
Get_pipeline_length (Element pipeline,Real &length) 291
Get_plot_frame_colour(Element elt,Integer &colour) 353
Get_plot_frame_draw_border(Element elt,Integer &draw_border) 353
Get_plot_frame_draw_title_file(Element elt,Integer &draw_title) 353
Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport) 353
Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t) 352
Get_plot_frame_name(Element elt,Text &name) 351
Get_plot_frame_origin(Element elt,Real &x,Real &y) 351
Get_plot_frame_plot_file(Element elt,Text &plot_file) 354
Get_plot_frame_plotter_name(Element elt,Text &plotter_name) 354
Get_plot_frame_plotter(Element elt,Integer &plotter) 354
Get_plot_frame_rotation(Element elt,Real &rotation) 351
Get_plot_frame_scale(Element elt,Real &scale) 351
Get_plot_frame_sheet_size(Element elt,Real &w,Real &h) 352
Get_plot_frame_sheet_size(Element elt,Text &size) 352
Get_plot_frame_text_size(Element elt,Real &text_size) 352
Get_plot_frame_textstyle(Element elt,Text &textstyle) 353
Get_plot_frame_title_1(Element elt,Text &title) 354
Get_plot_frame_title_2(Element elt,Text &title) 354
Get_plot_frame_title_file(Element elt,Text &title_file) 355
Get_point(Segment segment, Point &point) 154
Get_points(Element elt,Integer &numpts) 230
Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 294
Get_position(Element elt,Real ch,Real &x,Real &y, Real &z,Real &inst_dir) 459
Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &radius, Real &inst_grade) 459
Get_project_attribute (Integer att_no,Integer &att) 194
Get_project_attribute (Integer att_no,Real &att) 195
Get_project_attribute (Integer att_no,Text &att) 194
Get_project_attribute (Text att_name,Integer &att) 194
Get_project_attribute (Text att_name,Real &att) 193
Get_project_attribute (Text att_name,Text &att) 195
Get_project_attribute_length (Integer att_no,Integer &att_len) 192
Get_project_attribute_length (Text att_name,Integer &att_len) 193
Get_project_attribute_name (Integer att_no,Text &name) 192
Get_project_attribute_type (Integer att_no,Integer &att_type) 193
Get_project_attribute_type (Text att_name,Integer &att_type) 193
Get_project_colours(Dynamic_Text &colours) 171
Get_project_functions(Dynamic_Text &function_names) 570
Get_project_models(Dynamic_Text &model_names) 197
Get_project_name(Text &name) 570
Get_project_number_of_attributes(Integer &no_atts) 192
Get_project_templates(Dynamic_Text &template_names) 590
Get_project_tins(Dynamic_Text &tins) 215
Get_project_views(Dynamic_Text &view_names) 212
Get_radius(Arc arc) 140
Page 759

12d Model Programming Manual
Get_read_locks (Element elt,Integer &no_locks) 461
Get_segment(Element elt,Integer i,Segment &seg) 157
Get_segments(Element elt,Integer &nsegs) 156
Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht) 531
Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real &ht) 535
Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht) 554
Get_select_direction(Select_Box select,Integer &dir) 531
Get_select_direction(Select_Boxes select,Integer n,Integer &dir) 535
Get_select_direction(Select_Button select,Integer &dir) 554
Get_size (Draw_Box,Integer &x,Integer &y) 503
Get_size (Widget widget,Integer &x,Integer &y) 480
Get_sort (List_Box box,Integer &mode) 514
Get_start(Arc arc) 141
Get_start(Line line) 138
Get_start(Segment segment,Point &point) 155
Get_style(Element elt,Text &elt_style) 231
Get_subtext(Text text,Integer start,Integer end) 75
Get_super_2d_level (Element,Real &level) 377
Get_super_culvert (Element,Real &w,Real &h) 386
Get_super_data(Element,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f) 372
Get_super_diameter (Element,Real &diameter) 383
Get_super_pipe_justify (Element,Integer &justify) 381
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Integer &att) 446
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Real &att) 446
Get_super_segment_attribute (Element elt,Integer seg,Integer att_no,Text &att) 446
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Integer &att) 445
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Real &att) 446
Get_super_segment_attribute (Element elt,Integer seg,Text att_name,Text &att) 445
Get_super_segment_attribute_length (Element elt,Integer seg,Integer att_no,Integer &att_len) 448
Get_super_segment_attribute_length (Element elt,Integer seg,Text att_name,Integer &att_len) 447
Get_super_segment_attribute_name (Element elt,Integer seg,Integer att_no,Text &name) 447
Get_super_segment_attribute_type (Element elt,Integer seg,Integer att_name,Integer &att_type) 447
Get_super_segment_attribute_type (Element elt,Integer seg,Text att_name,Integer &att_type) 447
Get_super_segment_colour (Element,Integer seg,Integer &colour) 378
Get_super_segment_culvert (Element,Integer seg,Real &w,Real &h) 386
Get_super_segment_diameter (Element,Integer seg,Real &diameter) 384
Get_super_segment_major (Element,Integer seg,Integer &major) 379
Get_super_segment_number_of_attributes(Element elt,Integer seg,Integer &no_atts) 445
Get_super_segment_radius (Element,Integer seg,Real &radius) 379
Get_super_segment_text_angle (Element,Integer vert,Real &a) 416
Get_super_segment_text_colour (Element,Integer vert,Integer &c) 415
Get_super_segment_text_justify (Element,Integer vert,Integer &j) 414
Get_super_segment_text_offset_height (Element,Integer vert,Real &o) 415
Get_super_segment_text_offset_width (Element,Integer vert,Real &o) 415
Get_super_segment_text_size (Element,Integer vert,Real &s) 416
Get_super_segment_text_slant (Element,Integer vert,Real &s) 417
Get_super_segment_text_style (Element,Integer vert,Text &s) 417
Get_super_segment_text_type (Element,Integer &type) 414
Get_super_segment_text_x_factor (Element,Integer vert,Real &x) 416
Get_super_segment_tinability (Element,Integer seg,Integer &tinability) 425
Get_super_segment_visibility (Element,Integer seg,Integer &visibility) 455
Get_super_use_2d_level (Element,Integer &use) 376
Get_super_use_3d_level (Element,Integer &use) 376
Get_super_use_culvert (Element,Integer &use) 384
Get_super_use_diameter (Element,Integer &use) 381
Get_super_use_pipe_justify (Element,Integer &use) 380
Get_super_use_segment_annotation_array(Element,Integer &use) 421
Get_super_use_segment_annotation_value(Element,Integer &use) 420
Page 760

Index
Get_super_use_segment_attribute (Element,Integer &use) 440
Get_super_use_segment_colour (Element,Integer &use) 377
Get_super_use_segment_culvert (Element,Integer &use) 385
Get_super_use_segment_diameter (Element,Integer &use) 382
Get_super_use_segment_radius (Element,Integer &use) 378
Get_super_use_segment_text_array (Element,Integer &use) 413
Get_super_use_segment_text_value (Element,Integer &use) 412
Get_super_use_symbol (Element,Integer &use) 387
Get_super_use_tinability (Element,Integer &use) 421
Get_super_use_vertex_annotation_array(Element,Integer &use) 411
Get_super_use_vertex_annotation_value(Element,Integer &use) 411
Get_super_use_vertex_attribute (Element,Integer &use) 430
Get_super_use_vertex_point_number (Element,Integer &use) 426
Get_super_use_vertex_symbol (Element,Integer &use) 388
Get_super_use_vertex_text_array (Element,Integer &use) 404
Get_super_use_vertex_text_value (Element,Integer &use) 403
Get_super_use_visibility (Element,Integer &use) 451
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Integer &att) 436
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Real &att) 437
Get_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Text &att) 436
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Integer &att) 436
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Real &att) 436
Get_super_vertex_attribute (Element elt,Integer vert,Text att_name,Text &att) 435
Get_super_vertex_attribute_length (Element elt,Integer vert,Integer att_no,Integer &att_len) 438
Get_super_vertex_attribute_length (Element elt,Integer vert,Text att_name,Integer &att_len) 437
Get_super_vertex_attribute_name (Element elt,Integer vert,Integer att_no,Text &name) 437
Get_super_vertex_attribute_type (Element elt,Integer vert,Integer att_name,Integer &att_type) 438
Get_super_vertex_attribute_type(Element elt,Integer vert,Text att_name,Integer &att_type) 438
Get_super_vertex_coord (Element,Integer vert,Real &x,Real &y,Real &z) 374
Get_super_vertex_number_of_attributes(Element elt,Integer vert,Integer &no_atts) 435
Get_super_vertex_point_number (Element,Integer vert,Integer &point_number) 426
Get_super_vertex_symbol_colour (Element,Integer vert,Integer &c) 388
Get_super_vertex_symbol_offset_height(Element,Integer vert,Real &r) 389
Get_super_vertex_symbol_offset_width (Element,Integer vert,Real &o) 389
Get_super_vertex_symbol_rotation (Element,Integer vert,Real &a) 390
Get_super_vertex_symbol_size (Element,Integer vert,Real &s) 390
Get_super_vertex_symbol_style (Element,Integer vert,Text &s) 390
Get_super_vertex_text (Element,Integer vert,Text &text) 404
Get_super_vertex_text_angle (Element,Integer vert,Real &a) 406
Get_super_vertex_text_colour (Element,Integer vert,Integer &c) 406
Get_super_vertex_text_justify (Element,Integer vert,Integer &j) 405
Get_super_vertex_text_offset_height (Element,Integer vert,Real &o) 406
Get_super_vertex_text_offset_width (Element,Integer vert,Real &o) 405
Get_super_vertex_text_size (Element,Integer vert,Real &s) 407
Get_super_vertex_text_slant (Element,Integer vert,Real &s) 407
Get_super_vertex_text_style (Element,Integer vert,Text &s) 408
Get_super_vertex_text_type (Element,Integer &type) 405
Get_super_vertex_text_x_factor (Element,Integer vert,Real &x) 407
Get_super_vertex_tinability (Element,Integer vert,Integer &tinability) 423
Get_super_vertex_visibility (Element,Integer vert,Integer &visibility) 453
Get_text_angle(Element elt,Real &angle) 283
Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real &angle,Integer &justifica-

tion,Integer &size_mode,Real &offset_dist,Real &rise_dist) 286
Get_text_height(Element elt,Real &height) 285
Get_text_justify(Element elt,Integer &justify) 283
Get_text_length(Element elt,Real &length) 285
Get_text_offset(Element elt,Real &offset) 284
Get_text_rise(Element elt,Real &rise) 284
Page 761

12d Model Programming Manual
Get_text_size(Element elt,Real &size) 283
Get_text_slant(Element elt,Real &slant) 285
Get_text_style(Element elt,Text &style) 286
Get_text_units(Element elt,Integer &units_mode) 283
Get_text_value(Element elt,Text &text) 282
Get_text_x_factor(Element elt,Real &xfact) 286
Get_text_xy(Element elt,Real &x, Real &y) 282
Get_time_created(Element elt,Integer &time) 232
Get_time_updated(Element elt,Integer &time) 233
Get_tin(Element elt) 233
Get_tin(Text tin_name) 215
Get_tooltip (Widget widget,Text &help) 486
Get_type (Function_Box box,Integer &type) 507
Get_type (Function_Box box,Text &type) 507
Get_type(Element elt,Integer &elt_type) 231
Get_type(Element elt,Text &elt_type) 231
Get_type(Segment segment) 154
Get_type(View view,Text &type) 212
Get_user_name(Text &name) 112
Get_view(Text view_name) 212
Get_vip_data(Element elt,Integer i, Real &ch,Real &ht,Real ¶bolic) 271
Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode) 272
Get_vip_data(Element elt,Integer i,Real &ch,Real &ht) 271
Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height) 274
Get_vip_id (Element,Integer position,Integer &id) 274
Get_vip_points(Element elt,Integer &num_pts) 271
Get_vip_type(Element elt,Integer vip_no,Text &type) 273
Get_widget_position(Widget widget,Integer &x,Integer &y) 480
Get_widget_size(Widget widget,Integer &w,Integer &h) 480
Get_wildcard (File_Box box,Text &data) 505
Get_write_locks(Element elt,Integer &no_locks) 461
Get_x(Point pt) 136
Get_y(Point pt) 136
Get_z(Point pt) 136
Getenv (Text env) 113

H
Head_to_tail(Dynamic_Element in_list, Dynamic_Element &out_list) 574
Helmert(Dynamic_Element elements, Real rotate,Real scale,Real dx,Real dy) 578
Hide_widget(Widget widget) 479
Horizontal_Group Create_button_group() 482
Horizontal_Group Create_horizontal_group(Integer mode) 481

I
Insert_hip(Element elt,Integer i, Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 269
Insert_hip(Element elt,Integer i, Real x,Real y,Real radius) 269
Insert_hip(Element elt,Integer i,Real x,Real y) 269
Insert_text(Text &text,Integer start,Text sub) 76
Insert_vip(Element elt,Integer i, Real ch,Real ht,Real parabolic) 273
Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode) 273
Insert_vip(Element elt,Integer i,Real ch,Real ht) 272
Integer Null(Element elt) 235
Integer Set_size (Widget widget,Integer x,Integer y) 480
Integer Set_super_pipe_justify (Element,Integer justify) 381
Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side, Element

&interface_string,Dynamic_Element &tadpoles) 589
Page 762

Index
Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side,Element
&interface_string) 589

Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2) 162, 163
Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2) 162
Is_null(Real value) 571
Is_practise_version() 114

J
Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real z2,Element

&joined_string) 595
justification point 387, 402, 412
Justify_prompt(Text msg,Text &ret) 656

L
Linestyle_prompt(Text msg,Text &ret) 655
Locate_point(Point from,Real angle,Real dist,Point &to) 166
Loop_clean(Element elt,Point ok_pt,Element &new_elt) 461

M
Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text style) 470
Map_file_close(Map_File file) 470
Map_file_create(Map_File &file) 470
Map_file_find_key(Map_File file,Text key, Integer &number) 471
Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer &colour,Integer &ptln,Text

&style) 471
Map_file_number_of_keys(Map_File file,Integer &number) 470
Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file) 470
Match_name(Dynamic_Element de,Text reg_exp, Dynamic_Element &matched) 569
Match_name(Text name,Text reg_exp) 569
Menu_delete(Menu menu) 125
Model_attribute_debug (Model model) 206
Model_attribute_delete (Model model,Integer att_no) 206
Model_attribute_delete (Model model,Text att_name) 206
Model_attribute_delete_all (Model model,Element elt) 206
Model_attribute_dump (Model model) 206
Model_attribute_exists (Model model,Text att_name) 205
Model_attribute_exists (Model model,Text name,Integer &no) 205
Model_delete(Model model) 202
Model_draw(Model model,Integer colour) 202
Model_draw(Model model) 202
Model_duplicate(Model model,Text dup_name) 201
Model_exists(Model model) 197
Model_exists(Text model_name) 197
Model_get_views(Model model, Dynamic_Text &view_names) 212
Model_prompt(Text msg,Text &ret) 652
Model_rename(Text original_name,Text new_name) 202
mouse buttons

LB 11
left 11
MB 11
middle 11
RB 11
right 11
Page 763

12d Model Programming Manual
N
Name_prompt(Text msg,Text &ret) 658
Null_by_angle_length (Tin tin,Real a1,Real l1,Real a2,Real l2) 224
Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max) 571
Null_ht(Dynamic_Element elements,Real height) 571
Null_item(Dynamic_Element &de,Integer i) 129
Null_triangles(Tin tin, Element poly, Integer mode) 224
Null(Dynamic_Element &de) 128
Null(Dynamic_Text &dt) 130
Null(Model model) 202
Null(Real value) 571
Null(Tin tin) 224
Null(View view) 211
Numchr(Text text) 74

O
Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point

&p1,Point &p2) 163

P
Parallel(Arc arc, Real distance, Arc ¶llelled) 159
Parallel(Element elt, Real distance, Element ¶llelled) 460
Parallel(Line line,Real distance,Line ¶llelled) 159
Parallel(Segment segment, Real dist, Segment ¶llelled) 159
Plan_area(Element elt, Real &plan_area) 458
Plan_area(Segment segment,Real &plan_area) 158
Plot_ppf_file(Text name) 626
Plotter_prompt(Text msg,Text &ret) 654
Print(Integer value) 120
Print(Real value) 120
Print(Text msg) 120
Project_attribute_debug () 192
Project_attribute_delete (Integer att_no) 191
Project_attribute_delete (Text att_name) 191
Project_attribute_delete_all (Element elt) 192
Project_attribute_dump() 192
Project_attribute_exists (Text att_name) 191
Project_attribute_exists (Text name,Integer &no) 191
Project_prompt(Text msg,Text &ret) 657
Projection(Segment segment,Point start_point, Real dist,Point &projected_pt) 168
Projection(Segment segment,Real dist,Point &projected_pt) 168
Prompt(Text msg,Integer &ret) 650
Prompt(Text msg,Real &ret) 650
Prompt(Text msg,Text &ret) 650
Prompt(Text msg) 650

R
Reset_colour_triangles(Tin tin,Element poly,Integer mode) 227
Reset_colour_triangles(Tin tin) 227
Reset_null_ht(Dynamic_Element elements,Real height) 572
Reset_null_triangles(Tin tin,Element poly, Integer mode) 224
Reset_null_triangles(Tin tin) 224
Retain_on_exit() 71
Retriangulate (Tin tin) 223
Page 764

Index
Reverse (Segment segment) 156
Reverse(Arc arc) 142
Reverse(Line line) 138
Rotate(Dynamic_Element elements, Real xorg,Real yorg,Real angle) 580

S
Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht) 456
Select_string(Text msg,Element &string) 456
Set_2d_data(Element elt,Integer i,Real x, Real y) 248
Set_2d_data(Element elt,Real z) 248
Set_3d_data(Element elt,Integer i,Real x, Real y,Real z) 251
Set_4d_angle(Element elt,Real angle) 259
Set_4d_data(Element elt,Integer i,Real x, Real y,Real z,Text t) 258
Set_4d_height(Element elt,Real height) 261
Set_4d_justify(Element elt,Integer justify) 259
Set_4d_offset(Element elt,Real offset) 260
Set_4d_rise(Element elt,Real rise) 260
Set_4d_size(Element elt,Real size) 259
Set_4d_slant(Element elt,Real slant) 261
Set_4d_style(Element elt,Text style) 262
Set_4d_units(Element elt,Integer units_mode) 259
Set_4d_x_factor(Element elt,Real xfact) 261
Set_arc_centre(Element elt,Real xc,Real yc,Real zc) 278
Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real radius,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze) 279
Set_arc_end(Element elt,Real xe,Real ye,Real ze) 279
Set_arc_radius(Element elt,Real radius) 278
Set_arc_start(Element elt,Real xs,Real ys,Real zs) 279
Set_arc(Segment &segment, Arc arc) 155
Set_attribute(Element elt,Integer att_no,Integer att) 244
Set_attribute(Element elt,Integer att_no,Real att) 244
Set_attribute(Element elt,Integer att_no,Text att) 243
Set_attribute(Element elt,Text att_name,Integer att) 243
Set_attribute(Element elt,Text att_name,Real att) 243
Set_attribute(Element elt,Text att_name,Text att) 243
Set_border(Horizontal_Group group,Integer bx,Integer by) 483
Set_border(Horizontal_Group group,Text text) 482
Set_border(Vertical_Group group,Integer bx,Integer by) 485
Set_border(Vertical_Group group,Text text) 484
Set_breakline(Element elt,Integer break_type) 233
Set_chainage(Element elt,Real start_chain) 234
Set_char(Text t,Integer pos, Integer c) 79
Set_circle_data(Element e,Real xc,Real yc,Real zc,Real radius) 280
Set_colour(Element elt,Integer colour) 233
Set_colour(Tin tin,Integer colour) 226
Set_cursor_position(Integer x,Integer y) 474
Set_cursor_position(Widget widget) 480
Set_data (Colour_Box box,Text data) 499
Set_data (Screen_Text widget,Text data) 528
Set_data (Text_Edit_Box widget,Text data) 544
Set_data(Angle_Box box,Real data) 492
Set_data(Choice_Box box,Text data) 498
Set_data(Colour_Box box,Integer data) 499
Set_data(Directory_Box box,Text data) 503
Set_data(File_Box box,Text data) 505
Set_data(Input_Box box,Text data) 510
Set_data(Integer_Box box,Integer data) 511
Set_data(Justify_Box box,Integer data) 512
Page 765

12d Model Programming Manual
Set_data(Linestyle_Box box,Text data) 513
Set_data(Map_File_Box box,Text data) 515
Set_data(Message_Box box,Text data) 516
Set_data(Model_Box box,Text data) 517
Set_data(Name_Box box,Text data) 518
Set_data(Named_Tick_Box box,Text data) 519
Set_data(Plotter_Box box,Text data) 523
Set_data(Real_Box box,Real data) 526
Set_data(Report_Box box,Text data) 528
Set_data(Select_Box select,Text string) 529
Set_data(Select_Boxes select,Integer n,Text string) 533
Set_data(Select_Button select,Text string) 552
Set_data(Sheet_Size_Box box,Text data) 536
Set_data(Template_Box box,Text data) 540
Set_data(Text_Style_Box box,Text data) 541
Set_data(Text_Units_Box box,Integer data) 542
Set_data(Tick_Box box,Text data) 546
Set_data(Tin_Box box,Text data) 548
Set_data(View_Box box,Text data) 549
Set_data(XYZ_Box box,Real x,Real y,Real z) 550
Set_directory (File_Box box,Text data) 506
Set_drainage_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f) 298
Set_drainage_float (Element,Integer float) 299
Set_drainage_flow(Element elt,Integer dir) 300
Set_drainage_fs_tin (Element,Tin tin) 299
Set_drainage_hc_adopted_level(Element,Integer hc,Real level) 336
Set_drainage_hc_bush (Element,Integer hc,Text bush) 337
Set_drainage_hc_colour (Element,Integer hc,Integer colour) 337
Set_drainage_hc_depth (Element,Integer hc,Real depth) 337
Set_drainage_hc_diameter (Element,Integer hc,Real diameter) 338
Set_drainage_hc_grade (Element,Integer hc,Real grade) 338
Set_drainage_hc_hcb (Element,Integer hc,Integer hcb) 338
Set_drainage_hc_length (Element,Integer hc,Real length) 339
Set_drainage_hc_level (Element,Integer hc,Real level) 339
Set_drainage_hc_material (Element,Integer hc,Text material) 339
Set_drainage_hc_name (Element,Integer hc,Text name) 340
Set_drainage_hc_side (Element,Integer hc,Integer side) 340
Set_drainage_hc_type (Element,Integer hc,Text type) 340
Set_drainage_ns_tin (Element,Tin tin) 299
Set_drainage_outfall_height(Element elt,Real ht) 299
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Integer att) 314
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Real att) 315
Set_drainage_pipe_attribute (Element elt,Integer pipe,Integer att_no,Text att) 314
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Integer att) 313
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Real att) 314
Set_drainage_pipe_attribute (Element elt,Integer pipe,Text att_name,Text att) 313
Set_drainage_pipe_cover (Element,Integer pipe,Real cover) 301
Set_drainage_pipe_diameter(Element elt,Integer p,Real diameter) 301
Set_drainage_pipe_flow(Element elt,Integer p,Real flow) 304
Set_drainage_pipe_hgls(Element elt,Integer p,Real lhs,Real rhs) 302
Set_drainage_pipe_inverts(Element elt,Integer p,Real lhs,Real rhs) 301
Set_drainage_pipe_name(Element elt,Integer p,Text name) 302
Set_drainage_pipe_type(Element elt,Integer p,Text type) 303
Set_drainage_pipe_velocity(Element elt,Integer p,Real velocity) 303
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Integer att) 332
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Real att) 332
Set_drainage_pit_attribute (Element elt,Integer pit,Integer att_no,Text att) 333
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Integer att) 333
Page 766

Index
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Real att) 333
Set_drainage_pit_attribute (Element elt,Integer pit,Text att_name,Text att) 334
Set_drainage_pit_diameter(Element elt,Integer p,Real diameter) 317
Set_drainage_pit_float (Element,Integer pit,Integer float) 317
Set_drainage_pit_hgls(Element elt,Integer p,Real lhs,Real rhs) 318
Set_drainage_pit_inverts(Element elt,Integer p,Real lhs,Real rhs) 317
Set_drainage_pit_name(Element elt,Integer p,Text name) 319
Set_drainage_pit_road_chainage(Element elt,Integer p,Real chainage) 319
Set_drainage_pit_road_name(Element elt,Integer p,Text name) 319
Set_drainage_pit_type(Element elt,Integer p,Text type) 320
Set_drainage_pit(Element elt,Integer p,Real x,Real y,Real z) 316
Set_enable(Widget widget,Integer mode) 477
Set_end(Arc &arc,Point end) 141
Set_end(Line &line, Point pt) 138
Set_end(Segment &segment,Point point) 156
Set_error_message(Widget widget,Text text) 479
Set_feature_centre(Element elt,Real xc,Real yc,Real zc) 360
Set_feature_radius(Element elt,Real radius) 360
Set_focus(Widget widget) 481
Set_height (Tin tin,Integer pt,Real ht) 223
Set_help (Widget widget,Integer help) 486
Set_help (Widget widget,Text help) 487
Set_hip_data(Element elt,Integer i, Real x,Real y,Real radius) 268
Set_hip_data(Element elt,Integer i,Real x,Real y,Real radius,Real left_spiral,Real right_spiral) 268
Set_hip_data(Element elt,Integer i,Real x,Real y) 268
Set_interface_data(Element elt, Integer i,Real x, Real y,Real z,Integer flag) 265
Set_item(Dynamic_Element &de,Integer i,Element elt) 129
Set_item(Dynamic_Text &dt,Integer i,Text text) 130
Set_line(Segment &segment, Line line) 155
Set_message_mode(Integer mode) 649
Set_message_text(Text msg) 649
Set_model_attribute (Model model,Integer att_no,Integer att) 208
Set_model_attribute (Model model,Integer att_no,Real att) 208
Set_model_attribute (Model model,Integer att_no,Text att) 208
Set_model_attribute (Model model,Text att_name,Integer att) 209
Set_model_attribute (Model model,Text att_name,Real att) 208
Set_model_attribute (Model model,Text att_name,Text att) 209
Set_model(Dynamic_Element de,Model model) 235
Set_model(Element elt,Model model) 235
Set_name(Element elt,Text elt_name) 234
Set_name(Widget widget,Text text) 478
Set_optional(Widget widget,Integer mode) 477
Set_page(Widget_Pages pages,Integer page_no) 489
Set_pipe_data(Element elt,Integer i,Real x, Real y,Real z) 344
Set_pipe_diameter(Element elt, Real diameter) 344
Set_pipe_justify(Element elt,Integer justify) 344
Set_pipeline_diameter(Element pipeline,Real diameter) 291
Set_pipeline_length (Element pipeline,Real length) 291
Set_plot_frame_colour(Element elt,Integer colour) 358
Set_plot_frame_draw_border(Element elt,Integer draw_border) 357
Set_plot_frame_draw_title_file(Element elt,Integer draw_title) 357
Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport) 357
Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t) 356
Set_plot_frame_name(Element elt,Text name) 355
Set_plot_frame_origin(Element elt,Real x,Real y) 356
Set_plot_frame_plot_file(Element elt,Text plot_file) 358
Set_plot_frame_plotter_name(Element elt,Text plotter_name) 358
Set_plot_frame_plotter(Element elt,Integer plotter) 358
Page 767

12d Model Programming Manual
Set_plot_frame_rotation(Element elt,Real rotation) 355
Set_plot_frame_scale(Element elt,Real scale) 355
Set_plot_frame_sheet_size(Element elt,Real w,Real h) 356
Set_plot_frame_sheet_size(Element elt,Text size) 356
Set_plot_frame_text_size(Element elt,Real text_size) 357
Set_plot_frame_textstyle(Element elt,Text textstyle) 358
Set_plot_frame_title_1(Element elt,Text title_1) 359
Set_plot_frame_title_2(Element elt,Text title_2) 359
Set_plot_frame_title_file(Element elt,Text title_file) 359
Set_point(Segment &segment, Point point) 155
Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f) 295
Set_project_attribute (Integer att_no,Integer att) 195
Set_project_attribute (Integer att_no,Real att) 195
Set_project_attribute (Integer att_no,Text att) 194
Set_project_attribute (Text att_name,Integer att) 194
Set_project_attribute (Text att_name,Real att) 193
Set_project_attribute (Text att_name,Text att) 195
Set_radius(Arc &arc, Real radius) 141
Set_raised_button(Button button,Integer mode) 550
Set_select_snap_mode(Select_Box select,Integer mode,Integer control,Text snap_text) 531
Set_select_snap_mode(Select_Box select,Integer snap_control) 530
Set_select_snap_mode(Select_Boxes select,Integer n,Integer control) 534
Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text snap_text) 534
Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text) 554
Set_select_snap_mode(Select_Button select,Integer snap_control) 553
Set_select_type(Select_Box select,Text type) 530
Set_select_type(Select_Boxes select,Integer n,Text type) 534
Set_select_type(Select_Button select,Text type) 553
Set_sort (List_Box box,Integer mode) 514
Set_start(Arc &arc, Point start) 141
Set_start(Line &line, Point pt) 138
Set_start(Segment &segment,Point point) 156
Set_style(Element elt,Text elt_style) 234
Set_subtext(Text &text,Integer start,Text sub) 75
Set_super_2d_level (Element,Real level) 377
Set_super_culvert (Element,Real w,Real h) 386
Set_super_data (Element,Integer i,Real x,Real y,Real z,Real r,Integer f) 373
Set_super_diameter (Element,Real diameter) 383
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Integer att) 449
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Real att) 449
Set_super_segment_attribute (Element elt,Integer seg,Integer att_no,Text att) 449
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Integer att) 448
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Real att) 448
Set_super_segment_attribute (Element elt,Integer seg,Text att_name,Text att) 448
Set_super_segment_colour (Element,Integer seg,Integer colour) 378
Set_super_segment_culvert (Element,Integer seg,Real w,Real h) 386
Set_super_segment_device_text (Element) 375
Set_super_segment_diameter (Element,Integer seg,Real diameter) 384
Set_super_segment_major (Element,Integer seg,Integer major) 380
Set_super_segment_radius (Element,Integer seg,Real radius) 379
Set_super_segment_text (Element,Integer seg,Text text) 414
Set_super_segment_text_angle (Element,Integer vert,Real a) 416
Set_super_segment_text_colour (Element,Integer vert,Integer c) 415
Set_super_segment_text_justify (Element,Integer vert,Integer j) 414
Set_super_segment_text_offset_height (Element,Integer vert,Real o) 415
Set_super_segment_text_offset_width (Element,Integer vert,Real o) 415
Set_super_segment_text_size (Element,Integer vert,Real s) 416
Set_super_segment_text_slant (Element,Integer vert,Real s) 417
Page 768

Index
Set_super_segment_text_style (Element,Integer vert,Text s) 417
Set_super_segment_text_type (Element,Integer type) 414
Set_super_segment_text_x_factor (Element,Integer vert,Real x) 417
Set_super_segment_tinability (Element,Integer seg,Integer tinability) 425
Set_super_segment_visibility (Element,Integer seg,Integer visibility) 455
Set_super_segment_world_text (Element) 375
Set_super_use_2d_level (Element,Integer use) 376
Set_super_use_3d_level (Element,Integer use) 376
Set_super_use_culvert (Element,Integer use) 385
Set_super_use_diameter (Element,Integer use) 382
Set_super_use_pipe_justify (Element,Integer use) 380
Set_super_use_segment_annotation_array(Element,Integer use) 421
Set_super_use_segment_annotation_value(Element,Integer use) 421
Set_super_use_segment_attribute (Element,Integer use) 440
Set_super_use_segment_colour (Element,Integer use) 378
Set_super_use_segment_culvert (Element,Integer use) 385
Set_super_use_segment_diameter (Element,Integer use) 383
Set_super_use_segment_radius (Element,Integer use) 379
Set_super_use_segment_text_array (Element,Integer use) 413
Set_super_use_segment_text_value (Element,Integer use) 413
Set_super_use_symbol (Element,Integer use) 388
Set_super_use_tinability (Element,Integer use) 422
Set_super_use_vertex_annotation_array(Element,Integer use) 412
Set_super_use_vertex_annotation_value(Element,Integer use) 411
Set_super_use_vertex_attribute (Element,Integer use) 431
Set_super_use_vertex_point_number (Element,Integer use) 426
Set_super_use_vertex_symbol (Element,Integer use) 388
Set_super_use_vertex_text_value (Element,Integer use) 403
Set_super_use_visibility (Element,Integer use) 452
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Integer att) 439
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Real att) 440
Set_super_vertex_attribute (Element elt,Integer vert,Integer att_no,Text att) 439
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Integer att) 438
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Real att) 439
Set_super_vertex_attribute (Element elt,Integer vert,Text att_name,Text att) 438
Set_super_vertex_coord (Element,Integer vert,Real x,Real y,Real z) 374
Set_super_vertex_device_text (Element) 403
Set_super_vertex_point_number (Element,Integer vert,Integer point_number) 427
Set_super_vertex_symbol_colour (Element,Integer vert,Integer c) 389
Set_super_vertex_symbol_offset_height(Element,Integer vert,Real r) 389
Set_super_vertex_symbol_offset_width (Element,Integer vert,Real o) 390
Set_super_vertex_symbol_rotation (Element,Integer vert,Real a) 390
Set_super_vertex_symbol_size (Element,Integer vert,Real s) 390
Set_super_vertex_symbol_style (Element,Integer vert,Text s) 391
Set_super_vertex_text (Element,Integer vert,Text text) 404
Set_super_vertex_text_angle (Element,Integer vert,Real a) 407
Set_super_vertex_text_colour (Element,Integer vert,Integer c) 406
Set_super_vertex_text_justify (Element,Integer vert,Integer j) 405
Set_super_vertex_text_offset_height (Element,Integer vert,Real o) 406
Set_super_vertex_text_offset_width (Element,Integer vert,Real o) 405
Set_super_vertex_text_size (Element,Integer vert,Real s) 407
Set_super_vertex_text_slant (Element,Integer vert,Real s) 408
Set_super_vertex_text_style (Element,Integer vert,Text s) 408
Set_super_vertex_text_type (Element,Integer type) 405
Set_super_vertex_text_x_factor (Element,Integer vert,Real x) 407
Set_super_vertex_tinability (Element,Integer vert,Integer tinability) 423
Set_super_vertex_visibility (Element,Integer vert,Integer visibility) 453
Set_super_vertex_world_text (Element) 403
Page 769

12d Model Programming Manual
Set_supertin (Tin_Box box,Integer mode) 223
Set_text_align (Draw_Box box,Integer mode) 504
Set_text_angle(Element elt,Real angle) 287
Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real angle,Integer justif,Integer

size_mode,Real offset_distance,Real rise_distance) 290
Set_text_font (Draw_Box box,Text font) 503
Set_text_height(Element elt,Real height) 289
Set_text_justify(Element elt,Integer justify) 287
Set_text_offset(Element elt,Real offset) 288
Set_text_rise(Element elt,Real rise) 288
Set_text_size(Element elt,Real size) 287
Set_text_slant(Element elt,Real slant) 289
Set_text_style(Element elt,Text style) 290
Set_text_units(Element elt,Integer units_mode) 287
Set_text_value(Element elt,Text text) 286
Set_text_weight (Draw_Box box,Integer weight) 504
Set_text_x_factor(Element elt,Real xfact) 289
Set_text_xy(Element elt,Real x, Real y) 287
Set_time_updated(Element elt,Integer time) 234
Set_tooltip (Widget widget,Text help) 486
Set_type (Function_Box box,Integer type) 507
Set_type (Function_Box box,Text type) 508
Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic) 272
Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode) 272
Set_vip_data(Element elt,Integer i,Real ch,Real ht) 272
Set_width_in_chars(Widget widget,Integer chars) 479
Set_wildcard (File_Box box,Text data) 505
Set_x(Point &pt, Real x) 136
Set_y(Point &pt, Real y) 136
Set_z(Point &pt, Real z) 137
Sheet_size_prompt(Text msg,Text &ret) 655
Show_browse_button(Widget widget,Integer mode) 476
Show_widget(Widget widget,Integer x,Integer y) 479
Show_widget(Widget widget) 479
Split_string(Element string,Real chainage,Element &string1,Element &string2) 595
String_close(Element elt) 458
String_closed(Element elt, Integer &closed) 457
String_open(Element elt) 458
String_self_intersects(Element elt,Integer &intersects) 460
Super_segment_attribute_debug (Element elt,Integer seg) 445
Super_segment_attribute_delete (Element elt,Integer seg,Integer att_no) 444
Super_segment_attribute_delete (Element elt,Integer seg,Text att_name) 444
Super_segment_attribute_delete_all (Element elt,Integer seg) 444
Super_segment_attribute_dump (Element elt,Integer seg) 444
Super_segment_attribute_exists (Element elt,Integer seg,Text att_name) 443
Super_segment_attribute_exists (Element elt,Integer seg,Text name,Integer &no) 444
Super_vertex_attribute_debug (Element elt,Integer vert) 435
Super_vertex_attribute_delete (Element elt,Integer vert,Integer att_no) 434
Super_vertex_attribute_delete (Element elt,Integer vert,Text att_name) 434
Super_vertex_attribute_delete_all (Element elt,Integer vert) 435
Super_vertex_attribute_dump (Element elt,Integer vert) 435
Super_vertex_attribute_exists (Element elt,Integer vert,Text att_name) 434
Super_vertex_attribute_exists (Element elt,Integer vert,Text name,Integer &no) 434
Swap_xy(Dynamic_Element elements) 581
symbol

justification point 387
symbol justification point 387
System(Text msg) 110
Page 770

Index
T
Tangent(Segment seg_1,Segment seg_2,Line &line) 161
Template_exists(Text template_name) 590
Template_prompt(Text msg,Text &ret) 652
Template_rename(Text original_name,Text new_name) 590
text

direction 402, 412
justification point 402, 412

Text_justify(Text text) 75
Text_length(Text text) 74
Text_lower(Text text) 75
Text_units_prompt(Text msg,Text &ret) 658
Text_upper(Text text) 74
Textstyle_prompt(Text msg,Text &ret) 655
Time(Integer &h,Integer &m,Real &sec) 111
Time(Integer &time) 110
Time(Text &time) 111
Tin_aspect(Tin tin,Real x, Real y, Real &aspect) 218
Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de) 219
Tin_colour(Tin tin,Real x, Real y,Integer &colour) 217
Tin_delete(Tin tin) 219
Tin_duplicate(Tin tin,Text dup_name) 218
Tin_exists(Text tin_name) 215
Tin_exists(Tin tin) 215
Tin_get_point(Tin tin, Integer point, Real &x, Real &y, Real &z) 219
Tin_get_triangle_colour(Tin tin, Integer triangle, Integer &colour) 226
Tin_get_triangle_from_point(Tin tin, Integer &triangle, Real x,Integer y, Integer z) 221
Tin_get_triangle_inside(Tin tin, Integer triangle, Integer &Inside) 221
Tin_get_triangle_neighbours(Tin tin, Integer triangle, Integer &n1, Integer &n2, Integer &n3) 220
Tin_get_triangle_points(Tin tin, Integer triangle, Integer &p1, Integer &p2,Integer &p3) 219
Tin_get_triangle(Tin tin, Integer triangle, Integer &p1, Integer &p2, Integer &p3, Integer &n1, Integer &n2, Integer

&n3, Real &x1, Real &y1, Real &z1, Real &x2, Real &y2, Real &z2,Real &x3, Real &y3, Real &z3) 221
Tin_height(Tin tin,Real x, Real y, Real &height) 218
Tin_models (Tin tin,Dynamic_Text &models) 222
Tin_models(Tin tin, Dynamic_Text &models_used) 216
Tin_number_of_duplicate_points(Tin tin, Integer ¬ri) 217
Tin_number_of_points(Tin tin, Integer ¬ri) 217
Tin_number_of_triangles(Tin tin, Integer ¬ri) 217
Tin_prompt(Text msg,Integer mode,Text &ret) 653
Tin_prompt(Text msg,Text &ret) 653
Tin_rename(Text original_name,Text new_name) 219
Tin_slope (Tin tin,Real x, Real y, Real &slope) 218
Tin_tin_depth_contour(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer fill_colour,Real inter-

val,Real start_level,Real end_level,Integer mode,Dynamic_Element &de) 584
Tin_tin_intersect(Tin original,Tin new, Integer colour,Dynamic_Element &de) 584
Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode) 585
To_text(Integer value,Text format) 77
To_text(Integer value) 77
To_text(Real value, Integer no_dec) 78
To_text(Real value,Text format) 78
To_text(Text text,Text format) 78
Translate(Dynamic_Element elements, Real dx,Real dy,Real dz) 582
Triangulate (Dynamic_Text list,Text tin_name,Integer colour, Integer preserve,Integer bubbles,Tin &tin) 222
Triangulate(Dynamic_Element de,Text tin_name, Integer tin_colour,Integer preserve,Integer bubbles,Tin &tin) 583
Page 771

12d Model Programming Manual
U
Use_browse_button(Widget widget,Integer mode) 476

V
Validate (Select_Box select,Element &string,Integer silent) 529
Validate (Select_Boxes select,Integer n,Element &string,Integer silent) 532
Validate (Select_Button select,Element &string,Integer silent) 552
Validate(Angle_Box box,Real &result) 492
Validate(Choice_Box box,Text &result) 497
Validate(Colour_Box box,Integer &result) 498
Validate(Directory_Box box,Integer mode,Text &result) 502
Validate(File_Box box,Integer mode,Text &result) 504
Validate(Input_Box box,Text &result) 509
Validate(Integer_Box box,Integer &result) 510
Validate(Justify_Box box,Integer &result) 511
Validate(Linestyle_Box box,Integer mode,Text &result) 513
Validate(Map_File_Box box,Integer mode,Text &result) 515
Validate(Model_Box box,Integer mode,Model &result) 516
Validate(Name_Box box,Text &result) 518
Validate(Named_Tick_Box box,Integer &result) 519
Validate(Plotter_Box box,Text &result) 523
Validate(Real_Box box,Real &result) 526
Validate(Report_Box box,Integer mode,Text &result) 527
Validate(Select_Box select,Element &string) 529
Validate(Select_Boxes select,Integer n,Element &string) 532
Validate(Select_Button select,Element &string) 552
Validate(Sheet_Size_Box box,Real &w,Real &h,Text &code) 535
Validate(Template_Box box,Integer mode,Text &result) 539
Validate(Text_Style_Box box,Text &result) 540
Validate(Text_Units_Box box,Integer &result) 541
Validate(Tick_Box box,Integer &result) 546
Validate(Tin_Box box,Integer mode,Tin &result) 547
Validate(View_Box box,Integer mode,View &result) 548
Validate(XYZ_Box box,Real &x,Real &y,Real &z) 549
Vertical_Group Create_vertical_group(Integer mode) 484
View_add_model(View view, Model model) 213
View_exists(Text view_name) 211
View_exists(View view) 211
View_fit(View view) 213
View_get_models(View view, Dynamic_Text &model_names) 213
View_get_size(View view,Integer &width,Integer &height) 214
View_prompt(Text msg,Text &ret) 653
View_redraw(View view) 213
View_remove_model(View view, Model model) 213
Volume_exact(Tin tin_1,Element tin_2,Element poly,Real &cut,Real &fill,Real &balance) 588
Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill, Real &balance) 587
Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real

&fill,Real &balance) 587
Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real

&fill,Real &balance) 587

W
Wait_on_widgets(Integer &id,Text &cmd,Text &msg) 481
Widget_Pages Create_widget_pages() 488
Winhelp (Widget widget,Text helpfile,Integer helpid,Integer popup) 488
Page 772

Index
Winhelp (Widget widget,Text helpfile,Integer helpid) 488
Winhelp (Widget widget,Text helpfile,Integer table,Text key) 487
Winhelp (Widget widget,Text helpfile,Text key) 487

Y
Yes_no_prompt(Text msg,Text &ret) 654
Page 773

12d Model Programming Manual
Page 774

12D Solutions Pty Ltd
Civil and Surveying Software

Course Notes

Programming Language

12D Solutions Pty Limited

ACN 101 351 991

Phone: +61 (2) 9970 7117Fax: +61 (2) 9970 7118Email training@12d.com Web
www.12d.com

CIVIL AND

SURVEYING SOFTWARE

THE 12D PERSPECTIVE

Date Issued: January 2010 12d Macro Language Training Notes Page 2 of 2

12D Solutions Pty Ltd

COURSE NOTES

Macro Language

12d Model Course Notes

These course notes assume that the trainee has the basic 12d Model skills usually obtained from the
“12d Model Training Manual”

These notes are intended to cover basic 12d model programming language examples. For more
information regarding training courses contact 12D Solutions training Manager.

These notes were prepared by
Robert Graham

Copyright © 12D Solutions Pty Limited 2010

These notes may be copied and distributed freely.

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.
No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in these notes and the program 12d Model
is correct, however, no warranty is expressed or implied by 12D Solutions Pty Ltd.

Copyright © 12D Solutions Pty Limited 2010

Course Introduction ... 5

Getting Started.. 5
Comments ... 5
Variables and Operators .. 5

Reserved Words ... 5
Integers, Real and Text .. 6
Arrays... 6
Operators.. 6

Functions and Your First Macro .. 7
Prompt().... your first 4DML function .. 7
Creating Your First Macro .. 7
Compiling the Macro .. 8

Common Compile Messages .. 9

Using Input and Output Functions ... 9
Output to the Output Window... 9

Input via the Macro Console (quick and easy) .. 10
Dialogue Boxes (covered later) ... 11
Files.. 11
Clipboard ... 11

Using Flow Control... 11
“if” statements ... 11
“for” loops ... 12
“while” loops... 13

Unleashing the Power - 12d Database Handles ... 13
Locks ... 14
Models... 14
Elements, Dynamic_Elements, Points and Properties .. 14

Writing Reports .. 17

12d Menu System (Usermenu.4d) ... 18

Dialogue Basics ... 18
3

12d Model Macro Manual
4

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
Macro Language Course

1.0 Course Introduction
The 12D Solutions Macro Language (4DML) is a powerful programming language designed to
run from within 12D Solutions software12d Model.

Its main purpose is to allowusers to enhance the existing 12D Solutions package by writing their
own programs (macros).

4DML is based on a subset of the C++ language with special extensions to allow easy
manipulation of 12d Model data. A large number of intrinsic functions are supplied which cover
most aspects of civil modelling.

4DML has been designed to fit in with the ability of 12d Model to "stack" an incomplete operation.

This training manual does not try to teach programming techniques. Instead this manual takes
the user through the basics steps to get started with 4DML.

This course intends to teach you how to

1. · Learn the basic 4DML variable types and "handles" to 12d elements (strings etc.).

2. · How to use the 4DML manual as a "live" programming reference.

3. · How to create/compile and run 4DML code.

4. · How to retrieve and change basic element properties.

5. · File input/output (creating reports).

6. · An introduction to 4DML screen input/output through panels.

7. · How to include your 4DML programs in the 12d menu system.

2.0 Getting Started

2.1 Comments
Comments are extremely important for writing any program. The following is an example
of 4DML code with single and multiple line comments. More

void main()
{
 Real y = 1; // the rest of this line is comment
/*this comment can carry
over many lines until
we get to the termination characters */
}

2.2 Variables and Operators

2.2.1 Reserved Words
Reserved words (or Keywords) are the words that you are not allowed to use as variable names in your
ate Issued: January 2010 12d Macro Language Training Notes Page 5

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
4DML code. More.

2.2.2 Integers, Real and Text
All variables must be declared before they are used. More

for example

Integer i;

or

Integer i=2;

2.2.3 Arrays
Arrays may be allocated statically or dynamically. More

WARNING: subscripts start at 1!

Static Array

Real x[10]; great for small arrays (created on the stack)

Dynamic Allocated Array

Integer n = 100; a must for large arrays (say greater than 10)

Real x[n];

2.2.4 Operators
The most common operators are

assignment

= assignment e.g. x = y

More

binary arithmetic operators

+ addition

- subtraction

* multiplication

/ division - note that integer division truncates any fractional part

logical operators

== equal to

!= not equal to

|| inclusive or

&& and

! not

relational operators

< less than

<= less than or equal to
Date Issued: January 2010 12d Macro Language Training Notes Page 6

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
> greater than

>= greater than or equal to

increment and decrement operators

++ post and pre-increment

-- post and pre-decrement

3.0 Functions and Your First Macro
A function performs a specific task using the variables (arguments) that are passed to it in
brackets. After it has completed these tasks it can return a value. The returning value is often a
result or answer from the function or it is a code indicating the success of the function. The first
line of a function would look like the following

Real calc_distance(Real x1, Real y1, Real x2, Real y2);

This function has the real values of x1,y1,x2,y2 passes to it. The function body (not shown)
would calculate the distance and return the distance as a real number. When the function is
called inside the 4DML the code would look like the following.

distance = calc_distance(x1,y1,x2,y2);

The arguments (constants or variables) of the function can be passed by value (a one way
transfer) as above or a variable can be passed by reference (a two way transfer) by including
an & before the variable name in the argument list. The arguments below are passed by
reference.

Real calc_distance(Real &x1, Real &y1, Real &x2, Real& y2);

With the passed by reference the argument variable in the calling routine can be
changed by the function.

WARNING! Function named are case sensitive!

3.1 Prompt().... your first 4DML function
This is the first function from 4DML that we will examine. If we search for print in the help
system we will find the following function.

void Prompt(Text msg)

This may be read as, “The function prompt has no return value (void) and has a text argu-
ment (msg for example)”. The argument is passed by value (there is not ampersand &).

3.2 Creating Your First Macro
From the Main menu select

Utilities=>Macros=>Create

and the following panel will appear.
ate Issued: January 2010 12d Macro Language Training Notes Page 7

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
The directory is defaulted to your project directory.

Type first as the name of your first macro.

Select Create to create the macro and load it into
your text editor. You will now see the following.

The first few lines are comments (beginning with the //). Following is the function main().

All macros must have the main function. It is always of type void and will have nothing in the
parameter list (parameters for main are available but they will not be covered in this training
manual).

You will note that the main function has one line of executable code and that includes the
Prompt() function. The Prompt() function can have a constant or text variable as its argu-
ment. In this case it is a constant.

When run, this macro will place the words Macro finished in the prompt box and then stop.

3.3 Compiling the Macro
From the Main menu select

Utilities=>Macros=>Compile/run

and the following panel will appear.
Date Issued: January 2010 12d Macro Language Training Notes Page 8

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
Select the browse icon and then select the macro
code text file.

Select Retain on Exit so that the prompt box will
remain after the macro finishes.

Select Compile/Run and the following prompt
dialogue will appear.

Note that the dialogue has the macro name on
the top and in the message area the words
Macro finished appear.

You have just created and run your first macro!

4.0 Common Compile Messages
The most common typing error is to forget the semi colon at the end of a statement. Try removing
the semi colon at the end of the Prompt() function and then recompile the macro. What do you
notice about the line number that the compiler reports?

Next put the semi colon back in and remove one of the “ marks in the command. Now recompile
this and check the messages.

5.0 Using Input and Output Functions
You have seen one method of output from the 4DML. You may also create output by writing to
the output window, placing text on the clipboard or writing to files. Input to the 4DML may be via
the Macro console or via custom dialogue boxes with advanced error checking.

5.1 Output to the Output Window
The Print() function is used to print to the output window. Unlike the Prompt() function which can
only take a text message as an argument, there are 3 functions with the same name Print() but each
Print() function has different argument types. This is called Overloading of Function Names.
If you use the Find feature of the help file, you will find the 3 Print() functions.

void Print(Integer value)

void Print(Real value)

and

void Print(Text msg)
ate Issued: January 2010 12d Macro Language Training Notes Page 9

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
Inside the brackets are the arguments that are passed to the function. Since there is a Print() function for all
three variable types (integer, real and text), the Print() function will print an integer, real or text.

Prior to using the Print() function, consider using the Clear_console() function to clear the window.
This function does not have any arguments.

Edit your macro so that it now contains the following lines of code.

void main()
{
 Clear_console();

 Print("this is text\n");

 Print(1);
 Print("\n");

Prompt("did you see this?");

 Print(2.2);
 Print("\n");

 Prompt("Macro finished");
}

Note the special line feed character “\n” has been printed to move the printing to the next line. If there is no
line feed character then the line of text will not be printed.

You will also note that the message “did you see this?” flashed by the prompt window so fast that you
never saw it. If you want the macro to stop execution use the function.

Integer Error_prompt(Text msg)

Even though this function has a return code, you do not have to do anything special. Return codes can just
be ignored.

Try changing

Prompt("did you see this?");
to

Error_prompt("did you see this?");

5.1.1 Input via the Macro Console (quick and easy)
A simple method to input data is via the Macro Console. The Prompt() function can again be used but
now with 2 arguments. Note that in the help file the variable name of the second argument is preceded with
a &. This indicates that the variable is passed by reference.

Integer Prompt(Text msg,Text &ret)

Integer Prompt(Text msg,Integer &ret)

Integer Prompt(Text msg,Real &ret)

Lets change our macro so that it now asks for the values before they are printed.
Date Issued: January 2010 12d Macro Language Training Notes Page 10

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
void main()
{
 Clear_console();

 Text input_text;
 Prompt("Enter some text",input_text);
 Print(input_text+"\n");

 Integer input_integer;
 Prompt("Enter an integer",input_integer);
 Print(input_integer);
 Print("\n");

 Real input_real;
 Prompt("Enter a real",input_real);
 Print(input_real);
 Print("\n");

 Prompt("Macro finished");
}

5.1.2 Dialogue Boxes (covered later)
4DML can create advanced dialogue boxes complete with error checking. We will be discussing these
in more detail later.More

5.1.3 Files
ASCII text files can be created and read via the 4DML functions. More

5.1.4 Clipboard
ASCII data may be written to and read from the windows clipboard with the following 4DML func-
tions.

Integer Set_clipboard_text(Text string);

Integer Get_clipboard_text(Text &string);

6.0 Using Flow Control
The 4DML has a subset of the C++ flow control statements. More We will work with only
three in this course.

4DML statements are grouped together as blocks.A block begins with a { and ends with a }.

IMPORTANT!!!

Note that any variables declared inside the block will “go out of scope” (evaporate) as soon as
execution leaves the block.

6.1 “if” statements
If statements are used frequently to execute a block of statements only if a condition is true
or false.
ate Issued: January 2010 12d Macro Language Training Notes Page 11

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
if (conditional) {
// these statements are executed if the conditional is true

} else {
// these statements are executed if the conditional is false

}

Now change your macro so that it has the following conditional statements.

void main()
{
 Clear_console();

 Text input_text;
 Prompt("Enter some text",input_text);
 if (input_text == "some text") Print("good typing\n");
 else Print("typing error\n");

 Integer input_integer;
 Prompt("Enter an integer",input_integer);
 if(input_integer > 10) Print(input_integer);
 else Print("The number is less than 10");
 Print("\n");

 Real input_real;
 Prompt("Enter a real",input_real);
 Print(input_real);
 Print("\n");

 if(input_real > 0) Print(20./input_real);
 Print("\n");

 Prompt("Macro finished");
}

6.2 “for” loops
A for loop is appropriate when a block has to be executed a fixed number of times. More

Here is an example of the for loop.
Date Issued: January 2010 12d Macro Language Training Notes Page 12

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
void main()
{
 Clear_console();

 Integer loop;
 Prompt("Enter number of loops",loop);

 for(Integer counter = 1;counter<=loop;counter++) {

 if(counter < (loop / 2)) {
 Print("first half ");
 Print(counter);
 Print("\n");
 continue;
 }

 Print("Last half ");
 Print(counter);
 Print("\n");

 }

}

Try entering a value of 5 when you run the macro. Can you explain the results?

6.3 “while” loops
while loops are convienent for executing a block of statements until a condition is reached.
Below is an example of a while loop.

void main()
{
 Clear_console();

 Text data;

 while (data != "stop") {

 Prompt("Enter some text",data);
 Print(data+"\n");

 }
}

7.0 Unleashing the Power - 12d Database Handles
The real power of the 4DML is accessed via the 12d database. This database holds all of the
elements inside the project. Every entity in the database has an handle. Once this handle has
been retrieved the properties of the entity may be obtained, printed in a report or changed.

New entities can also be created. Data can be read from reports and then strings can be created
and formatted to the users specifications. More
ate Issued: January 2010 12d Macro Language Training Notes Page 13

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
7.1 Locks
Whenever an handle for an entity (string, model, tin etc.) is retrieved from the database and
assigned to a variable, the entity becomes locked to other processes. In order to remove the
lock, the variable holding the handle most go out of scope. A variable defined inside a block
goes out of scope when execution reaches the bottom of the block.

For this reason blocks are often defined solely to have variables go out of scope. Also it is good
practice to obtain all of your handles after all user input is finished and have the variables go
out of scope (or null them using the null() function) before requesting more input from a
prompt box or dialogue. In this way the entities never remain locked while the macro is in a
user input mode. More

7.2 Models
Macros often operate on all of the elements in a model. When a model is requested by the user
the first step is to retrieve the model handle.

Sample code for this follows,

void main() {

 Text my_model_name;
 Model my_model;

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

Integer model_id;
 Get_id(my_model,model_id);
 Print("Model id ");
 Print(model_id);
 Print("\n");

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 Print("There are ");
 Print(num_elts);
 Print(" elements in the model: "+my_model_name+"\n");

}

7.3 Elements, Dynamic_Elements, Points and Properties
Note that in the example above, we have declared a variable as a Dynamic_Element. This var-
iable will hold as many elements as the model has. This is convienent since we do not initially
know how may elements are in the model. The
Date Issued: January 2010 12d Macro Language Training Notes Page 14

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
Integer Get_elements(Model model,Dynamic_Element &de, Integer &total_no)

function gets all of the element handles and the number of elements retrieved. While this
Dynamic_Element exists, all of the elements will be locked.

Now we will add to this macro to retrieve and print the element names, the type and the
number of points on each element.
ate Issued: January 2010 12d Macro Language Training Notes Page 15

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
void main() {

 Clear_console();

 Text my_model_name;
 Model my_model;

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Integer model_id;
 Get_id(my_model,model_id);
 Print("Model id ");
 Print(model_id);
 Print("\n");

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 Print("There are ");
 Print(num_elts);
 Print(" elements in the model: "+my_model_name+"\n");

 for(Integer i=1;i<=num_elts;i++) {

 Element element;
 Get_item(model_elts,i,element);

 Text element_name;
 Get_name(element,element_name);
 Print(element_name+"\n");

 Integer element_id;
 Get_id(element,element_id);
 Print(element_id);
 Print("\n");

 Text element_type;
 Get_type(element,element_type);
 Print(element_type+"\n");

 Integer num_points;
 Get_points(element,num_points);
 Print(num_points);
 Print("\n\n");

 }
}

Date Issued: January 2010 12d Macro Language Training Notes Page 16

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
8.0 Writing Reports
The previous example can be modified to write the data to a file rather than to the output window.

To write a report three 4DML functions are required.

Integer File_open(Text file_name, “w”,File &file) to write a new file

or

Integer File_open(Text file_name, “a”,File &file) to append

Integer File_write_line(File file,Text text_out)

and finally a close command

Integer File_close(File file)

More

A routine with the file commands follows;

void main() {

 Clear_console();

 Text my_model_name;
 Model my_model;

 while(!Model_exists(my_model)) {
 Model_prompt("Select a model",my_model_name);
 my_model = Get_model(my_model_name);
 }

 Text file_name;
 File_prompt("Enter the file name","*.rpt",file_name);

 File my_file;
 File_open(file_name,"a",my_file);

 Integer model_id;
 Get_id(my_model,model_id);
 File_write_line(my_file,"Model id "+To_text(model_id));

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(my_model,model_elts,num_elts);
 File_write_line(my_file,"There are "+To_text(num_elts)+" elements
ate Issued: January 2010 12d Macro Language Training Notes Page 17

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
in the model: "+my_model_name);

 for(Integer i=1;i<=num_elts;i++) {

 Element element;
 Get_item(model_elts,i,element);

 Text line_out;

 Text element_name;
 Get_name(element,element_name);
 line_out = element_name+"\t";

 Integer element_id;
 Get_id(element,element_id);
 line_out += To_text(element_id)+"\t";

 Text element_type;
 Get_type(element,element_type);
 line_out += element_type+"\t";

 Integer num_points;
 Get_points(element,num_points);
 line_out += To_text(num_points);
 File_write_line(my_file,line_out);

 }

 File_close(my_file);
}

9.0 12d Menu System (Usermenu.4d)
The macros that you create should be stored in the user library. If you want to access these macros
via the 12d menu system you will need to create the usermenu.4d file and keep it in the user area
(not the user_lib). An example of the entries in the usermenu.4d follow.

Menu "User String Create" {
Button "Create 4d strings" {

Command "macro -close_on_exit $USER_LIB/ref_points.4do"
}
Button "Create point strings" {

Command "macro -close_on_exit $USER_LIB/x_sects.4do"
}

}
The menu item ("User String Create" for example) must correspond to the name on the
top of the 12d user menu that you wish to attach your macro to. Buttons and sub menus may be
created as desired.

10.0 Dialogue Basics
The basic structure of 12d dialogue code is as follows.
Date Issued: January 2010 12d Macro Language Training Notes Page 18

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
Create the panel
Create the vertical group
Create the wigits and add them to the vertical group

create a while loop that returns processing to the top of the loop
until a process or finish buttons are selected

perform final validation of retrieve database handles

execute the desired task

return to the top of the loop

Sample code for a model selection of an existing model follows. This code requires the set_ups.h
file that should be found in the 12d library.
ate Issued: January 2010 12d Macro Language Training Notes Page 19

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
// --
// Macro: final.4dm
// Author: Rob
// Organization: Demo - Expanding Minds International
// Date: Thu Sep 27 05:41:44 2001
// --

#include "set_ups.h"

//---
// MODEL CHECK
//---

Integer list_model(Model model1_model)
{
 Text my_model_name;
 Get_name(model1_model,my_model_name);

 Integer model_id;
 Get_id(model1_model,model_id);
 Print("Model id ");
 Print(model_id);
 Print("\n");

 Dynamic_Element model_elts;
 Integer num_elts;

 Get_elements(model1_model,model_elts,num_elts);
 Print("There are ");
 Print(num_elts);
 Print(" elements in the model: "+my_model_name+"\n");

 for(Integer i=1;i<=num_elts;i++) {

 Element element;
 Get_item(model_elts,i,element);

 Text element_name;
 Get_name(element,element_name);
 Print(element_name+"\n");

 Integer element_id;
 Get_id(element,element_id);
 Print(element_id);
 Print("\n");

 Text element_type;
 Get_type(element,element_type);
 Print(element_type+"\n");

 Integer num_points;
 Get_points(element,num_points);
Date Issued: January 2010 12d Macro Language Training Notes Page 20

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
 Print(num_points);
 Print("\n\n");

 }

 return 0;
}

Integer go_panel()
{
 // ===
 // get defaults at the start of a routine and set up the panel

 Integer ok=0;

 //--
-
 // CREATE THE PANEL
 //--
-

 Panel panel = Create_panel("Model Select");
 Vertical_Group vgroup = Create_vertical_group(0);
 Message_Box message_box = Create_message_box("");

 // ----------------- model1_ name ---------------------------------

 // model1_name

 Model_Box model1_box;
 model1_box = Create_model_box("Select
ate Issued: January 2010 12d Macro Language Training Notes Page 21

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
model",message_box,CHECK_MODEL_MUST_EXIST);
 Append(model1_box,vgroup);

// ----------------- message area ----------------------------------

 Append(message_box,vgroup);

 // ----------------- bottom of panel buttons ---------------------

 Horizontal_Group button_group = Create_button_group();

 Button process_button = Create_button("Process","process");
 Append(process_button,button_group);

 Button finish_button = Create_button("Finish","finish");
 Append(finish_button,button_group);

 Append(button_group,vgroup);

 Append(vgroup,panel);

 // ----------------- display the panel -------------------------

 Integer wx = 100,wy = 100;
 Show_widget(panel,wx,wy);

 // ---
 // GET AND VALIDATE DATA
 // ---

 Integer done = 0;
 while (1) {

 Integer id,ierr;
 Text cmd,msg;
 Wait_on_widgets(id,cmd,msg);

 Print(" id <"+To_text(id));
 Print("> cmd <"+cmd);
 Print("> msg <"+msg+">\n");

//--

// first process the command that are common to all wigits or are
rarely processed by the wigit ID
//--
Date Issued: January 2010 12d Macro Language Training Notes Page 22

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language

 switch(cmd) {
 case "keystroke" :
 case "set_focus" :
 case "kill_focus" : {

 continue;

 } break;
 }

//--
// process each event by the wigit id
// most wigits do not need to be processed until the PROCESS button
is pressed
// only the ones that change the appearance of the panel need to be
processed in this loop
//--

 switch(id) {

 case Get_id(panel) :{
 if(cmd == "Panel Quit") return 1;
 } break;

 case Get_id(finish_button) : {
 Print("Normal Exit\n");
 return(0);
 } break;

 case Get_id(process_button) : {

 Model model1_model;
 if(Validate(model1_box,GET_MODEL_ERROR,model1_model) !=
MODEL_EXISTS) continue;

 if(list_model(model1_model)) Set_data(message_box,"Processing
ate Issued: January 2010 12d Macro Language Training Notes Page 23

D

12D Solutions Pty Ltd
Civil and Surveying Software

COURSE NOTES

Macro Language
encountered an error");
 else Set_data(message_box,"Processing complete");

 } break; // process

 default : {
 continue;
 }

 } // switch id

} // while !done

 return ok;
}

void main() {
 Clear_console();
 go_panel();
}

More controls

Quick start panel example
ate Issued: January 2010 12d Macro Language Training Notes Page 24

	1 Introduction
	The Mouse
	Compiling and Running a 4DML Macro

	2 Basic Language Structure
	Basic Concepts
	Keywords
	White Space
	Comments
	Variable Types
	Variable Names and Types
	Mathematical Variable Types
	Integer
	Real
	Text
	Vector2
	Vector3
	Vector4
	Matrix3
	Matrix4

	Geometric Construction Variable Types
	Point
	Line
	Arc
	Spiral (Transition)
	Parabola
	Segment

	12d Model Database Handles
	Element
	Model
	View
	Macro_Function or Function

	12d Internal Variable Types
	Uid
	Attributes
	SDR_Attribute
	Blob
	Screen_text
	Textstyle_Data
	Equality_Label
	Undo
	Undo_List

	12d Model Interface Variable Types
	Widget
	Menu
	Panel
	Overlay_Widget
	Sheet_Panel
	Vertical_Group
	Horizontal_Group
	Widget_Pages
	Button
	Select_Button
	Angle_Box
	Attributes_Box
	Billboard_Box
	Bitmap_Fill_Box
	Bitmap_List_Box
	Chainage_Box
	Choice_Box
	Colour_Box
	Colour_Message_Box
	Date_Time_Box
	Directory_Box
	Draw_Box
	File_Box
	Function_Box
	Graph_Box
	GridCtrl_Box
	HyperLink_Box
	Input_Box
	Integer_Box
	Justify_Box
	Linestyle_Box
	List_Box
	ListCtrl_Box
	Map_File_Box
	Message_Box
	Model_Box
	Name_Box
	Named_Tick_Box
	New_Select_Box
	New_XYZ_Box
	Plotter_Box
	Polygon_Box
	Real_Box
	Report_Box
	Select_Box
	Select_Boxes
	Sheet_Size_Box
	Source_Box
	Symbol_Box
	Tab_Box
	Target_Box
	Template_Box
	Text_Edit_Box
	Text_Style_Box
	Texture_Box
	Tree_Box
	Tree_Page ??
	Tick_Box
	Tin_Box
	View_Box
	XYZ_Box

	File Interface Variable Types
	File
	Map_File
	Plot_Parameter_File
	XML_Document
	XML_Node

	ODBC Database Variable Types
	Connection
	Select_Query
	Insert_Query
	Update_Query
	Delete_Query
	Database_Results
	Transactions
	Parameter_Collection
	Query_Condition
	Manual_Condition

	Array Types
	Fixed Arrays
	Dynamic Arrays

	Summary of 4DML Variable Types

	Constants
	Integer Constants
	Real Constants
	Text Constants

	Operators and Assignments
	Binary Arithmetic Operators
	Binary Arithmetic Operators for Vectors and Matrices
	Relational Operations
	Logical Operators
	Increment and Decrement Operators
	Bitwise Operators
	Assignment Operators

	Statements and Blocks
	Flow Control
	If, Else, Else If
	Else
	Else If

	Conditional Expression
	Switch
	Switch Note

	While Loop
	For Loop
	Do While Loop
	Continue
	Goto and Labels

	Precedence of Operators
	Reprocessing

	3 Functions
	Functions
	Main Function
	User Defined Functions
	Array Variable
	Return Statement

	Function Prototypes
	Automatic Promotions
	Passing by Value or by Reference
	Overloading of Function Names
	Recursion
	Assignments Within Function Arguments
	Blocks and Scopes

	4 Locks
	5 4DML Library Calls
	Function Argument Promotions
	Automatic Promotions

	Function Return Codes
	Command Line-Arguments
	Get_number_of_command_arguements()
	Get_command_argument(Integer i,Text &argument)

	Exit
	Exit(Integer exit_code)
	Exit(Text msg)
	Destroy_on_exit()
	Retain_on_exit()

	Angles
	Pi
	Types of Angles

	Text
	Text and Operators
	General Text
	Text_length(Text text)
	Numchr(Text text)
	Text_upper(Text text)
	Text_lower(Text text)
	Text_justify(Text text)
	Find_text(Text text,Text tofind)
	Get_subtext(Text text,Integer start,Integer end)
	Set_subtext(Text &text,Integer start,Text sub)
	Insert_text(Text &text,Integer start,Text sub)

	Text Conversions
	From_text(Text text, Integer &value)
	From_text(Text text, Integer &value,Text format)
	From_text(Text text, Real &value)
	From_text(Text text, Real &value,Text format)
	From_text(Text text,Text &value,Text format)
	From_text(Text text,Dynamic_Text &dtext)
	To_text(Integer value)
	To_text(Integer value,Text format)
	To_text(Real value,Integer no_dec)
	To_text(Real value,Text format)
	To_text(Text text,Text format)
	Get_char(Text t,Integer pos,Integer &c)
	Set_char(Text &t,Integer n,Integer c)

	Textstyle Data
	Null(Textstyle_Data textdata)
	Get_textstyle(Textstyle_Data textdata,Text &style)
	Get_colour(Textstyle_Data textdata,Integer &colour_num)
	Get_size(Textstyle_Data textdata,Real &height)
	Get_offset(Textstyle_Data textdata,Real &offset)
	Get_raise(Textstyle_Data textdata,Real &raise)
	Get_justify(Textstyle_Data textdata,Integer &justify)
	Get_angle(Textstyle_Data textdata,Real &angle)
	Get_slant(Textstyle_Data textdata,Real &slant)
	Get_x_factor(Textstyle_Data textdata,Real &xfactor)
	Get_name(Textstyle_Data textdata,Text &name)
	Get_data(Textstyle_Data textstyle,Text &text_data)
	Set_textstyle(Textstyle_Data textdata,Text style)
	Set_colour(Textstyle_Data textdata,Integer colour_num)
	Set_text_type(Textstyle_Data textdata,Integer type)
	Set_size(Textstyle_Data textdata,Real height)
	Set_offset(Textstyle_Data textdata,Real offset)
	Set_raise(Textstyle_Data textdata,Real raise)
	Set_justify(Textstyle_Data textdata,Integer justify)
	Set_angle(Textstyle_Data textdata,Real angle)
	Set_slant(Textstyle_Data textdata,Real slant)
	Set_x_factor(Textstyle_Data textdata,Real xfactor)
	Set_name(Textstyle_Data textdata,Text name)
	Set_data(Textstyle_Data textdata,Text text_data)
	Get_ttf_underline(Textstyle_Data textdata,Integer &underline)
	Get_ttf_strikeout(Textstyle_Data textdata,Integer &strikeout)
	Get_ttf_italic(Textstyle_Data textdata,Integer &italic)
	Get_ttf_weight(Textstyle_Data textdata,Integer &weight)
	Set_ttf_underline(Textstyle_Data textdata,Integer underline)
	Set_ttf_strikeout(Textstyle_Data textdata,Integer strikeout)
	Set_ttf_italic(Textstyle_Data textdata,Integer italic)
	Set_ttf_weight(Textstyle_Data textdata,Integer weight)

	Maths
	Random Numbers
	Set_random_number(Integer seed,Integer method)
	Get_random_number()
	Get_random_number_closed()
	Get_random_number_open()

	Vectors and Matrices
	Set_vector(Vector2 &vect,Real value)
	Set_vector(Vector3 &vect,Real value)
	Set_vector(Vector4 &vect,Real value)
	Set_vector(Vector2 &vect,Real x,Real y)
	Set_vector(Vector3 &vect,Real x,Real y,Real z)
	Set_vector(Vector4 &vect,Real x,Real y,Real z,Real w)
	Get_vector(Vector2 &vect,Real &x,Real &y)
	Get_vector(Vector3 &vect,Real &x,Real &y,Real &z)
	Get_vector(Vector4 &vect,Real &x,Real &y,Real &z,Real &w)
	Set_vector(Vector2 &vect,Integer index,Real value)
	Set_vector(Vector3 &vect,Integer index,Real value)
	Set_vector(Vector4 &vect,Integer index,Real value)
	Get_vector(Vector2 &vect,Integer index,Real &value)
	Get_vector(Vector3 &vect,Integer index,Real &value)
	Get_vector(Vector4 &vect,Integer index,Real &value)
	Get_vector(Vector2 &vect,Integer index)
	Get_vector(Vector3 &vect,Integer index)
	Get_vector(Vector4 &vect,Integer index)
	Get_vector_length(Vector2 &vect,Real &value)
	Get_vector_length(Vector3 &vect,Real &value)
	Get_vector_length(Vector4 &vect,Real &value)
	Get_vector_length(Vector2 &vect)
	Get_vector_length(Vector3 &vect)
	Get_vector_length(Vector4 &vect)
	Get_vector_length_squared(Vector2 &vect,Real &value)
	Get_vector_length_squared(Vector3 &vect,Real &value)
	Get_vector_length_squared(Vector4 &vect,Real &value)
	Get_vector_length_squared(Vector2 &vect)
	Get_vector_length_squared(Vector3 &vect)
	Get_vector_length_squared(Vector4 &vect)
	Get_vector_normalize(Vector2 &vect,Vector2 &normalised)
	Get_vector_normalize(Vector3 &vect,Vector3 &normalised)
	Get_vector_normalize(Vector4 &vect,Vector4 &normalised)
	Get_vector_normalize(Vector2 &vect)
	Get_vector_normalize(Vector3 &vect)
	Get_vector_normalize(Vector4 &vect)
	Get_vector_homogenize(Vector3 &vect,Vector3 &homogenized)
	Get_vector_homogenize(Vector4 &vect,Vector4 &homogenized)
	Get_vector_homogenize(Vector3 &vect)
	Get_vector_homogenize(Vector4 &vect)
	Set_matrix_zero(Matrix3 &matrix)
	Set_matrix_zero(Matrix4 &matrix)
	Set_matrix_identity(Matrix3 &matrix)
	Set_matrix_identity(Matrix4 &matrix)
	Set_matrix(Matrix3 &matrix,Real value)
	Set_matrix(Matrix4 &matrix,Real value)
	Set_matrix(Matrix3 &matrix,Integer row,Integer col,Real value)
	Set_matrix(Matrix4 &matrix,Integer row,Integer col,Real value)
	Get_matrix(Matrix3 &matrix,Integer row,Integer col,Real &value)
	Get_matrix(Matrix4 &matrix,Integer row,Integer col,Real &value)
	Get_matrix(Matrix3 &matrix,Integer row,Integer col)
	Get_matrix(Matrix4 &matrix,Integer row,Integer col)
	Set_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
	Set_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
	Get_matrix_row(Matrix3 &matrix,Integer row,Vector3 &vect)
	Get_matrix_row(Matrix4 &matrix,Integer row,Vector4 &vect)
	Get_matrix_row(Matrix3 &matrix,Integer row)
	Get_matrix_row(Matrix4 &matrix,Integer row)
	Get_matrix_transpose(Matrix3 &source,Matrix3 &target)
	Get_matrix_transpose(Matrix4 &source,Matrix4 &target)
	Get_matrix_transpose(Matrix3 &source)
	Get_matrix_transpose(Matrix4 &source)
	Get_matrix_inverse(Matrix3 &source,Matrix3 &target)
	Get_matrix_inverse(Matrix4 &source,Matrix4 &target)
	Get_matrix_inverse(Matrix3 &source)
	Get_matrix_inverse(Matrix4 &source)
	Swap_matrix_rows(Matrix3 &matrix,Integer row1,Integer row2)
	Swap_matrix_rows(Matrix4 &matrix,Integer row1,Integer row2)
	Swap_matrix_cols(Matrix3 &matrix,Integer col1,Integer col2)
	Swap_matrix_cols(Matrix4 &matrix,Integer col1,Integer col2)
	Get_translation_matrix(Vector2 &vect,Matrix3 &matrix)
	Get_translation_matrix(Vector3 &vect,Matrix4 &matrix)
	Get_translation_matrix(Vector2 &vect)
	Get_translation_matrix(Vector3 &vect)
	Get_rotation_matrix(Vector2 ¢re,Real angle,Matrix3 &matrix)
	Get_rotation_matrix(Vector3 &axis,Real angle,Matrix4 &matrix)
	Get_rotation_matrix(Vector2 ¢re,Real angle)
	Get_rotation_matrix(Vector3 &axis,Real angle)
	Get_scaling_matrix(Vector2 &scale,Matrix3 &matrix)
	Get_scaling_matrix(Vector3 &scale,Matrix4 &matrix)
	Get_scaling_matrix(Vector2 &scale)
	Get_scaling_matrix(Vector3 &scale)
	Get_perspective_matrix(Real d,Matrix4 &matrix)
	Get_perspective_matrix(Real d)

	Triangles
	Triangle_normal(Real xarray[],Real yarray[],Real zarray[],Real Normal[])
	Triangle_normal(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &xn,Real &yn,Real &zn)
	Triangle_slope(Real xarray[],Real yarray[],Real zarray[],Real &slope)
	Triangle_slope(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &slope)
	Triangle_aspect(Real xarray[],Real yarray[],Real zarray[],Real &aspect)
	Triangle_aspect(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3,Real &aspect)

	System
	System(Text msg)
	Date(Text &date)
	Date(Integer &d,Integer &m,Integer &y)
	Time(Integer &time)
	Time(Real &time)
	Time(Text &time)
	Time(Integer &h,Integer &m,Real &sec)
	Convert_time(Integer t1,Text &t2)
	Get_user_name(Text &name)
	Convert_time(Text &t1,Integer t2)
	Convert_time(Integer t1,Text format,Text &t2)
	Get_macro_name()
	Get_module_license(Text module_name)
	Getenv(Text env)
	Find_system_file(Text new_file_name,Text old_file_name,Text env)
	Find_system_file(file_name,"colour_map.def","COLOUR_4D")
	Get_4dmodel_version(Integer &major,Integer &minor,Text &patch)
	Is_practise_version()
	Create_process(Text program_name,Text command_line,Text start_directory, Integer flags,Integer wait,Integer inherit)
	Shell_execute(Widget widget,Text operation,Text file,Text parameters, Text directory,Integer showcmd)

	Uid’s
	Guid’s
	Id’s
	Uid
	Uid Functions
	Get_next_uid()
	Get_next_id()
	Get_last_uid()
	Get_last_id()
	void Print(Uid uid)
	Convert_uid(Uid uid,Text &txt)
	Convert_uid(Uid uid,Integer &id)
	Convert_uid(Text txt,Uid &uid)
	Convert_uid(Integer id,Uid &uid)
	To_text(Uid uid)
	From_text(Text txt,Uid &uid)
	Null(Uid &uid)
	Is_null(Uid uid)
	Is_contour(Uid uid)
	Is_plot(Uid uid)
	Is_function(Uid uid)
	Function_exists(Integer id)
	Is_valid(Uid uid)
	Is_unknown(Uid uid)
	Is_global(Uid uid)

	Input/Output
	Print(Text msg)
	Print(Integer value)
	Print(Real value)
	void Print()
	Files
	File_exists(Text file_name)
	File_delete(Text file_name)
	File_open(Text file_name,Text mode,File &file)
	File_close(File file)
	File_read_line(File file,Text &text_in)
	File_write_line(File file,Text text_out)
	File_rewind(File file)
	File_tell(File file,Integer &pos)
	File_seek(File file,Integer pos)
	File_flush(File file)

	12d Ascii
	Read_4d_ascii(Text filename,Text prefix)

	Menus
	Create_menu(Text menu_title)
	Menu_delete(Menu menu)
	Create_button(Menu menu,Text button_text,Text button_reply)
	Display(Menu menu,Integer &across_pos,Integer &down_pos,Text &reply)
	Display_relative(Menu menu,Integer &across_rel,Integer &down_rel,Text &reply)

	Dynamic Arrays
	Dynamic Element Arrays
	Null(Dynamic_Element &delt)
	Get_number_of_items(Dynamic_Element &delt,Integer &no_items)
	Get_item(Dynamic_Element &delt,Integer i,Element &elt)
	Append(Element &elt,Dynamic_Element delt)
	Set_item(Dynamic_Element &delt,Integer i,Element elt)
	Null_item(Dynamic_Element &delt,Integer i)
	Append(Dynamic_Element from_de,Dynamic_Element &to_de)

	Dynamic Text Arrays
	Null(Dynamic_Text &dt)
	Get_number_of_items(Dynamic_Text &dt,Integer &no_items)
	Get_item(Dynamic_Text &dt,Integer i,Text &text)
	Set_item(Dynamic_Text &dt,Integer i,Text text)
	Append(Text text,Dynamic_Text &dt)
	Append(Dynamic_Text from_dt,Dynamic_Text &to_dt)
	Get_all_linestyles(Dynamic_Text &linestyles)
	Get_all_textstyles(Dynamic_Text &textstyles)
	Get_all_symbols(Dynamic_Text &symbols)
	Get_all_patterns(Dynamic_Text &patterns)

	Dynamic Real Arrays
	Null(Dynamic_Real &real_list)
	Get_number_of_items(Dynamic_Real &real_list,Integer &no_items)
	Get_item(Dynamic_Real &real_list,Integer i,Real &value)
	Set_item(Dynamic_Real &real_list,Integer index,Real value)
	Append(Dynamic_Real from_dr,Dynamic_Real &to_dr)
	Append(Real value,Dynamic_Real &real_list)

	Dynamic Integer Arrays
	Null(Dynamic_Integer &integer_list)
	Get_number_of_items(Dynamic_Integer &integer_list,Integer &count)
	Get_item(Dynamic_Integer &integer_list,Integer i,Integer &value)
	Set_item(Dynamic_Integer &integer_list,Integer i,Integer value)
	Append(Dynamic_Integer from_di,Dynamic_Integer &to_di)
	Append(Integer value,Dynamic_Integer &integer_list)

	Points
	Get_x(Point pt)
	Get_y(Point pt)
	Get_z(Point pt)
	Set_x(Point &pt,Real x)
	Set_y(Point &pt,Real y)
	Set_z(Point &pt,Real z)

	Lines
	Get_start(Line line)
	Get_end(Line line)
	Set_start(Line &line, Point pt)
	Set_end(Line &line, Point pt)
	Reverse(Line line)

	Arcs
	Get_centre(Arc arc)
	Get_radius(Arc arc)
	Get_start(Arc arc)
	Get_end(Arc arc)
	Set_centre(Arc &arc,Point pt)
	Set_radius(Arc &arc,Real rad)
	Set_start(Arc &arc,Point start)
	Set_end(Arc &arc,Point end)
	Reverse(Arc arc)

	Spirals and Transitions
	Set_type(Spiral spiral,Integer type)
	Set_leading(Spiral transition,Integer leading)
	Set_length(Spiral transition,Real length)
	Set_radius(Spiral trans,Real radius)
	Set_direction(Spiral trans,Real angle)
	Set_anchor(Spiral trans,Real point)
	Set_start_length(Spiral trans,Real start_length)
	Set_end_length(Spiral trans,Real length)
	Set_start_height(Spiral trans,Real height)
	Set_end_height(Spiral trans,Real height)
	Get_valid(Spiral trans)
	Get_type(Spiral trans)
	Get_leading(Spiral trans)
	Get_length(Spiral trans)
	Get_radius(Spiral trans)
	Get_direction(Spiral trans)
	Get_anchor(Spiral trans)
	Get_start_length(Spiral trans)
	Get_end_length(Spiral trans)
	Get_start_height(Spiral trans)
	Get_end_height(Spiral trans)
	Get_start_point(Spiral trans)
	Get_end_point(Spiral trans)
	Get_local_point(Spiral trans,Real len)
	Get_point(Spiral trans,Real len)
	Get_local_angle(Spiral trans,Real len)
	Get_angle(Spiral trans,Real len)
	Get_radius(Spiral trans,Real len)
	Get_shift_x(Spiral trans)
	Get_shift_y(Spiral trans)
	Get_shift(Spiral trans)
	Reverse(Spiral trans)

	Segments
	Get_type(Segment segment)
	Get_point(Segment segment,Point &point)
	Get_line(Segment segment,Line &line)
	Get_arc(Segment segment,Arc &arc)
	Get_spiral(Segment segment,Spiral &trans)
	Get_start(Segment segment,Point &point)
	Get_end(Segment segment,Point &point)
	Set_point(Segment &segment,Point point)
	Set_line(Segment &segment,Line line)
	Set_arc(Segment &segment,Arc arc)
	Set_spiral(Segment &segment,Spiral trans)
	Set_start(Segment &segment,Point point)
	Set_end(Segment &segment,Point point)
	Reverse(Segment segment)
	Get_segments(Element elt,Integer &nsegs)
	Get_segment(Element elt,Integer i,Segment &seg)

	Segment Geometry
	Length and Area
	Get_length(Segment segment,Real &length)
	Get_length_3d(Segment segment,Real &length)
	Plan_area(Segment segment,Real &plan_area)

	Parallel
	Parallel(Line line,Real distance,Line ¶llelled)
	Parallel(Arc arc,Real distance,Arc ¶llelled)
	Parallel(Segment segment,Real dist,Segment ¶llelled)
	Fit Arcs (fillets)
	Fitarc(Point pt_1,Point pt_2,Point pt_3,Arc &fillet)
	Fitarc(Segment seg_1,Segment seg_2,Real rad,Point cpt,Arc &fillet)
	Fitarc(Segment seg_1,Segment seg_2,Point start_tp,Arc &fillet)

	Tangents
	Tangent(Segment seg_1,Segment seg_2,Line &line)

	Intersections
	Intersect(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)
	Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)

	Offset Intersections
	Intersect_extended(Segment seg_1,Segment seg_2,Integer &no_intersects,Point &p1,Point &p2)
	Offset_intersect_extended(Segment seg_1,Real off_1,Segment seg_2,Real off_2,Integer &no_intersects,Point &p1,Point &p2)

	Angle Intersect
	Angle_intersect(Point pt_1,Real ang_1,Point pt_2, Real ang_2,Point &p)

	Distance
	Get_distance(Point p1,Point p2)
	Get_distance_3d(Point p1,Point p2)

	Locate Point
	Locate_point(Point from,Real ang,Real dist,Point &to)

	Drop Point
	Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt)
	Drop_point(Segment segment,Point pt_to_drop,Point &dropped_pt,Real &dist)

	Projection
	Projection(Segment segment,Real dist,Point &projected_pt)
	Projection(Segment segment,Point start_point, Real dist,Point &projected_pt)

	Change Of Angles
	Change_of_angle(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real &angle)
	Change_of_angle(Line l1,Line l2,Real &angle)

	Colours
	Colour_exists(Text col_name)
	Colour_exists(Integer col_number)
	Convert_colour(Text col_name,Integer &col_number)
	Convert_colour(Integer col_number,Text &col_name)
	Convert_colour(Integer value,Integer &red,Integer &green,Integer &blue)
	Get_project_colours(Dynamic_Text &colours)

	User Defined Attributes
	Attribute_exists(Attributes attr,Text att_name)
	Attribute_exists(Attributes attr,Text name,Integer &no)
	Attribute_delete(Attributes attr,Text att_name)
	Attribute_delete(Attributes attr,Integer att_no)
	Attribute_delete_all(Attributes attr)
	Get_number_of_attributes(Attributes attr,Integer &no_atts)
	Get_attribute(Attributes attr,Text att_name,Text &att)
	Get_attribute(Attributes attr,Text att_name,Integer &att)
	Get_attribute(Attributes attr,Text att_name,Real &att)
	Get_attribute(Attributes attr,Text att_name,Uid &att)
	Get_attribute(Attributes attr,Text att_name,Attributes &att)
	Get_attribute(Attributes attr,Integer att_no,Text &att)
	Get_attribute(Attributes attr,Integer att_no,Integer &att)
	Get_attribute(Attributes attr,Integer att_no,Real &att)
	Get_attribute(Attributes attr,Integer att_no,Uid &att)
	Get_attribute(Attributes attr,Integer att_no,Attributes &att)
	Get_attribute_name(Attributes attr,Integer att_no,Text &name)
	Get_attribute_type(Attributes attr,Text att_name,Integer &att_type)
	Get_attribute_type(Attributes attr,Integer att_num,Integer &att_type)
	Get_attribute_length(Attributes attr,Text att_name,Integer &att_len)
	Get_attribute_length(Attributes attr,Integer att_no,Integer &att_len)
	Set_attribute(Attributes attr,Text att_name,Text att)
	Set_attribute(Attributes attr,Text att_name,Integer att)
	Set_attribute(Attributes attr,Text att_name,Real att)
	Set_attribute(Attributes attr,Text att_name,Uid att)
	Set_attribute(Attributes attr,Text att_name,Attributes att)
	Set_attribute(Attributes attr,Integer att_no,Text att)
	Set_attribute(Attributes attr,Integer att_no,Integer att)
	Set_attribute(Attributes attr,Integer att_no,Real att)
	Set_attribute(Attributes attr,Integer att_no,Uid att)
	Set_attribute(Attributes attr,Integer att_no,Attributes att)
	Attribute_dump(Attributes attr)
	Attribute_debug(Attributes attr)

	Folders
	Directory_exists(Text folder_name)
	Get_file_size(Text file_name,Integer &size)
	Directory_create(Text folder_name)
	Directory_create_recursive(Text folder_name)
	Directory_delete(Text folder_name)
	Directory_delete_recursive(Text folder_name)

	12d Model Program and Folders
	Get_program_version_number()
	Get_program_major_version_number()
	Get_program_minor_version_number()
	Get_program_folder_version_number()
	Get_program_build_number()
	Get_program_special_build_name()
	Get_program_patch_version_name()
	Get_program_full_title_name()
	Get_program()
	Get_program_name()
	Get_program_folder()
	Get_program_parent_folder()
	Get_project_folder(Text &name)
	Get_temporary_directory(Text &folder_name)
	Get_temporary_12d_directory(Text &folder_name)
	Get_temporary_project_directory(Text &folder_name)

	Project
	Project_save()
	Program_exit(Integer ignore_save)
	Sleep(Integer milli)
	Set_project_attributes(Attributes att)
	Get_project_attributes(Attributes &att)
	Get_project_attribute(Text att_name,Uid &att)
	Get_project_attribute(Text att_name,Attributes &att)
	Get_project_attribute(Integer att_no,Uid &uid)
	Get_project_attribute(Integer att_no,Attributes &att)
	Set_project_attribute(Text att_name,Uid uid)
	Set_project_attribute(Text att_name,Attributes att)
	Set_project_attribute(Integer att_no,Uid uid)
	Set_project_attribute(Integer att_no,Attributes att)
	Project_attribute_exists(Text att_name)
	Project_attribute_exists(Text name,Integer &no)
	Project_attribute_delete(Text att_name)
	Project_attribute_delete(Integer att_no)
	Project_attribute_delete_all(Element elt)
	Project_attribute_dump()
	Project_attribute_debug()
	Get_project_number_of_attributes(Integer &no_atts)
	Get_project_attribute_name(Integer att_no,Text &name)
	Get_project_attribute_length(Integer att_no,Integer &att_len)
	Get_project_attribute_length(Text att_name,Integer &att_len)
	Get_project_attribute_type(Text att_name,Integer &att_type)
	Get_project_attribute_type(Integer att_no,Integer &att_type)
	Get_project_attribute(Text att_name,Real &att)
	Set_project_attribute(Text att_name,Real att)
	Get_project_attribute(Text att_name,Integer &att)
	Set_project_attribute(Text att_name,Integer att)
	Get_project_attribute(Integer att_no,Text &att)
	Set_project_attribute(Integer att_no,Text att)
	Get_project_attribute(Integer att_no,Integer &att)
	Set_project_attribute(Integer att_no,Integer att)
	Get_project_attribute(Integer att_no,Real &att)
	Set_project_attribute(Integer att_no,Real att)
	Get_project_attribute(Text att_name,Text &att)
	Set_project_attribute(Text att_name,Text att)

	Models
	Model_exists(Text model_name)
	Model_exists(Model model)
	Get_project_models(Dynamic_Text &model_names)
	Get_model(Text model_name)
	Get_name(Model model,Text &model_name)
	Get_time_created(Model model,Integer &time)
	Get_time_updated(Model model,Integer &time)
	Set_time_updated(Model model,Integer time)
	Get_id(Model model,Integer &id)
	Get_id(Model model,Uid &id)
	Get_model(Integer model_id,Model &model)
	Get_model(Uid model_id,Model &model)
	Get_element(Integer model_id,Integer element_id,Element &elt)
	Get_element(Uid model_id,Uid element_id,Element &elt)
	Create_model(Text model_name)
	Get_model_create(Text model_name)
	Get_number_of_items(Model model,Integer &num)
	Get_elements(Model model,Dynamic_Element &de,Integer &total_no)
	Get_extent_x(Model model,Real &xmin,Real &xmax)
	Get_extent_y(Model model,Real &ymin,Real &ymax)
	Get_extent_z(Model model,Real &zmin,Real &zmax)
	Calc_extent(Model model)
	Model_duplicate(Model model,Text dup_name)
	Model_rename(Text original_name,Text new_name)
	Model_draw(Model model)
	Model_draw(Model model,Integer col_num)
	Null(Model model)
	Model_delete(Model model)
	Get_model_attributes(Model model,Attributes &att)
	Set_model_attributes(Model model,Attributes att)
	Get_model_attribute(Model model,Text att_name,Uid &uid)
	Get_model_attribute(Model model,Text att_name,Attributes &att)
	Get_model_attribute(Model model,Integer att_no,Uid &uid)
	Get_model_attribute(Model model,Integer att_no,Attributes &att)
	Set_model_attribute(Model model,Text att_name,Uid att)
	Set_model_attribute(Model model,Text att_name,Attributes att)
	Set_model_attribute(Model model,Integer att_no,Uid uid)
	Set_model_attribute(Model model,Integer att_no,Attributes att)
	Model_attribute_exists(Model model,Text att_name)
	Model_attribute_exists(Model model,Text name,Integer &no)
	Model_attribute_delete(Model model,Text att_name)
	Model_attribute_delete(Model model,Integer att_no)
	Model_attribute_delete_all(Model model,Element elt)
	Model_attribute_dump(Model model)
	Model_attribute_debug(Model model)
	Get_model_attribute(Model model,Text att_name,Text &att)
	Get_model_attribute(Model model,Text att_name,Integer &att)
	Get_model_attribute(Model model,Text att_name,Real &att)
	Get_model_attribute(Model model,Integer att_no,Text &att)
	Get_model_attribute(Model model,Integer att_no,Integer &att)
	Get_model_attribute(Model model,Integer att_no,Real &att)
	Set_model_attribute(Model model,Integer att_no,Real att)
	Set_model_attribute(Model model,Integer att_no,Integer att)
	Set_model_attribute(Model model,Integer att_no,Text att)
	Set_model_attribute(Model model,Text att_name,Real att)
	Set_model_attribute(Model model,Text att_name,Integer att)
	Set_model_attribute(Model model,Text att_name,Text att)
	Get_model_attribute_name(Model model,Integer att_no,Text &name)
	Get_model_attribute_type(Model model,Text att_name,Integer &att_type)
	Get_model_attribute_type(Model model,Integer att_name,Integer &att_type)
	Get_model_attribute_length(Model model,Text att_name,Integer &att_len)
	Get_model_attribute_length(Model model,Integer att_no,Integer &att_len)
	Get_model_number_of_attributes(Model model,Integer &no_atts)

	Views
	View_exists(Text view_name)
	View_exists(View view)
	Get_name(View view,Text &view_name)
	Null(View view)
	Get_project_views(Dynamic_Text &view_names)
	Get_view(Text view_name)
	Get_type(View view,Text &type)
	Get_type(View view,Integer &view_num)
	Model_get_views(Model model,Dynamic_Text &view_names)
	View_get_models(View view,Dynamic_Text &model_names)
	View_add_model(View view,Model model)
	View_remove_model(View view,Model model)
	View_redraw(View view)
	View_fit(View view)
	View_get_size(View view,Integer &width,Integer &height)
	Calc_extent(View view)

	Tins
	Tin_exists(Text tin_name)
	Tin_exists(Tin tin)
	Get_project_tins(Dynamic_Text &tins)
	Get_tin(Text tin_name)
	Get_name(Tin tin,Text &tin_name)
	Tin_models(Tin tin, Dynamic_Text &models_used)
	Get_time_created(Tin tin,Integer &time)
	Get_time_updated(Tin tin,Integer &time)
	Set_time_updated(Tin tin,Integer time)
	Tin_number_of_points(Tin tin,Integer ¬ri)
	Tin_number_of_triangles(Tin tin,Integer ¬ri)
	Tin_number_of_duplicate_points(Tin tin,Integer ¬ri)
	Tin_number_of_items(Tin tin,Integer &num_items)
	Tin_colour(Tin tin,Real x,Real y,Integer &colour)
	Tin_height(Tin tin,Real x,Real y,Real &height)
	Tin_slope(Tin tin,Real x,Real y,Real &slope)
	Tin_aspect(Tin tin,Real x,Real y,Real &aspect)
	Tin_duplicate(Tin tin,Text dup_name)
	Tin_rename(Text original_name,Text new_name)
	Tin_boundary(Tin tin,Integer colour_for_strings,Dynamic_Element &de)
	Tin_delete(Tin tin)
	Tin_get_point(Tin tin,Integer np,Real &x,Real &y,Real &z)
	Tin_get_triangle_points(Tin tin,Integer nt,Integer &p1,Integer &p2,Integer &p3)
	Tin_get_triangle_neighbours(Tin tin,Integer nt,Integer &n1,Integer &n2, Integer &n3)
	Tin_get_point_from_point(Tin tin,Real x,Real y,Integer &np)
	Tin_get_triangles_about_point(Tin tin,Integer n,Integer &no_triangles)
	Tin_get_triangles_about_point(Tin tin,Integer n,Integer max_triangles,Integer &no_triangles,Integer triangles[],Integer points[],Integer status[])
	Tin_get_triangle_inside(Tin tin,Integer triangle,Integer &Inside)
	Tin_get_triangle(Tin tin,Integer triangle,Integer &p1,Integer &p2,Integer &p3,Integer &n1,Integer &n2,Integer &n3,Real &x1,Real &y1,Real &z1,Real &x2,Real &y2,Real &z2,Real &x3,Real &y3,Real &z3)
	Tin_get_triangle_from_point(Tin tin,Real x,Real y,Integer &triangle)
	Draw_triangle(Tin tin,Integer tri,Integer c)
	Draw_triangles_about_point(Tin tin,Integer pt,Integer c)
	Triangulate(Dynamic_Text list,Text tin_name,Integer colour,Integer preserve,Integer bubbles,Tin &tin)
	Triangles_clip(Real x1,Real y1,Real x2,Real y2,Real x3,Real y3,Real x4,Real y4,Real z4,Real x5,Real y5,Real z5,Real x6,Real y6,Real z6, Integer &npts_out,Real xarray_out[],Real yarray_out[],Real zarray_out[])
	Tin_models(Tin tin,Dynamic_Text &models)
	Retriangulate(Tin tin)
	Breakline(Tin tin,Integer p1,Integer p2)
	Flip_triangles(Tin tin,Integer t1,Integer t2)
	Set_height(Tin tin,Integer pt,Real ht)
	Set_supertin(Tin_Box box,Integer mode)
	Null Triangles
	Null(Tin tin)
	Null_triangles(Tin tin,Element poly,Integer mode)
	Reset_null_triangles(Tin tin,Element poly,Integer mode)
	Reset_null_triangles(Tin tin)
	Null_by_angle_length(Tin tin,Real l1,Real a1,Real l2,Real a2)

	Colour Triangles
	Get_colour(Tin tin,Integer &colour)
	Set_colour(Tin tin,Integer colour)
	Tin_get_triangle_colour(Tin tin,Integer triangle,Integer &colour)
	Colour_triangles(Tin tin,Integer col_num,Element poly,Integer mode)
	Reset_colour_triangles(Tin tin,Element poly,Integer mode)
	Reset_colour_triangles(Tin tin)

	Elements
	Types of Elements
	Parts of 12d Elements
	Element Header
	Element_exists(Element elt)
	Get_id(Element elt,Integer &id)
	Get_id(Element elt,Uid &id)
	Get_points(Element elt,Integer &numpts)
	Get_colour(Element elt,Integer &colour)
	Get_breakline(Element elt,Integer &break_type)
	Get_type(Element elt,Integer &elt_type)
	Get_type(Element elt,Text &elt_type)
	Get_name(Element elt,Text &elt_name)
	Get_style(Element elt,Text &elt_style)
	Get_chainage(Element elt,Real &start_chain)
	Get_end_chainage(Element elt,Real &chainage)
	Get_data(Element elt,Integer i,Real &x,Real &y,Real &z)
	Get_time_created(Element elt,Integer &time)
	Get_time_updated(Element elt,Integer &time)
	Get_model(Element elt,Model &model)
	Get_tin(Element elt)
	Set_colour(Element elt,Integer colour)
	Set_breakline(Element elt,Integer break_type)
	Set_name(Element elt,Text elt_name)
	Set_style(Element elt,Text elt_style)
	Set_chainage(Element elt,Real start_chain)
	Set_time_updated(Element elt,Integer time)
	Set_model(Element elt,Model model)
	Set_model(Dynamic_Element de,Model model)
	Integer Null(Element elt)
	Get_extent_x(Element elt,Real &xmin,Real &xmax)
	Get_extent_y(Element elt,Real &ymin,Real &ymax)
	Get_extent_z(Element elt,Real &zmin,Real &zmax)
	Calc_extent(Element elt)
	Element_duplicate(Element elt,Element &dup_elt)
	Element_delete(Element elt)

	Element Attributes
	Get_attributes(Element elt,Attributes &att)
	Set_attributes(Element elt,Attributes att)
	Get_attribute(Element elt,Text att_name,Uid &uid)
	Get_attribute(Element elt,Text att_name,Attributes &att)
	Get_attribute(Element elt,Integer att_no,Uid &uid)
	Get_attribute(Element elt,Integer att_no,Attributes &att)
	Set_attribute(Element elt,Text att_name,Uid uid)
	Set_attribute(Element elt,Text att_name,Attributes att)
	Set_attribute(Element elt,Integer att_no,Uid uid)
	Set_attribute(Element elt,Integer att_no,Attributes att)
	Attribute_exists(Element elt,Text att_name)
	Attribute_exists(Element elt,Text att_name,Integer &att_no)
	Attribute_delete(Element elt,Text att_name)
	Attribute_delete(Element elt,Integer att_no)
	Attribute_delete_all(Element elt)
	Get_number_of_attributes(Element elt,Integer &no_atts)
	Get_attribute(Element elt,Text att_name,Text &att)
	Get_attribute(Element elt,Text att_name,Integer &att)
	Get_attribute(Element elt,Text att_name,Real &att)
	Get_attribute(Element elt,Integer att_no,Text &att)
	Get_attribute(Element elt,Integer att_no,Integer &att)
	Get_attribute(Element elt,Integer att_no,Real &att)
	Get_attribute_name(Element elt,Integer att_no,Text &name)
	Get_attribute_type(Element elt,Text att_name,Integer &att_type)
	Get_attribute_type(Element elt,Integer att_no,Integer &att_type)
	Get_attribute_length(Element elt,Text att_name,Integer &att_len)
	Get_attribute_length(Element elt,Integer att_no,Integer &att_len)
	Set_attribute(Element elt,Text att_name,Text att)
	Set_attribute(Element elt,Text att_name,Integer att)
	Set_attribute(Element elt,Text att_name,Real att)
	Set_attribute(Element elt,Integer att_no,Text att)
	Set_attribute(Element elt,Integer att_no,Integer att)
	Set_attribute(Element elt,Integer att_no,Real att)
	Attribute_dump(Element elt)
	Attribute_debug(Element elt)

	Element Body
	2d Strings
	Create_2d(Real x[],Real y[],Real zvalue,Integer num_pts)
	Create_2d(Integer num_pts)
	Create_2d(Integer num_pts,Element seed)
	Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pts,Integer &num_pts)
	Get_2d_data(Element elt,Real x[],Real y[],Real &zvalue,Integer max_pt,Integer &num_pts,Integer start_pt)
	Get_2d_data(Element elt,Integer i,Real &x,Real &y)
	Get_2d_data(Element elt,Real &z)
	Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts)
	Set_2d_data(Element elt,Real x[],Real y[],Integer num_pts,Integer start_pt)
	Set_2d_data(Element elt,Integer i,Real x,Real y)
	Set_2d_data(Element elt,Real z)

	3d Strings
	Create_3d(Line line)
	Create_3d(Real x[],Real y[],Real z[],Integer num_pts)
	Create_3d(Integer num_pts)
	Create_3d(Integer num_pts,Element seed)
	Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Get_3d_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_3d_data(Element elt,Integer i, Real &x,Real &y,Real &z)
	Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Set_3d_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Set_3d_data(Element elt,Integer i,Real x,Real y,Real z)

	4d Strings
	Create_4d(Real x[],Real y[],Real z[],Text t[],Integer num_pts)
	Create_4d(Integer num_pts)
	Create_4d(Integer num_pts,Element seed)
	Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts)
	Get_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_4d_data(Element elt,Integer i,Real &x,Real &y,Real &z,Text &t)
	Get_4d_units(Element elt,Integer &units_mode)
	Get_4d_size(Element elt,Real &size)
	Get_4d_justify(Element elt,Integer &justify)
	Get_4d_angle(Element elt,Real &angle)
	Get_4d_offset(Element elt,Real &offset)
	Get_4d_rise(Element elt,Real &rise)
	Get_4d_ttf_underline(Element elt,Integer &underline)
	Get_4d_ttf_strikeout(Element elt,Integer &strikeout)
	Get_4d_ttf_italic(Element elt,Integer &italic)
	Get_4d_ttf_weight(Element elt,Integer &weight)
	Get_4d_height(Element elt,Real &height)
	Get_4d_slant(Element elt,Real &slant)
	Get_4d_x_factor(Element elt,Real &xfact)
	Get_4d_style(Element elt,Text &style)
	Get_4d_textstyle_data(Element elt,Textstyle_Data &d)
	Set_4d_data(Element elt,Real x[],Real y[],Real z[], Text t[],Integer num_pts)
	Set_4d_data(Element elt,Real x[],Real y[],Real z[],Text t[],Integer num_pts,Integer start_pt)
	Set_4d_data(Element elt,Integer i,Real x,Real y,Real z,Text t)
	Set_4d_units(Element elt,Integer units_mode)
	Set_4d_size(Element elt,Real size)
	Set_4d_justify(Element elt,Integer justify)
	Set_4d_angle(Element elt,Real angle)
	Set_4d_offset(Element elt,Real offset)
	Set_4d_rise(Element elt,Real rise)
	Set_4d_ttf_underline(Element elt,Integer underline)
	Set_4d_ttf_strikeout(Element elt,Integer strikeout)
	Set_4d_ttf_italic(Element elt,Integer italic)
	Set_4d_ttf_weight(Element elt,Integer weight)
	Set_4d_height(Element elt,Real height)
	Set_4d_slant(Element elt,Real slant)
	Set_4d_x_factor(Element elt,Real xfact)
	Set_4d_style(Element elt,Text style)
	Set_4d_textstyle_data(Element elt,Textstyle_Data d)

	Interface String
	Create_interface(Real x[],Real y[],Real z[],Integer f[],Integer num_pts)
	Create_interface(Integer num_pts)
	Create_interface(Integer num_pts,Element seed)
	Get_interface_data(Element elt,Real x[],Real y[],Real z[], Integer f[],Integer max_pts,Integer &num_pts)
	Get_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_interface_data(Element elt,Integer i,Real &x,Real &y,Real &z,Integer &f)
	Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts)
	Set_interface_data(Element elt,Real x[],Real y[],Real z[],Integer f[],Integer num_pts,Integer start_pt)
	Set_interface_data(Element elt,Integer i,Real x,Real y,Real z,Integer flag)

	Alignment Strings
	Element Create_align()
	Create_align(Element seed)
	Append_hip(Element elt,Real x,Real y)
	Append_hip(Element elt,Real x,Real y,Real rad)
	Append_hip(Element elt,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Get_hip_points(Element elt,Integer &num_pts)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad)
	Get_hip_data(Element elt,Integer i,Real &x,Real &y,Real &rad,Real &left_spiral,Real &right_spiral)
	Set_hip_data(Element elt,Integer i,Real x,Real y)
	Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad)
	Set_hip_data(Element elt,Integer i,Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Insert_hip(Element elt,Integer i,Real x,Real y)
	Insert_hip(Element elt,Integer i,Real x,Real y,Real rad)
	Insert_hip(Element elt,Integer i, Real x,Real y,Real rad,Real left_spiral,Real right_spiral)
	Delete_hip(Element elt,Integer i)
	Get_hip_type(Element elt,Integer hip_no,Text &type)
	Get_hip_geom(Element elt,Integer hip_no,Integer mode, Real &x,Real &y)
	Append_vip(Element elt,Real ch,Real ht)
	Append_vip(Element elt,Real ch,Real ht,Real parabolic)
	Append_vip(Element elt,Real ch,Real ht,Real length,Integer mode)
	Get_vip_points(Element elt,Integer &num_pts)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real ¶bolic)
	Get_vip_data(Element elt,Integer i,Real &ch,Real &ht,Real &value,Integer &mode)
	Set_vip_data(Element elt,Integer i,Real ch,Real ht)
	Set_vip_data(Element elt,Integer i, Real ch,Real ht,Real parabolic)
	Set_vip_data(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
	Insert_vip(Element elt,Integer i,Real ch,Real ht)
	Insert_vip(Element elt,Integer i,Real ch,Real ht,Real parabolic)
	Insert_vip(Element elt,Integer i,Real ch,Real ht,Real value,Integer mode)
	Delete_vip(Element elt,Integer i)
	Calc_alignment(Element elt)
	Get_vip_type(Element elt,Integer vip_no,Text &type)
	Get_vip_geom(Element elt,Integer vip_no,Integer mode,Real &chainage,Real &height)
	Get_hip_id(Element elt,Integer position,Integer &id)
	Get_vip_id(Element elt,Integer position,Integer &id)

	Arc Strings
	Create_arc(Arc arc)
	Create_arc(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)
	Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)
	Create_arc(Real xc,Real yc,Real zc,Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)
	Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real sweep)
	Create_arc(Real xc,Real yc,Real zc,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze,Integer dir)
	Create_arc_2(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real start_angle)
	Create_arc_3(Real xs,Real ys,Real zs,Real rad,Real arc_length,Real chord_angle)
	Get_arc_centre(Element elt,Real &xc,Real &yc,Real &zc)
	Get_arc_radius(Element elt,Real &rad)
	Get_arc_start(Element elt,Real &xs,Real &ys,Real &zs)
	Get_arc_end(Element elt,Real &xe,Real &ye,Real &ze)
	Get_arc_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad,Real &xs,Real &ys,Real &zs,Real &xe,Real &ye,Real &ze)
	Set_arc_centre(Element elt,Real xc,Real yc,Real zc)
	Set_arc_radius(Element elt,Real rad)
	Set_arc_start(Element elt,Real xs,Real ys,Real zs)
	Set_arc_end(Element elt,Real xe,Real ye,Real ze)
	Set_arc_data(Element elt,Real xc,Real yc,Real zc, Real rad,Real xs,Real ys,Real zs,Real xe,Real ye,Real ze)

	Circle Strings
	Create_circle(Real xc,Real yc,Real zc,Real rad)
	Create_circle(Real xc,Real yc,Real zc, Real xp,Real yp,Real zp)
	Create_circle(Real x1,Real y1,Real z1,Real x2,Real y2,Real z2,Real x3,Real y3,Real z3)
	Get_circle_data(Element elt,Real &xc,Real &yc,Real &zc,Real &rad)
	Set_circle_data(Element elt,Real xc,Real yc,Real zc,Real rad)

	Text Strings
	Create_text(Text text,Real x,Real y,Real size,Integer colour)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif, Integer size_mode)
	Create_text(Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)
	Get_text_value(Element elt,Text &text)
	Get_text_xy(Element elt,Real &x,Real &y)
	Get_text_units(Element elt,Integer &units_mode)
	Get_text_size(Element elt,Real &size)
	Get_text_justify(Element elt,Integer &justify)
	Get_text_angle(Element elt,Real &ang)
	Get_text_offset(Element elt,Real &offset)
	Get_text_rise(Element elt,Real &rise)
	Get_text_ttf_underline(Element elt,Integer &underline)
	Get_text_ttf_strikeout(Element elt,Integer &strikeout)
	Get_text_ttf_italic(Element elt,Integer &italic)
	Get_text_ttf_weight(Element elt,Integer &weight)
	Get_text_height(Element elt,Real &height)
	Get_text_length(Element elt,Real &length)
	Get_text_slant(Element elt,Real &slant)
	Get_text_x_factor(Element elt,Real &xfact)
	Get_text_style(Element elt,Text &style)
	Get_text_data(Element elt,Text &text,Real &x,Real &y,Real &size,Integer &colour,Real &ang,Integer &justification,Integer &size_mode,Real &offset_dist,Real &rise_dist)
	Get_text_textstyle_data(Element elt,Textstyle_Data &d)
	Set_text_value(Element elt,Text text)
	Set_text_xy(Element elt,Real x,Real y)
	Set_text_units(Element elt,Integer units_mode)
	Set_text_size(Element elt,Real size)
	Set_text_justify(Element elt,Integer justify)
	Set_text_angle(Element elt,Real ang)
	Set_text_offset(Element elt,Real offset)
	Set_text_rise(Element elt,Real rise)
	Set_text_ttf_underline(Element elt,Integer underline)
	Set_text_ttf_strikeout(Element elt,Integer strikeout)
	Set_text_ttf_italic(Element elt,Integer italic)
	Set_text_ttf_weight(Element elt,Integer weight)
	Set_text_height(Element elt,Real height)
	Set_text_slant(Element elt,Real slant)
	Set_text_x_factor(Element elt,Real xfact)
	Set_text_style(Element elt,Text style)
	Set_text_data(Element elt,Text text,Real x,Real y,Real size,Integer colour,Real ang,Integer justif,Integer size_mode,Real offset_distance,Real rise_distance)
	Set_text_textstyle_data(Element elt,Textstyle_Data d)

	Pipeline Strings
	Integer Create_pipeline()
	Create_pipeline(Element seed)
	Get_pipeline_diameter(Element pipeline,Real &diameter)
	Set_pipeline_diameter(Element pipeline,Real diameter)
	Get_pipeline_length(Element pipeline,Real &length)
	Set_pipeline_length(Element pipeline,Real length)

	Polyline Strings
	Create_polyline(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Create_polyline(Integer num_pts)
	Create_polyline(Integer num_pts,Element seed)
	Create_polyline(Segment seg)
	Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts)
	Get_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_polyline_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)
	Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Set_polyline_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,Integer start_pt)
	Set_polyline_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)

	Drainage Strings
	Drainage String Functions
	Create_drainage(Integer num_pts,Integer num_pits)
	Create_drainage(Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts, Integer num_pits)
	Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts)
	Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Get_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Set_drainage_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,Integer start_pt)
	Get_drainage_data(Element elt,Integer i,Real &x,Real &y,Real &z,Real &r,Integer &f)
	Set_drainage_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)
	Get_drainage_float(Element elt,Integer &float)
	Set_drainage_float(Element elt,Integer float)
	Get_drainage_ns_tin(Element elt,Tin &tin)
	Set_drainage_ns_tin(Element elt,Tin tin)
	Get_drainage_fs_tin(Element elt,Tin &tin)
	Set_drainage_fs_tin(Element elt,Tin tin)
	Get_drainage_outfall_height(Element elt,Real &ht)
	Set_drainage_outfall_height(Element elt,Real ht)
	Get_drainage_flow(Element elt,Integer &dir)
	Set_drainage_flow(Element elt,Integer dir)
	Get_drainage_trunk(Element elt,Element &trunk)

	Drainage String Pipes
	Get_drainage_pipe_cover(Element elt,Integer pipe,Real &minc,Real &maxc)
	Set_drainage_pipe_cover(Element elt,Integer pipe,Real cover)
	Get_drainage_pipe_diameter(Element elt,Integer p,Real &diameter)
	Set_drainage_pipe_diameter(Element elt,Integer p,Real diameter)
	Get_drainage_pipe_inverts(Element elt,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pipe_inverts(Element elt,Integer p,Real lhs,Real rhs)
	Get_drainage_pipe_hgls(Element elt,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pipe_hgls(Element elt,Integer p,Real lhs,Real rhs)
	Get_drainage_pipe_name(Element elt,Integer p,Text &name)
	Set_drainage_pipe_name(Element elt,Integer p,Text name)
	Get_drainage_pipe_type(Element elt,Integer p,Text &type)
	Set_drainage_pipe_type(Element elt,Integer p,Text type)
	Get_drainage_pipe_velocity(Element elt,Integer p,Real &velocity)
	Set_drainage_pipe_velocity(Element elt,Integer p,Real velocity)
	Get_drainage_pipe_flow(Element elt,Integer p,Real &flow)
	Set_drainage_pipe_flow(Element elt,Integer p,Real flow)
	Get_drainage_pipe_length(Element elt,Integer p,Real &length)
	Get_drainage_pipe_grade(Element elt,Integer p,Real &grade)
	Get_drainage_pipe_ns(Element elt,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)
	Get_drainage_pipe_fs(Element elt,Integer p,Real ch[],Real ht[],Integer max_pts,Integer &npts)
	Get_drainage_number_of_pipe_types(Integer &n)
	Get_drainage_pipe_type(Integer i,Text &type)
	Get_drainage_pipe_roughness(Text type,Real &roughness,Integer &roughness_type)

	Drainage String Pipe Attributes
	Get_drainage_pipe_attributes(Element drain,Integer pipe,Attributes &att)
	Set_drainage_pipe_attributes(Element drain,Integer pipe,Attributes att)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid &uid)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Attributes &att)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid &uid)
	Get_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no, Attributes &att)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Uid uid)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name, Attributes att)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Uid uid)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no, Attributes att)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text &txt)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer &int)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Real &real)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text &txt)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Integer &int)
	Get_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Real &real)
	Drainage_pipe_attribute_exists(Element drain,Integer pipe,Text att_name)
	Drainage_pipe_attribute_exists (Element drain, Integer pipe,Text name,Integer &no)
	Drainage_pipe_attribute_delete (Element drain,Integer pipe,Text att_name)
	Drainage_pipe_attribute_delete (Element drain,Integer pipe,Integer att_no)
	Drainage_pipe_attribute_delete_all (Element drain,Integer pipe)
	Drainage_pipe_attribute_dump (Element drain,Integer pipe)
	Drainage_pipe_attribute_debug (Element elt,Integer pipe)
	Get_drainage_pipe_number_of_attributes(Element drain,Integer pipe,Integer &no_atts)
	Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Text att_name,Integer &att_len)
	Get_drainage_pipe_attribute_length (Element drain,Integer pipe,Integer att_no,Integer &att_len)
	Get_drainage_pipe_attribute_name(Element drain,Integer pipe,Integer att_no,Text &name)
	Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Text att_name,Integer &att_type)
	Get_drainage_pipe_attribute_type(Element drain,Integer pipe,Integer att_no,Integer &att_type
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Text txt)
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Text att_name,Integer int)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Text att_name,Real real)
	Set_drainage_pipe_attribute (Element drain,Integer pipe,Integer att_no,Text txt)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Integer int)
	Set_drainage_pipe_attribute(Element drain,Integer pipe,Integer att_no,Real real)

	Drainage String Pits
	Get_drainage_pit(Element elt,Integer p,Real &x,Real &y,Real &z)
	Set_drainage_pit(Element elt,Integer p,Real x,Real y,Real z)
	Get_drainage_pit_angle(Element elt,Integer p,Real &ang)
	Get_drainage_pit_angle (Element elt,Integer pit,Real &ang,Integer trunk)
	Get_drainage_pit_diameter(Element elt,Integer p,Real &diameter)
	Set_drainage_pit_diameter(Element elt,Integer p,Real diameter)
	Get_drainage_pit_float(Element elt,Integer pit,Integer &float)
	Set_drainage_pit_float(Element elt,Integer pit,Integer float)
	Get_drainage_pit_inverts(Element elt,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pit_inverts(Element elt,Integer p,Real lhs,Real rhs)
	Get_drainage_pit_hgls(Element elt,Integer p,Real &lhs,Real &rhs)
	Set_drainage_pit_hgls(Element elt,Integer p,Real lhs,Real rhs)
	Get_drainage_pit_hgl(Element elt,Integer pit,Real &hgl)
	Set_drainage_pit_hgl(Element element,Integer pit,Real hgl)
	Get_drainage_pit_name(Element elt,Integer p,Text &name)
	Set_drainage_pit_name(Element elt,Integer p,Text name)
	Get_drainage_pit_road_chainage(Element elt,Integer p,Real &chainage)
	Set_drainage_pit_road_chainage(Element elt,Integer p,Real chainage)
	Get_drainage_pit_road_name(Element elt,Integer p,Text &name)
	Set_drainage_pit_road_name(Element elt,Integer p,Text name)
	Get_drainage_pit_type(Element elt,Integer p,Text &type)
	Set_drainage_pit_type(Element elt,Integer p,Text type)
	Get_drainage_pit_branches(Element elt,Integer pit,Dynamic_Element &branches)
	Get_drainage_pit_chainage(Element elt,Integer p,Real &chainage)
	Get_drainage_pit_depth(Element elt,Integer p,Real &depth)
	Get_drainage_pit_drop(Element elt,Integer p,Real &drop)
	Get_drainage_pits(Element elt,Integer &npits)
	Get_drainage_pit_ns(Element elt,Integer n,Real &ht)
	Get_drainage_pit_fs(Element elt,Integer n,Real &ht)
	Get_drainage_number_of_manhole_types(Integer &n)
	Get_drainage_manhole_type(Integer i,Text &type)
	Get_drainage_manhole_length(Text type,Real &length)
	Get_drainage_manhole_width(Text type,Real &width)
	Get_drainage_manhole_description(Text type,Text &description)
	Get_drainage_manhole_notes(Text type,Text ¬es)
	Get_drainage_manhole_group(Text type,Text &group)
	Get_drainage_manhole_capacities(Text type,Real &multi,Real &fixed, Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_sag_curves(Text type,Integer &n)
	Get_drainage_sag_curve_name(Text type,Text &name)
	Get_drainage_manhole_capacities_sag(Text type,Real &multi,Real &fixed,Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_sag_curve_coords(Text type,Integer &n)
	Get_drainage_sag_curve_coords(Text type,Real Depth[],Real Qin[],Integer nmax,Integer &n)
	Get_drainage_number_of_grade_curves(Text type,Integer &n)
	Get_drainage_grade_curve_name(Text type,Integer i,Text &name)
	Get_drainage_grade_curve_threshold(Text type,Text name,Integer &by_grade,Real &road_grade,Integer &by_xfall,Real &road_xfall)
	Get_drainage_manhole_capacities_grade(Text type,Text name,Real &multi,Real &fixed,Real &percent,Real &coeff,Real &power)
	Get_drainage_number_of_grade_curve_coords(Text type,Text name,Integer &n)
	Get_drainage_grade_curve_coords(Text type,Text name,Real Qa[],Real Qin[],Integer nmax,Integer &n)
	Get_drainage_manhole_config(Text type,Text &cap_config)
	Get_drainage_manhole_diam(Text type,Real &diameter)

	Drainage String Pit Attributes
	Get_drainage_pit_attribute_length(Element drain,Integer pit,Integer att_no,Integer &att_len)
	Get_drainage_pit_attribute_length(Element drain,Integer pit,Text att_name,Integer &att_len)
	Get_drainage_pit_attribute_type(Element drain,Integer pit,Integer att_no,Integer &att_type)
	Get_drainage_pit_attribute_type(Element drain,Integer pit,Text att_name,Integer &att_type)
	Get_drainage_pit_attribute_name(Element drain,Integer pit,Integer att_no,Text &name)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real &real)
	Get_drainage_pit_attribute (Element drain,Integer pit,Integer att_no,Integer &int)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text &txt)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real &real)
	Get_drainage_pit_number_of_attributes(Element drain,Integer pit,Integer &no_atts)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text &txt)
	Get_drainage_pit_attribute (Element drain,Integer pit,Text att_name,Integer &int)
	Get_drainage_pit_attributes(Element drain,Integer pit,Attributes &att)
	Set_drainage_pit_attributes(Element drain,Integer pit,Attributes att)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid &uid)
	Get_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes &att)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid &uid)
	Get_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Attributes &att)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Uid uid)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Attributes att)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Uid uid)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Real real)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Integer int)
	Set_drainage_pit_attribute(Element drain,Integer pit,Integer att_no,Text txt)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Real real)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Integer int)
	Set_drainage_pit_attribute(Element drain,Integer pit,Text att_name,Text txt)
	Drainage_pit_attribute_exists(Element drain,Integer pit,Text att_name)
	Drainage_pit_attribute_exists (Element drain,Integer pit,Text name,Integer &no)
	Drainage_pit_attribute_delete (Element drain,Integer pit,Text att_name)
	Drainage_pit_attribute_delete (Element drain,Integer pit,Integer att_no)
	Drainage_pit_attribute_delete_all (Element drain,Integer pit)
	Drainage_pit_attribute_dump (Element drain,Integer pit)
	Drainage_pit_attribute_debug (Element drain,Integer pit)

	Drainage String House Connections - Only Available for the Sewer Module
	Get_drainage_hcs(Element elt,Integer &no_hcs)
	Get_drainage_hc(Element elt,Integer h,Real &x,Real &y,Real &z)
	Get_drainage_hc_adopted_level(Element elt,Integer h,Real &level)
	Set_drainage_hc_adopted_level(Element elt,Integer hc,Real level)
	Get_drainage_hc_bush(Element elt,Integer h,Text &bush)
	Set_drainage_hc_bush(Element elt,Integer hc,Text bush)
	Get_drainage_hc_colour(Element elt,Integer h,Integer &colour)
	Set_drainage_hc_colour(Element elt,Integer hc,Integer colour)
	Get_drainage_hc_depth(Element elt,Integer h,Real &depth)
	Set_drainage_hc_depth(Element elt,Integer hc,Real depth)
	Get_drainage_hc_diameter(Element elt,Integer h,Real &diameter)
	Set_drainage_hc_diameter(Element elt,Integer hc,Real diameter)
	Get_drainage_hc_grade(Element elt,Integer h,Real &grade)
	Set_drainage_hc_grade(Element elt,Integer hc,Real grade)
	Get_drainage_hc_hcb(Element elt,Integer h,Integer &hcb)
	Set_drainage_hc_hcb(Element elt,Integer hc,Integer hcb)
	Get_drainage_hc_length(Element elt,Integer h,Real &length)
	Set_drainage_hc_length(Element elt,Integer hc,Real length)
	Get_drainage_hc_level(Element elt,Integer h,Real &level)
	Set_drainage_hc_level(Element elt,Integer hc,Real level)
	Get_drainage_hc_material(Element elt,Integer h,Text &material)
	Set_drainage_hc_material(Element elt,Integer hc,Text material)
	Get_drainage_hc_name(Element elt,Integer h,Text &name)
	Set_drainage_hc_name(Element elt,Integer hc,Text name)
	Get_drainage_hc_side(Element elt,Integer h,Integer &side)
	Set_drainage_hc_side(Element elt,Integer hc,Integer side)
	Get_drainage_hc_type(Element elt,Integer h,Text &type)
	Set_drainage_hc_type(Element elt,Integer hc,Text type)
	Get_drainage_hc_chainage(Element elt,Integer h,Real &chainage)
	Get_drainage_hc_ip(Element elt,Integer h,Integer &ip)

	Pipe Strings
	Create_pipe(Real x[],Real y[],Real z[],Integer num_pts)
	Create_pipe(Integer num_pts)
	Create_pipe(Integer num_pts,Element seed)
	Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Get_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Set_pipe_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Get_pipe_data(Element elt,Integer i, Real &x,Real &y,Real &z)
	Set_pipe_data(Element elt,Integer i,Real x,Real y,Real z)
	Get_pipe_diameter(Element elt,Real &diameter)
	Set_pipe_diameter(Element elt,Real diameter)
	Get_pipe_justify(Element elt,Integer &justify)
	Set_pipe_justify(Element elt,Integer justify)

	Face Strings
	Create_face(Real x[],Real y[],Real z[],Integer num_pts)
	Create_face(Integer num_npts)
	Create_face(Integer num_npts,Element seed)
	Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts)
	Get_face_data(Element elt,Real x[],Real y[],Real z[],Integer max_pts,Integer &num_pts,Integer start_pt)
	Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts)
	Set_face_data(Element elt,Real x[],Real y[],Real z[],Integer num_pts,Integer start_pt)
	Get_face_data(Element elt,Integer i,Real &x,Real &y,Real &z)
	Set_face_data(Element elt,Integer i,Real x,Real y,Real z)
	Get_face_hatch_distance(Element elt,Real &dist)
	Set_face_hatch_distance(Element elt,Real dist)
	Get_face_hatch_angle(Element elt,Real &ang)
	Set_face_hatch_angle(Element elt,Real ang)
	Get_face_hatch_colour(Element elt,Integer &colour)
	Set_face_hatch_colour(Element elt,Integer colour)
	Get_face_edge_colour(Element elt,Integer &colour)
	Set_face_edge_colour(Element elt,Integer colour)
	Get_face_hatch_mode(Element elt,Integer &mode)
	Set_face_hatch_mode(Element elt,Integer mode)
	Get_face_fill_mode(Element elt,Integer &mode)
	Set_face_fill_mode(Element elt,Integer mode)
	Get_face_edge_mode(Element elt,Integer &mode)
	Set_face_edge_mode(Element elt,Integer mode)

	Plot Frames
	Create_plot_frame(Text name)
	Get_plot_frame_name(Element elt,Text &name)
	Get_plot_frame_scale(Element elt,Real &scale)
	Get_plot_frame_rotation(Element elt,Real &rotation)
	Get_plot_frame_origin(Element elt,Real &x,Real &y)
	Get_plot_frame_sheet_size(Element elt,Real &w,Real &h)
	Get_plot_frame_sheet_size(Element elt,Text &size)
	Get_plot_frame_margins(Element elt,Real &l,Real &b,Real &r,Real &t)
	Get_plot_frame_text_size(Element elt,Real &text_size)
	Get_plot_frame_draw_border(Element elt,Integer &draw_border)
	Get_plot_frame_draw_viewport(Element elt,Integer &draw_viewport)
	Get_plot_frame_draw_title_file(Element elt,Integer &draw_title)
	Get_plot_frame_colour(Element elt,Integer &colour)
	Get_plot_frame_textstyle(Element elt,Text &textstyle)
	Get_plot_frame_plotter(Element elt,Integer &plotter)
	Get_plot_frame_plotter_name(Element elt,Text &plotter_name)
	Get_plot_frame_plot_file(Element elt,Text &plot_file)
	Get_plot_frame_title_1(Element elt,Text &title)
	Get_plot_frame_title_2(Element elt,Text &title)
	Get_plot_frame_title_file(Element elt,Text &title_file)
	Set_plot_frame_name(Element elt,Text name)
	Set_plot_frame_scale(Element elt,Real scale)
	Set_plot_frame_rotation(Element elt,Real rotation)
	Set_plot_frame_origin(Element elt,Real x,Real y)
	Set_plot_frame_origin(Element elt,Real x,Real y)
	Set_plot_frame_sheet_size(Element elt,Real w,Real h)
	Set_plot_frame_sheet_size(Element elt,Text size)
	Set_plot_frame_margins(Element elt,Real l,Real b,Real r,Real t)
	Set_plot_frame_text_size(Element elt,Real text_size)
	Set_plot_frame_draw_border(Element elt,Integer draw_border)
	Set_plot_frame_draw_viewport(Element elt,Integer draw_viewport)
	Set_plot_frame_draw_title_file(Element elt,Integer draw_title)
	Set_plot_frame_colour(Element elt,Integer colour)
	Set_plot_frame_textstyle(Element elt,Text textstyle)
	Set_plot_frame_plotter(Element elt,Integer plotter)
	Set_plot_frame_plotter_name(Element elt,Text plotter_name)
	Set_plot_frame_plot_file(Element elt,Text plot_file)
	Set_plot_frame_title_1(Element elt,Text title_1)
	Set_plot_frame_title_2(Element elt,Text title_2)
	Set_plot_frame_title_file(Element elt,Text title_file)

	Feature String
	Create_feature()
	Create_feature(Element seed)
	Create_feature(Text name,Integer colour,Real xc,Real yc,Real zc,Real rad)
	Get_feature_centre(Element elt,Real &xc,Real &yc,Real &zc)
	Set_feature_centre(Element elt,Real xc,Real yc,Real zc)
	Get_feature_radius(Element elt,Real &rad)
	Set_feature_radius(Element elt,Real rad)

	Super String Element
	Super String Dimensions and Flags
	Flags and Dimension Combinations

	Super String Functions
	Create_super(Integer flag1,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Create_super(Integer flag1,Integer flag2,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts)
	Create_super(Integer flag1,Integer num_pts)
	Create_super(Integer flag1,Integer flag2,Integer npts)
	Create_super(Integer num_pts,Element seed)
	Create_super(Integer flag1,Segment seg)
	Create_super(Integer flag1,Integer flag2,Segment seg)
	Get_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer max_pts,Integer &num_pts)
	Get_super_data(Element super,Real x[],Real y[],Real z[],Real r[],Integer f[], Integer max_pts,Integer &num_pts,Integer start_pt)
	Get_super_data(Element super,Integer i,Real &x,Real &y,Real &z,Real &r, Integer &f)
	Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[], Integer num_pts)
	Set_super_data(Element elt,Real x[],Real y[],Real z[],Real r[],Integer f[],Integer num_pts,Integer start_pt)
	Set_super_data(Element elt,Integer i,Real x,Real y,Real z,Real r,Integer f)
	Get_super_vertex_coord(Element super,Integer vert,Real &x,Real &y,Real &z)
	Set_super_vertex_coord(Element super,Integer vert,Real x,Real y,Real z)
	Get_super_vertex_forward_direction(Element super,Integer vert,Real &ang)
	Get_super_vertex_backward_direction(Element super,Integer vert,Real &ang)
	Set_super_segment_world_text(Element)
	Set_super_segment_device_text(Element)

	Super String Height Functions
	Get_super_use_2d_level(Element elt,Integer &use)
	Set_super_use_2d_level(Element elt,Integer use)
	Get_super_use_3d_level(Element elt,Integer &use)
	Set_super_use_3d_level(Element elt,Integer use)
	Get_super_2d_level(Element elt,Real &level)
	Set_super_2d_level(Element elt,Real level)

	Super String Segment Colour Functions
	Get_super_use_segment_colour(Element super,Integer &use)
	Set_super_use_segment_colour(Element super,Integer use)
	Get_super_segment_colour(Element super,Integer seg,Integer &colour)
	Set_super_segment_colour(Element super,Integer seg,Integer colour)

	Super String Segment Radius Functions
	Get_super_use_segment_radius(Element super,Integer &use)
	Set_super_use_segment_radius(Element super,Integer use)
	Get_super_segment_radius(Element super,Integer seg,Real &rad)
	Set_super_segment_radius(Element super,Integer seg,Real rad)
	Get_super_segment_major(Element super,Integer seg,Integer &major)
	Set_super_segment_major(Element super,Integer seg,Integer major)

	Super String Pipe/Culvert Functions
	Super String Pipe/Culvert Justify Functions
	Get_super_use_pipe_justify(Element super,Integer &use)
	Set_super_use_pipe_justify(Element super,Integer use)
	Get_super_pipe_justify(Element super,Integer &justify)
	Integer Set_super_pipe_justify(Element super,Integer justify)

	Super String Pipe Functions
	Get_super_use_diameter(Element elt,Integer &use) for V9
	Get_super_use_pipe(Element elt,Integer &use) for V10 onwards
	Set_super_use_diameter(Element elt,Integer use) for V9
	Set_super_use_pipe(Element elt,Integer use) for V10 onwards
	Get_super_use_segment_diameter(Element elt,Integer &use) for V9
	Get_super_use_segment_pipe(Element elt,Integer &use) for V10 onward
	Set_super_use_segment_diameter(Element elt,Integer use) for V9
	Set_super_use_segment_pipe(Element elt,Integer use) for V10 onwards
	Get_super_diameter(Element super,Real &diameter) for V9
	Get_super_pipe(Element super,Real &diameter) for V10 onwards
	Set_super_diameter(Element elt,Real diameter) for V9
	Set_super_pipe(Element elt,Real diameter) for V10 and above
	Get_super_segment_diameter(Element elt,Integer seg,Real &diameter) for V9
	Get_super_segment_pipe(Element elt,Integer seg,Real &diameter) for V10 onward
	Set_super_segment_diameter(Element elt,Integer seg,Real diameter) for V9
	Set_super_segment_pipe(Element elt,Integer seg,Real diameter) for V10 onwards

	Super String Culvert Functions
	Get_super_use_culvert(Element super,Integer &use)
	Set_super_use_culvert(Element super,Integer use)
	Get_super_use_segment_culvert(Element super,Integer &use)
	Set_super_use_segment_culvert(Element super,Integer use)
	Get_super_culvert(Element super,Real &w,Real &h)
	Set_super_culvert(Element super,Real w,Real h)
	Get_super_segment_culvert(Element super,Integer seg,Real &w,Real &h)
	Set_super_segment_culvert(Element super,Integer seg,Real w,Real h)

	Super String Vertex Symbol Functions
	Get_super_use_symbol(Element super,Integer &use)
	Set_super_use_symbol(Element super,Integer use)
	Get_super_use_vertex_symbol(Element super,Integer &use)
	Set_super_use_vertex_symbol(Element super,Integer use)
	Get_super_vertex_symbol_colour(Element super,Integer vert,Integer &col)
	Set_super_vertex_symbol_colour(Element super,Integer vert,Integer col)
	Get_super_vertex_symbol_offset_height(Element super,Integer vert,Real &y_offset)
	Set_super_vertex_symbol_offset_height(Element super,Integer vert,Real y_offset)
	Get_super_vertex_symbol_offset_width(Element super,Integer vert,Real &x_offset)
	Set_super_vertex_symbol_offset_width(Element super,Integer vert,Real x_offset)
	Get_super_vertex_symbol_rotation(Element super,Integer vert,Real &angle)
	Set_super_vertex_symbol_rotation(Element super,Integer vert,Real ang)
	Get_super_vertex_symbol_size(Element super,Integer vert,Real &s)
	Set_super_vertex_symbol_size(Element super,Integer vert,Real s)
	Get_super_vertex_symbol_style(Element super,Integer vert,Text &sym)
	Set_super_vertex_symbol_style(Element super,Integer vert,Text sym)

	Super String Solid/Bitmap/Hatch/Fill/Pattern/ACAD Pattern Functions
	Super String Hatch Functions
	Set_super_use_hatch(Element super,Integer use)
	Get_super_use_hatch(Element super,Integer &use)
	Set_super_hatch_colour(Element super,Integer col_1,Integer col_2)
	Get_super_hatch_colour(Element super,Integer &col_1,Integer &col_2)
	Set_super_hatch_angle(Element super,Real ang_1,Real ang_2)
	Get_super_hatch_angle(Element super,Real &ang_1,Real &ang_2)
	Set_super_hatch_spacing(Element super,Real dist_1,Real dist_2)
	Get_super_hatch_spacing(Element super,Real &dist_1,Real &dist_2)
	Set_super_hatch_origin(Element super,Real x,Real y)
	Get_super_hatch_origin(Element super,Real &x,Real &y)
	Set_super_hatch_device(Element super)
	Set_super_hatch_world(Element super)
	Set_super_hatch_type(Element super,Integer type)
	Get_super_hatch_type(Element super,Integer &type)

	Super String Solid Functions
	Set_super_use_solid(Element super,Integer use)
	Get_super_use_solid(Element super,Integer &use)
	Set_super_solid_colour(Element super,Integer colour)
	Get_super_solid_colour(Element super,Integer &colour)

	Super String Bitmap Functions
	Set_super_use_bitmap(Element super,Integer use)
	Get_super_use_bitmap(Element super,Integer &use)
	Set_super_bitmap(Element super,Text filename)
	Get_super_bitmap(Element super,Text &filename)
	Set_super_bitmap_origin(Element super,Real x,Real y)
	Get_super_bitmap_origin(Element super,Real &x,Real &y)
	Set_super_bitmap_transparent(Element super,Integer colour)
	Get_super_bitmap_transparent(Element super,Integer &colour)
	Set_super_bitmap_device(Element super)
	Set_super_bitmap_world(Element super)
	Set_super_bitmap_type(Element super,Integer type)
	Get_super_bitmap_type(Element super,Integer &type)
	Set_super_bitmap_angle(Element super,Real ang)
	Get_super_bitmap_angle(Element super,Real &ang)
	Set_super_bitmap_size(Element super,Real w,Real h)
	Get_super_bitmap_size(Element super,Real &w,Real &h)

	Super String Patterns Functions
	Set_super_use_pattern(Element super,Integer use)
	Get_super_use_pattern(Element super,Integer &use)

	Super String ACAD Patterns Functions
	Set_super_use_acad_pattern(Element super,Integer use)
	Get_super_use_acad_pattern(Element super,Integer &use)

	Super String Hole Functions
	Set_super_use_hole(Element super,Integer use)
	Get_super_use_hole(Element super,Integer &use)
	Get_super_holes(Element super,Integer &no_holes)
	Super_get_hole(Element super,Integer hole_no,Element &hole)
	Super_add_hole(Element super,Element hole)
	Super_delete_hole(Element super,Element hole)
	Super_delete_hole(Element super,Integer hole_no)
	Super_delete_all_holes(Element super)

	Super String Vertex Text Functions
	Set_super_vertex_world_text(Element super)
	Set_super_vertex_device_text(Element super)
	Get_super_use_vertex_text_value(Element super,Integer &use)
	Set_super_use_vertex_text_value(Element super,Integer use)
	Get_super_use_vertex_text_array(Element super,Integer &use)
	Set_super_use_vertex_text_array(Element super,Integer use)
	Get_super_vertex_text(Element super,Integer vert,Text &txt)
	Set_super_vertex_text(Element super,Integer vert,Text txt)
	Get_super_vertex_text_type(Element super,Integer &type)
	Set_super_vertex_text_type(Element super,Integer type)
	Get_super_vertex_text_justify(Element super,Integer vert,Integer &j)
	Set_super_vertex_text_justify(Element super,Integer vert,Integer j)
	Get_super_vertex_text_offset_width(Element super,Integer vert,Real &off)
	Set_super_vertex_text_offset_width(Element super,Integer vert,Real off)
	Get_super_vertex_text_offset_height(Element super,Integer vert,Real &ra)
	Set_super_vertex_text_offset_height(Element super,Integer vert,Real ra)
	Get_super_vertex_text_colour(Element super,Integer vert,Integer &col)
	Set_super_vertex_text_colour(Element super,Integer vert,Integer col)
	Get_super_vertex_text_angle(Element super,Integer vert,Real &ang)
	Set_super_vertex_text_angle(Element super,Integer vert,Real ang)
	Get_super_vertex_text_size(Element super,Integer vert,Real &s)
	Set_super_vertex_text_size(Element super,Integer vert,Real s)
	Get_super_vertex_text_x_factor(Element super,Integer vert,Real &xf)
	Set_super_vertex_text_x_factor(Element super,Integer vert,Real xf)
	Get_super_vertex_text_slant(Element super,Integer vert,Real &sl)
	Set_super_vertex_text_slant(Element super,Integer vert,Real sl)
	Get_super_vertex_text_style(Element super,Integer vert,Text &ts)
	Set_super_vertex_text_style(Element super,Integer vert,Text ts)
	Set_super_vertex_text_ttf_underline(Element super,Integer vert,Integer underline)
	Get_super_vertex_text_ttf_underline(Element super,Integer vert, Integer &underline)
	Set_super_vertex_text_ttf_strikeout(Element super,Integer vert,Integer strikeout)
	Get_super_vertex_text_ttf_strikeout(Element super,Integer vert, Integer &strikeout)
	Set_super_vertex_text_ttf_italic(Element super,Integer vert,Integer italic)
	Get_super_vertex_text_ttf_italic(Element super,Integer vert,Integer &italic)
	Set_super_vertex_text_ttf_weight(Element super,Integer vert,Integer weight)
	Get_super_vertex_text_ttf_weight(Element super,Integer vert,Integer &weight)
	Set_super_vertex_textstyle_data(Element super,Integer vert,Textstyle_Data d)
	Get_super_vertex_textstyle_data(Element elt,Integer vert,Textstyle_Data &d)

	Super String Vertex Annotation Functions
	Get_super_use_vertex_annotation_value(Element super,Integer &use)
	Set_super_use_vertex_annotation_value(Element super,Integer use)
	Get_super_use_vertex_annotation_array(Element super,Integer &use)
	Set_super_use_vertex_annotation_array(Element super,Integer use)

	Super String Segment Text Functions
	Get_super_use_segment_text_value(Element super,Integer &use)
	Set_super_use_segment_text_value(Element super,Integer use)
	Get_super_use_segment_text_array(Element element,Integer &use)
	Set_super_use_segment_text_array(Element super,Integer use)
	Get_super_segment_text(Element super,Integer seg,Text &text)
	Set_super_segment_text(Element super,Integer seg,Text text)
	Get_super_segment_text_type(Element super,Integer &type)
	Set_super_segment_text_type(Element super,Integer type)
	Get_super_segment_text_justify(Element super,Integer seg,Integer &j)
	Set_super_segment_text_justify(Element super,Integer seg,Integer j)
	Get_super_segment_text_offset_width(Element super,Integer seg,Real &off)
	Set_super_segment_text_offset_width(Element super,Integer seg,Real off)
	Get_super_segment_text_offset_height(Element super,Integer seg,Real &ra)
	Set_super_segment_text_offset_height(Element super,Integer seg,Real ra)
	Get_super_segment_text_colour(Element super,Integer seg,Integer &col)
	Set_super_segment_text_colour(Element super,Integer seg,Integer col)
	Get_super_segment_text_angle(Element super,Integer seg,Real &ang)
	Set_super_segment_text_angle(Element super,Integer seg,Real ang)
	Get_super_segment_text_size(Element super,Integer seg,Real &s)
	Set_super_segment_text_size(Element super,Integer seg,Real s)
	Get_super_segment_text_x_factor(Element super,Integer seg,Real &xf)
	Set_super_segment_text_x_factor(Element super,Integer seg,Real xf)
	Get_super_segment_text_slant(Element super,Integer seg,Real &sl)
	Set_super_segment_text_slant(Element super,Integer seg,Real sl)
	Get_super_segment_text_style(Element super,Integer seg,Text &ts)
	Set_super_segment_text_style(Element super,Integer seg,Text ts)
	Set_super_segment_text_ttf_underline(Element super,Integer seg, Integer underline)
	Get_super_segment_text_ttf_underline(Element super,Integer seg, Integer &underline)
	Set_super_segment_text_ttf_strikeout(Element super,Integer seg,Integer strikeout)
	Get_super_segment_text_ttf_strikeout(Element super,Integer seg, Integer &strikeout)
	Set_super_segment_text_ttf_italic(Element super,Integer seg,Integer italic)
	Get_super_segment_text_ttf_italic(Element super,Integer seg,Integer &italic)
	Set_super_segment_text_ttf_weight(Element super,Integer seg,Integer weight)
	Get_super_segment_text_ttf_weight(Element super,Integer seg,Integer &weight)
	Set_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data d)
	Get_super_segment_textstyle_data(Element elt,Integer seg,Textstyle_Data &d)

	Super String Segment Annotation Functions
	Get_super_use_segment_annotation_value(Element super,Integer &use)
	Set_super_use_segment_annotation_value(Element super,Integer use)
	Get_super_use_segment_annotation_array(Element super,Integer &use)
	Set_super_use_segment_annotation_array(Element super,Integer use)

	Super String Tinability Functions
	Super String Combined Tinability
	Get_super_use_tinability(Element super,Integer &use)
	Set_super_use_tinability(Element super,Integer use)

	Super String Vertex Tinability
	Set_super_use_vertex_tinability_value(Element super,Integer use)
	Get_super_use_vertex_tinability_value(Element super,Integer &use)
	Set_super_use_vertex_tinability_array(Element super,Integer use)
	Get_super_use_vertex_tinability_array(Element super,Integer &use)
	Get_super_vertex_tinability(Element super,Integer vert,Integer &tinability)
	Set_super_vertex_tinability(Element super,Integer vert,Integer tinability)

	Super String Segment Tinability
	Set_super_use_segment_tinability_value(Element super,Integer use)
	Get_super_use_segment_tinability_value(Element super,Integer &use)
	Set_super_use_segment_tinability_array(Element super,Integer use)
	Get_super_use_segment_tinability_array(Element super,Integer &use)
	Get_super_segment_tinability(Element super,Integer seg,Integer &tinability)
	Set_super_segment_tinability(Element super,Integer seg,Integer tinability)

	Super String Point Id Functions
	Get_super_use_vertex_point_number(Element super,Integer &use)
	Set_super_use_vertex_point_number(Element super,Integer use)
	Get_super_vertex_point_number(Element super,Integer vert,Integer &point_number)
	Get_super_vertex_point_number(Element super,Integer vert,Text &point_id)
	Set_super_vertex_point_number(Element super,Integer vert,Integer point_number)
	Set_super_vertex_point_number(Element super,Integer vert,Text point_id

	Super String Segment Geometry Functions
	Set_super_use_segment_geometry(Element super,Integer use)
	Get_super_use_segment_geometry(Element super,Integer &use)
	Set_super_segment_spiral(Element elt,Integer seg,Spiral trans)
	Get_super_segment_spiral(Element elt,Integer seg,Spiral &trans)
	Set_super_segment_geometry(Element elt,Integer seg,Segment geom)
	Get_super_segment_geometry(Element elt,Integer seg,Segment &geom)

	Super String Extrude Functions
	Set_super_use_extrude(Element super,Integer use)
	Get_super_use_extrude(Element super,Integer &use)
	Set_super_extrude(Element super,Element elt)
	Get_super_extrude(Element super,Element &elt)

	Super String Vertex Attributes Functions
	Get_super_use_vertex_attribute(Element super,Integer &use)
	Set_super_use_vertex_attribute(Element super,Integer use)
	Get_super_vertex_attributes(Element super,Integer vert,Attributes &att)
	Set_super_vertex_attributes(Element super,Integer vert,Attributes att)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Uid &uid)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Attributes &att)
	Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid &uid)
	Get_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes &att)
	Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Uid uid)
	Set_super_vertex_attribute(Element elt,Integer vert,Text att_name,Attributes att)
	Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Uid uid)
	Set_super_vertex_attribute(Element elt,Integer vert,Integer att_no,Attributes att)
	Super_vertex_attribute_exists(Element elt,Integer vert,Text name,Integer &no)
	Super_vertex_attribute_exists(Element elt,Integer vert,Text att_name)
	Super_vertex_attribute_delete(Element super,Integer vert,Integer att_no)
	Super_vertex_attribute_delete(Element super,Integer vert,Text att_name)
	Super_vertex_attribute_delete_all(Element super,Integer vert)
	Super_vertex_attribute_dump(Element super,Integer vert)
	Super_vertex_attribute_debug(Element super,Integer vert)
	Get_super_vertex_number_of_attributes(Element super,Integer vert,Integer &no_atts)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Text &txt)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer &int)
	Get_super_vertex_attribute(Element super,Integer vert,Text att_name,Real &real)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text &txt)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer &int)
	Get_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real &real)
	Get_super_vertex_attribute_name(Element super,Integer vert,Integer att_no,Text &txt)
	Get_super_vertex_attribute_length(Element super,Integer vert,Text att_name,Integer &att_len)
	Get_super_vertex_attribute_length(Element super,Integer vert,Integer att_no,Integer &att_len)
	Get_super_vertex_attribute_type(Element super,Integer vert,Text att_name,Integer &att_type)
	Get_super_vertex_attribute_type(Element super,Integer vert,Integer att_no,Integer &att_type)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Text txt)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Integer int)
	Set_super_vertex_attribute(Element super,Integer vert,Text att_name,Real real)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Text txt)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Integer int)
	Set_super_vertex_attribute(Element super,Integer vert,Integer att_no,Real real)

	Super String Segment Attributes Functions
	Get_super_use_segment_attribute(Element super,Integer &use)
	Set_super_use_segment_attribute(Element super,Integer use)
	Get_super_segment_attributes(Element elt,Integer seg,Attributes &att)
	Set_super_segment_attributes(Element elt,Integer seg,Attributes att)
	Get_super_segment_attribute(Element super,Integer seg,Text att_name,Uid &uid)
	Get_super_segment_attribute(Element super,Integer seg,Text att_name, Attributes &att)
	Get_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid &uid)
	Get_super_segment_attribute(Element super,Integer seg,Integer att_no, Attributes &att)
	Set_super_segment_attribute(Element super,Integer seg,Text att_name,Uid uid)
	Set_super_segment_attribute(Element super,Integer seg,Text att_name, Attributes att)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Uid uid)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Attributes att)
	Super_segment_attribute_exists(Element elt,Integer seg,Text att_name)
	Super_segment_attribute_exists(Element elt,Integer seg,Text name,Integer &no)
	Super_segment_attribute_delete (Element super,Integer seg,Text att_name)
	Super_segment_attribute_delete (Element super,Integer seg,Integer att_no)
	Super_segment_attribute_delete_all (Element super,Integer seg)
	Super_segment_attribute_dump (Element super,Integer seg)
	Super_segment_attribute_debug (Element super,Integer seg)
	Get_super_segment_number_of_attributes(Element super,Integer seg,Integer &no_atts)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Text &text)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Integer &int)
	Get_super_segment_attribute (Element super,Integer seg,Text att_name,Real &real)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Text &txt)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer &int)
	Get_super_segment_attribute (Element super,Integer seg,Integer att_no,Real &real)
	Get_super_segment_attribute_name (Element super,Integer seg,Integer att_no,Text &txt)
	Get_super_segment_attribute_type (Element super,Integer seg,Text att_name,Integer &att_type)
	Get_super_segment_attribute_type (Element super,Integer seg,Integer att_no,Integer &att_type)
	Get_super_segment_attribute_length(Element super,Integer seg,Text att_name,Integer &att_len)
	Get_super_segment_attribute_length(Element super,Integer seg,Integer att_no,Integer &att_len)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Text txt)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Integer in)
	Set_super_segment_attribute (Element super,Integer seg,Text att_name,Real real)
	Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Text txt)
	Set_super_segment_attribute (Element super,Integer seg,Integer att_no,Integer in)
	Set_super_segment_attribute(Element super,Integer seg,Integer att_no,Real real)

	Super String Uid Functions
	Super String Vertex Uid
	Set_super_use_vertex_uid(Element elt,Integer use)

	Super String Segment Uid

	Super String Vertex Image Functions
	Set_super_use_vertex_image_value(Element super,Integer use)
	Get_super_use_vertex_image_value(Element super,Integer &use)
	Set_super_use_vertex_image_array(Element super,Integer use)
	Get_super_use_vertex_image_array(Element super,Integer &use)

	Super String Visibility Functions
	Super String Combined Visibility
	Get_super_use_visibility(Element super,Integer &use)
	Set_super_use_visibility(Element super,Integer use)

	Super String Vertex Visibility
	Set_super_use_vertex_visibility_value(Element super,Integer use)
	Get_super_use_vertex_visibility_value(Element super,Integer &use)
	Set_super_use_vertex_visibility_array(Element super,Integer use)
	Get_super_use_vertex_visibility_array(Element super,Integer &use)
	Get_super_vertex_visibility(Element super,Integer vert,Integer &visibility)
	Set_super_vertex_visibility(Element super,Integer vert,Integer visibility)

	Super String Segment Visibility
	Set_super_use_segment_visibility_value(Element super,Integer use)
	Get_super_use_segment_visibility_value(Element super,Integer &use)
	Set_super_use_segment_visibility_array(Element super,Integer use)
	Get_super_use_segment_visibility_array(Element super,Integer &use)
	Get_super_segment_visibility(Element super,Integer seg,Integer &visibility)
	Set_super_segment_visibility(Element super,Integer seg,Integer visibility)

	Element Operations
	Selecting
	Select_string(Text msg,Element &string)
	Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht)
	Select_string(Text msg,Element &string,Real &x,Real &y,Real &z,Real &ch,Real &ht,Integer &dir)

	Drawing
	Element_draw(Element elt,Integer col_num)
	Element_draw(Element elt)

	Open and Close
	String_closed(Element elt,Integer &closed)
	String_open(Element elt)
	String_close(Element elt)

	Length and Area
	Get_length(Element elt,Real &length)
	Get_length_3d(Element elt,Real &length)
	Plan_area(Element elt, Real &plan_area)

	Position and Drop Point
	Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir)
	Get_position(Element elt,Real ch,Real &x,Real &y,Real &z,Real &inst_dir,Real &rad, Real &inst_grade)
	Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off)
	Drop_point(Element elt,Real xd,Real yd,Real zd,Real &xf,Real &yf, Real &zf,Real &ch,Real &inst_dir,Real &off,Segment &segment)

	Parallel
	Parallel(Element elt,Real distance,Element ¶llelled)

	Self Intersection
	String_self_intersects(Element elt,Integer &intersects)

	Loop Clean Up
	Loop_clean(Element elt,Point ok_pt,Element &new_elt)

	Locks
	Get_read_locks(Element elt,Integer &num_locks)
	Get_write_locks(Element elt,Integer &num_locks)

	Creating Valid Names
	Valid_string_name(Text old_name,Text &valid_name)
	Valid_model_name(Text old_name,Text &valid_name)
	Valid_tin_name(Text old_name,Text &valid_name)
	Valid_attribute_name(Text old_name,Text &valid_name)
	Valid_linestyle_name(Text old_name,Text &valid_name)
	Valid_symbol_name(Text old_name,Text &valid_name)

	XML
	Create_XML_Document()
	Read_XML_document(XML_Document doc,Text file)
	Write_XML_Document(XML_Document doc,Text file)
	Get_XML_Declaration(XML_Document doc,Text &version,Text &encoding, Integer &standalone)
	Set_XML_declaration(XML_Document doc,Text version,Text encoding, Integer standalone)
	Create_node(Text name)
	Get_root_node(XML_Document doc,XML_Node &node)
	Set_root_node(XML_Document,XML_Node &node)
	Get_number_of_nodes(XML_Node node)
	Get_child_node(XML_Node node,Integer index,XML_Node &child_node)
	Get_child_node(XML_Node node,Text name,XML_Node &child_node)
	Append_node(XML_Node parent,XML_Node new_node)
	Remove_node(XML_Node parent,Integer index)
	Get_parent_node(XML_Node child,XML_Node &parent)
	Get_next_sibling_node(XML_Node node,XML_Node &sibling)
	Get_prev_sibling_node(XML_Node node,XML_Node &sibling)
	Get_node_name(XML_Node node,Text &name)
	Get_node_attribute(XML_Node node,Text name,Text &value)
	Set_node_attribute(XML_Node node,Text name,Text value)
	Remove_node_attribute(XML_Node node,Text name)
	Is_text_node(XML_node &node)
	Get_node_text(XML_Node &node,Text &text)
	Set_node_text(XML_Node &node,Text value)
	Create_text_node(Text name,Text value)

	Map File
	Map_file_create(Map_File &file)
	Map_file_open(Text file_name, Text prefix, Integer use_ptline,Map_File &file)
	Map_file_close(Map_File file)
	Map_file_number_of_keys(Map_File file,Integer &number)
	Map_file_add_key(Map_File file,Text key,Text name,Text model,Integer colour,Integer ptln,Text style)
	Map_file_get_key(Map_File file,Integer n,Text &key,Text &name,Text &model, Integer &colour,Integer &ptln,Text &style)
	Map_file_find_key(Map_File file,Text key, Integer &number)

	Panels
	Get_cursor_position(Integer &x,Integer &y)
	Set_cursor_position(Integer x,Integer y)
	Widget Controls
	Create_panel(Text title_text)
	Append(Widget widget,Panel panel)
	Use_browse_button(Widget widget,Integer mode)
	Show_browse_button(Widget widget,Integer mode)
	Set_enable(Widget widget,Integer mode)
	Get_enable(Widget widget,Integer &mode)
	Set_optional(Widget widget,Integer mode)
	Get_optional(Widget widget,Integer &mode)
	Set_name(Widget widget,Text text)
	Get_name(Widget widget,Text &text)
	Set_error_message(Widget widget,Text text)
	Set_width_in_chars(Widget widget,Integer num_char)
	Show_widget(Widget widget)
	Show_widget(Widget widget,Integer x,Integer y)
	Hide_widget(Widget widget)
	Set_size(Widget widget,Integer x,Integer y)
	Get_size(Widget widget,Integer &x,Integer &y)
	Get_widget_size(Widget widget,Integer &w,Integer &h)
	Set_cursor_position(Widget widget)
	Get_widget_position(Widget widget,Integer &x,Integer &y)
	Get_position(Widget widget,Integer &x,Integer &y)
	Get_id(Widget)
	Set_focus(Widget widget)
	Wait_on_widgets(Integer &id,Text &cmd,Text &msg)

	Horizontal Group
	Horizontal_Group Create_horizontal_group(Integer mode)
	Horizontal_Group Create_button_group()
	Append(Widget widget,Horizontal_Group group)
	Set_border(Horizontal_Group group,Text text)
	Set_border(Horizontal_Group group,Integer bx,Integer by)
	Set_gap(Horizontal_Group group,Integer gap)

	Vertical Group
	Vertical_Group Create_vertical_group(Integer mode)
	Append(Widget widget,Vertical_Group group)
	Set_border(Vertical_Group group,Text text)
	Set_border(Vertical_Group group,Integer bx,Integer by)
	Set_gap(Vertical_Group group,Integer gap)

	Panel Help and Tooltip Calls
	Set_tooltip(Widget widget,Text tip)
	Get_tooltip(Widget widget,Text &tip)
	Set_help(Widget widget,Integer help_num)
	Get_help(Widget widget,Integer &help_num)
	Set_help(Widget widget,Text help_message)
	Get_help(Widget widget,Text &help_message)
	Winhelp(Widget widget,Text help_file,Text key)
	Winhelp(Widget widget,Text help_file,Integer table,Text key)
	Winhelp(Widget widget,Text help_file,Integer help_id)
	Winhelp(Widget widget,Text help_file,Integer help_id,Integer popup)

	Panel Page
	Widget_Pages Create_widget_pages()
	Append(Widget widget,Widget_Pages pages)
	Set_page(Widget_Pages pages,Integer n)
	Set_page(Widget_Pages pages,Widget widget)
	Get_page(Widget_Pages pages,Widget widget,Integer &page_no)

	Input Widgets
	Angle_Box
	Create_angle_box(Text title_text,Message_Box message)
	Set_data(Angle_Box box,Real angle)
	Set_data(Angle_Box box,Text text_data)
	Get_data(Angle_Box box,Text &text_data)
	Validate(Angle_Box box,Real &angle)

	Attributes_Box
	Attributes_Box Create_attributes_box(Text title_text,Message_Box message)
	Set_data(Attributes_Box box,Attributes &data)
	Set_data(Attributes_Box box,Text text_data)
	Get_data(Attributes_Box box,Text &text_data)
	Validate(Attributes_Box box,Attributes &result)

	Billboard_Box
	Billboard_Box Create_billboard_box(Text title_text,Message_Box message)
	Set_data(Billboard_Box box,Text text_data)
	Get_data(Billboard_Box box,Text &text_data)
	Validate(Billboard_Box box,Text &result)

	Bitmap_Fill_Box
	Create_bitmap_fill_box(Text title_text,Message_Box message)
	Validate(Bitmap_Fill_Box box,Text &result)
	Set_data(Bitmap_Fill_Box box,Text text_data)
	Get_data(Bitmap_Fill_Box box,Text &text_data)

	Chainage_Box
	Chainage_Box Create_chainage_box(Text title_text,Message_Box message)
	Validate(Chainage_Box box,Real &result)
	Get_data(Chainage_Box box,Text &text_data)
	Set_data(Chainage_Box box,Real real_data)
	Set_data(Chainage_Box box,Text text_data)

	Choice_Box
	Create_choice_box(Text title_text,Message_Box message)
	Validate(Choice_Box box,Text &result)
	Get_data(Choice_Box box,Text &text_data)
	Set_data(Choice_Box box,Text text_data)
	Set_data(Choice_Box box,Integer nc,Text choices[])

	Colour_Box
	Create_colour_box(Text title_text,Message_Box message)
	Validate(Colour_Box box,Integer &result)
	Get_data(Colour_Box box,Text &text_data)
	Set_data(Colour_Box box,Integer colour_num)
	Set_data(Colour_Box box,Text text_data)

	Colour_Message_Box
	Create_colour_message_box(Text title_text)
	Set_data(Colour_Message_Box box,Text text_data)
	Set_data(Colour_Message_Box box,Text text_data,Integer level)
	Set_level(Colour_Message_Box box,Integer level)

	Date_Time_Box
	Date_Time_Box Create_date_time_box(Text title_text,Message_Box message)
	Validate(Date_Time_Box box,Text &data)
	Set_data(Date_Time_Box box,Text text_data)
	Get_data(Date_Time_Box box,Text &text_data)
	Get_data(Date_Time_Box box,Integer &integer_data)
	Get_data(Date_Time_Box box,Real &real_data)

	Directory_Box
	Create_directory_box(Text title_text,Message_Box message,Integer mode)
	Validate(Directory_Box box,Integer mode,Text &result)
	Get_data(Directory_Box box,Text &text_data)
	Set_data(Directory_Box box,Text text_data)

	Draw_Box
	Create_draw_box(Integer width,Integer height,Integer border)
	Get_size(Draw_Box,Integer &width,Integer &height)
	Set_text_font(Draw_Box box,Text font)
	Set_text_weight(Draw_Box box,Integer weight)
	Set_text_align(Draw_Box box,Integer mode)

	File_Box
	Create_file_box(Text title_text,Message_Box message,Integer mode,Text wild)
	Validate(File_Box box,Integer mode,Text &result)
	Get_data(File_Box box,Text &text_data)
	Set_data(File_Box box,Text text_data)
	Get_wildcard(File_Box box,Text &data)
	Set_wildcard(File_Box box,Text text_data)
	Get_directory(File_Box box,Text &data)
	Set_directory(File_Box box,Text text_data)

	Function_Box
	Function_Box Create_function_box(Text title_text,Message_Box message,Integer mode,Integer type)
	Validate(Function_Box box,Integer mode,Function &result)
	Get_data(Function_Box box,Text &text_data)
	Set_data(Function_Box box,Text text_data)
	Get_type(Function_Box box,Integer &type)
	Set_type(Function_Box box,Integer type)
	Get_type(Function_Box box,Text &type)
	Set_type(Function_Box box,Text type)

	HyperLink_Box
	HyperLink_Box Create_hyperlink_box(Text title_text,Message_Box message)
	Validate(HyperLink_Box box,Text &result)
	Set_data(HyperLink_Box box,Text text_data)
	Get_data(HyperLink_Box box,Text &text_data)

	Input_Box
	Create_input_box(Text title_text,Message_Box message)
	Validate(Input_Box box,Text &result)
	Get_data(Input_Box box,Text &text_data)
	Set_data(Input_Box box,Text text_data)

	Integer_Box
	Create_integer_box(Text title_text,Message_Box message)
	Validate(Integer_Box box,Integer &result)
	Get_data(Integer_Box box,Text &text_data)
	Set_data(Integer_Box box,Integer integer_data)
	Set_data(Integer_Box box,Text text_data)

	Justify_Box
	Create_justify_box(Text title_text,Message_Box message)
	Validate(Justify_Box box,Integer &result)
	Get_data(Justify_Box box,Text &text_data)
	Set_data(Justify_Box box,Integer integer_data)
	Set_data(Justify_Box box,Text text_data)

	Linestyle_Box
	Create_linestyle_box(Text title_text,Message_Box message,Integer mode)
	Validate(Linestyle_Box box,Integer mode,Text &result)
	Get_data(Linestyle_Box box,Text &text_data)
	Set_data(Linestyle_Box box,Text text_data)

	List_Box
	Create_list_box(Text title_text,Message_Box message,Integer nlines)
	Get_number_of_items(List_Box box,Integer &count)
	Set_sort(List_Box box,Integer mode)
	Get_sort(List_Box box,Integer &mode)

	Map_File_Box
	Create_map_file_box(Text title_text,Message_Box message,Integer mode)
	Validate(Map_File_Box box,Integer mode,Text &result)
	Get_data(Map_File_Box box,Text &text_data)
	Set_data(Map_File_Box box,Text text_data)

	Message_Box
	Create_message_box(Text title_text)
	Get_data(Message_Box box,Text &text_data)
	Set_data(Message_Box box,Text text_data)

	Model_Box
	Create_model_box(Text title_text,Message_Box message,Integer mode)
	Validate(Model_Box box,Integer mode,Model &result)
	Get_data(Model_Box box,Text &text_data)
	Set_data(Model_Box box,Text text_data)

	Name_Box
	Create_name_box(Text title_text,Message_Box message)
	Validate(Name_Box box,Text &result)
	Get_data(Name_Box box,Text &text_data)
	Set_data(Name_Box box,Text text_data)

	Name_Tick_Box
	Create_named_tick_box(Text title_text,Integer state,Text response)
	Validate(Named_Tick_Box box,Integer &result)
	Set_data(Named_Tick_Box box,Integer state)
	Get_data(Named_Tick_Box box,Text &text_data)
	Set_data(Named_Tick_Box box,Text text_data)

	New_Select_Box
	New_Select_Box Create_new_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(New_Select_Box select,Element &string)
	Validate(New_Select_Box select,Element &string,Integer silent)
	Set_data(New_Select_Box select,Element string)
	Set_data(New_Select_Box select,Text model_string)
	Get_data(New_Select_Box select,Text &model_string)

	New_XYZ_Box
	New_XYZ_Box Create_new_xyz_box(Text title_text,Message_Box message)
	Validate(New_XYZ_Box box,Real &x,Real &y,Real &z)
	Get_data(New_XYZ_Box box,Text &text_data)
	Set_data(New_XYZ_Box box,Real x,Real y,Real z)
	Set_data(New_XYZ_Box box,Text text_data)

	Plotter_Box
	Create_plotter_box(Text title_text,Message_Box message)
	Validate(Plotter_Box box,Text &result)
	Get_data(Plotter_Box box,Text &text_data)
	Set_data(Plotter_Box box,Text text_data)
	Validate(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)
	Set_data(Plotter_Box box,Text plotter_mode,Text plotter_names,Text plotter_type)
	Get_data(Plotter_Box box,Text &plotter_mode,Text &plotter_names,Text &plotter_type)

	Polygon_Box
	Polygon_Box Create_polygon_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(Polygon_Box select,Element &string)
	Validate(Polygon_Box select,Element &string,Integer silent)
	Set_data(Polygon_Box select,Element string)
	Set_data(Polygon_Box select,Text string_name)
	Get_data(Polygon_Box select,Text &string)

	Real_Box
	Create_real_box(Text title_text,Message_Box message)
	Validate(Real_Box box,Real &result)
	Get_data(Real_Box box,Text &text_data)
	Set_data(Real_Box box,Real real_data)
	Set_data(Real_Box box,Text text_data)

	Report_Box
	Create_report_box(Text title_text,Message_Box message,Integer mode)
	Validate(Report_Box box,Integer mode,Text &result)
	Get_data(Report_Box box,Text &text_data)
	Set_data(Report_Box box,Text text_data)

	Screen_Text
	Create_screen_text(Text text)
	Set_data(Screen_Text widget,Text text_data)
	Get_data(Screen_Text widget,Text &text_data)

	Select_Box
	Create_select_box(Text title_text,Text select_title,Integer mode,Message_Box message)
	Validate(Select_Box select,Element &string)
	Validate(Select_Box select,Element &string,Integer silent)
	Set_data(Select_Box select,Text model_string)
	Set_data(Select_Box select,Element string)
	Get_data(Select_Box select,Text &string)
	Select_start(Select_Box select)
	Select_end(Select_Box select)
	Set_select_type(Select_Box select,Text type)
	Set_select_snap_mode(Select_Box select,Integer snap_control)
	Set_select_snap_mode(Select_Box select,Integer mode,Integer control,Text snap_text)
	Get_select_direction(Select_Box select,Integer &dir)
	Get_select_coordinate(Select_Box select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	Select_Boxes
	Create_select_boxes(Integer no_boxes,Text title_text[],Text select_title[],Integer mode[],Message_Box message)
	Validate(Select_Boxes select,Integer n,Element &string)
	Validate(Select_Boxes select,Integer n,Element &string,Integer silent)
	Set_data(Select_Boxes select,Integer n,Text model_string)
	Set_data(Select_Boxes select,Integer n,Element string)
	Get_data(Select_Boxes select,Integer n,Text &model_string)
	Select_start(Select_Boxes select,Integer n)
	Select_end(Select_Boxes select,Integer n)
	Set_select_type(Select_Boxes select,Integer n,Text type)
	Set_select_snap_mode(Select_Boxes select,Integer n,Integer control)
	Set_select_snap_mode(Select_Boxes select,Integer n,Integer snap_mode,Integer snap_control,Text snap_text)
	Get_select_direction(Select_Boxes select,Integer n,Integer &dir)
	Get_select_coordinate(Select_Boxes select,Integer n,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	Sheet_Size_Box
	Create_sheet_size_box(Text title_text,Message_Box message)
	Validate(Sheet_Size_Box box,Real &w,Real &h,Text &sheet)
	Get_data(Sheet_Size_Box box,Text &text_data)
	Set_data(Sheet_Size_Box box,Text text_data)

	Source_Box
	Source_Box Create_source_box(Text title_text,Message_Box box,Integer flags)
	Validate(Source_Box box,Dynamic_Element &de_results)
	Set_data(Source_Box box,Text text_data)
	Get_data(Source_Box box,Text &text_data)

	Symbol_Box
	Symbol_Box Create_symbol_box(Text title_text,Message_Box message,Integer mode)
	Validate(Symbol_Box box,Integer mode,Text &result)
	Get_data(Symbol_Box box,Text &text_data)
	Set_data(Symbol_Box box,Text text_data)

	Target_Box
	Target_Box Create_target_box(Text title_text,Message_Box box,Integer flags)
	Validate(Target_Box box)
	Validate(Target_Box box,Integer &mode,Text &text_data) For V10 only

	Template_Box
	Create_template_box(Text title_text,Message_Box message,Integer mode)
	Validate(Template_Box box,Integer mode,Text &result)
	Get_data(Template_Box box,Text &text_data)
	Set_data(Template_Box box,Text text_data)

	Text_Style_Box
	Create_text_style_box(Text title_text,Message_Box message)
	Validate(Text_Style_Box box,Text &result)
	Get_data(Text_Style_Box box,Text &text_data)
	Set_data(Text_Style_Box box,Text text_data)

	Text_Units_Box
	Create_text_units_box(Text title_text,Message_Box message)
	Validate(Text_Units_Box box,Integer &result)
	Get_data(Text_Units_Box box,Text &text_data)
	Set_data(Text_Units_Box box,Integer integer_data)
	Set_data(Text_Units_Box box,Text text_data)

	Textstyle_Data_Box
	Textstyle_Data_Box Create_textstyle_data_box(Text text,Message_Box box,Integer flags)
	Validate(Textstyle_Data_Box box,Textstyle_Data &data)
	Set_data(Textstyle_Data_Box box,Textstyle_Data data)
	Set_data(Textstyle_Data_Box box,Text text_data)
	Get_data(Textstyle_Data_Box box,Textstyle_Data &data)
	Get_data(Textstyle_Data_Box box,Text &text_data)

	Text_Edit_Box
	Create_text_edit_box(Text title_text,Message_Box box,Integer no_lines)
	Set_data(Text_Edit_Box box,Text text_data)
	Set_data(Text_Edit_Box widget,Dynamic_Text dt_data)
	Get_data(Text_Edit_Box widget,Text &text_data)
	Get_data(Text_Edit_Box widget,Dynamic_Text &dt_data)

	Texture_Box
	Texture_Box Create_texture_box(Text title_text,Message_Box message)
	Validate(Texture_Box box,Text &result)
	Set_data(Texture_Box box,Text text_data)
	Get_data(Texture_Box box,Text &text_data)

	Tick_Box
	Create_tick_box(Message_Box message)
	Validate(Tick_Box box,Integer &result)
	Get_data(Tick_Box box,Text &text_data)
	Set_data(Tick_Box box,Text text_data)

	Tin_Box
	Create_tin_box(Text title_text,Message_Box message,Integer mode)
	Validate(Tin_Box box,Integer mode,Tin &result)
	Get_data(Tin_Box box,Text &text_data)
	Set_data(Tin_Box box,Text text_data)

	View_Box
	Create_view_box(Text title_text,Message_Box message,Integer mode)
	Validate(View_Box box,Integer mode,View &result)
	Get_data(View_Box box,Text &text_data)
	Set_data(View_Box box,Text text_data)

	XYZ_Box
	Create_xyz_box(Text title_text,Message_Box message)
	Validate(XYZ_Box box,Real &x,Real &y,Real &z)
	Get_data(XYZ_Box box,Text &text_data)
	Set_data(XYZ_Box box,Real x,Real y,Real z)
	Set_data(XYZ_Box box,Text text_data)

	Buttons
	Button
	Create_button(Text title_text,Text reply)
	Set_raised_button(Button button,Integer mode)
	Create_child_button(Text title_text)

	Finish Button
	Create_finish_button(Text title_text,Text reply)

	Select_Button
	Create_select_button(Text title_text,Integer mode,Message_Box box)
	Validate(Select_Button select,Element &string)
	Validate(Select_Button select,Element &string,Integer silent)
	Set_data(Select_Button select,Element string)
	Set_data(Select_Button select,Text string)
	Get_data(Select_Button select,Text &string)
	Select_start(Select_Button select)
	Select_end(Select_Button select)
	Set_select_type(Select_Button select,Text type)
	Set_select_snap_mode(Select_Button select,Integer snap_control)
	Get_select_direction(Select_Button select,Integer &dir)
	Set_select_snap_mode(Select_Button select,Integer mode,Integer control,Text text)
	Get_select_coordinate(Select_Button select,Real &x,Real &y,Real &z,Real &ch,Real &ht)

	GridCtrl_Box
	Create_gridctrl_box(Text name,Integer num_rows,Integer num_columns,Widget column_widgets[],Integer show_nav,Message_Box messages,Integer width,Integer height)
	Create_gridctrl_box(Text name,Integer num_rows, Integer num_columns,Widget column_widgets[],Integer column_readonly[], Integer show_nav,Message_Box messages,Integer width,Integer height) For V10 only
	Load_widgets_from_row(GridCtrl_Box grid,Integer row_num)
	Load_row_from_widgets(GridCtrl_Box grid,Integer row_num)
	Insert_row(GridCtrl_Box grid)
	Insert_row(GridCtrl_Box grid,Integer row_num,Integer is_before)
	Delete_row(GridCtrl_Box grid,Integer row_num)
	Delete_all_rows(GridCtrl_Box grid)
	Get_row_count(GridCtrl_Box grid)
	Format_grid(GridCtrl_Box grid)
	Set_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text value)
	Get_cell(GridCtrl_Box grid,Integer row_num,Integer col_num,Text &value)
	Set_column_width(GridCtrl_Box grid,Integer col,Integer width)
	Set_modified(GridCtrl_Box grid,Integer modified)
	Set_warn_on_modified(GridCtrl_Box grid,Integer warn_on_modified)
	Get_selected_cells(GridCtrl_Box grid,Integer &start_row,Integer &start_col,Integer &end_row,Integer &end_col)

	Tree Box Calls
	Create_tree_box(Text name,Text root_item_text,Integer tree_width,Integer tree_height)
	Get_root_page(Tree_Box tree_box)
	Create_tree_page(Tree_Page parent_page,Text name,Integer show_border, Integer use_name_for_border)
	Append(Widget widget,Tree_Page page)
	Get_number_of_pages(Tree_Page page)
	Get_page(Tree_Page parent,Integer n,Tree_Page &child_page)
	Integer Has_child_page(Tree_Page parent,Tree_Page child)
	Has_widget(Tree_Page page,Widget w)
	Get_page_name(Tree_Page page)
	Set_page(Tree_Box tree_box,Widget w)
	Set_page(Tree_Box tree_box,Tree_Page page)
	Set_page(Tree_box tree_box,Text name)
	Get_current_page(Tree_Box tree_box,Tree_Page ¤t_page)

	General
	Name Matching
	Match_name(Text name,Text reg_exp)
	Match_name(Dynamic_Element de,Text reg_exp,Dynamic_Element &matched)

	Project Functions
	Get_project_functions(Dynamic_Text &function_names)
	Get_project_name(Text &name)

	Null Data
	Is_null(Real value)
	Null(Real &value)
	Null_ht(Dynamic_Element elements,Real height)
	Null_ht_range(Dynamic_Element elements,Real ht_min,Real ht_max)
	Reset_null_ht(Dynamic_Element elements,Real height)

	Fence
	Fence(Dynamic_Element data_to_fence,Integer mode,Element user_poly,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)
	Fence(Dynamic_Element data_to_fence,Integer mode,Dynamic_Element polygon_list,Dynamic_Element &ret_inside,Dynamic_Element &ret_outside)

	Head to Tail
	Head_to_tail(Dynamic_Element in_list,Dynamic_Element &out_list)

	Convert
	Convert(Dynamic_Element in_de,Integer mode,Integer pass_others, Dynamic_Element &out_de)
	Convert(Element elt,Text type,Element &newelt)

	Filter
	Filter(Dynamic_Element in_de,Integer mode,Integer pass_others,Real tolerance,Dynamic_Element &out_de)

	Factor
	Factor(Dynamic_Element elements,Real xf,Real yf,Real zf)

	Helmert Transformation
	Helmert(Dynamic_Element elements,Real rotate,Real scale,Real dx,Real dy)

	Affine Transformation
	Affine(Dynamic_Element elements, Real rotate_x,Real rotate_y,Real scale_x,Real scale_y,Real dx,Real dy)

	Rotate
	Rotate(Dynamic_Element elements,Real xorg,Real yorg,Real ang)

	Swap XY
	Swap_xy(Dynamic_Element elements)

	Translate
	Translate(Dynamic_Element elements,Real dx,Real dy,Real dz)

	Triangulate Data
	Triangulate(Dynamic_Element de,Text tin_name,Integer tin_colour,Integer preserve,Integer bubbles,Tin &tin)

	Contour
	Contour(Tin tin,Real cmin,Real cmax,Real cinc,Real cont_ref,Integer cont_col,Dynamic_Element &cont_de,Real bold_inc,Integer bold_col,Dynamic_Element &bold_de)
	Tin_tin_depth_contours(Tin original,Tin new,Integer cut_colour,Integer zero_colour,Integer fill_colour,Real interval,Real start_level,Real end_level,Integer mode,Dynamic_Element &de)
	Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de)
	Tin_tin_intersect(Tin original,Tin new,Integer colour,Dynamic_Element &de,Integer mode)

	Drape
	Drape(Tin tin,Model model,Dynamic_Element &draped_elts)
	Drape(Tin tin,Dynamic_Element de, Dynamic_Element &draped_elts)
	Face_drape(Tin tin,Model model, Dynamic_Element &face_draped_elts)
	Face_drape(Tin tin,Dynamic_Element de,Dynamic_Element &face_draped_strings)

	Volumes
	End Area
	Volume(Tin tin_1,Real ht,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)
	Volume(Tin tin_1,Tin tin_2,Element poly,Real ang,Real sep,Text report_name,Integer report_mode,Real &cut,Real &fill,Real &balance)
	Exact Volumes
	Volume_exact(Tin tin_1,Real ht,Element poly,Real &cut,Real &fill,Real &balance)
	Volume_exact(Tin tin_1,Tin tin_2,Element poly,Real &cut,Real &fill,Real &balance)

	Interface
	Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side,Element &interface_string)
	Interface(Tin tin,Element string,Real cut_slope,Real fill_slope,Real sep,Real search_dist,Integer side, Element &interface_string,Dynamic_Element &tadpoles)

	Templates
	Template_exists(Text template_name)
	Get_project_templates(Dynamic_Text &template_names)
	Template_rename(Text original_name,Text new_name)

	Applying Templates
	Apply(Real xpos,Real ypos,Real zpos,Real ang,Tin tin,Text template,Element &xsect)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report)
	Apply(Element string,Real start_ch,Real end_ch,Real sep,Tin tin,Text left_template,Text right_template,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element §ions,Integer se...
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance)
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut_volume,Real &fill_volume,Real &balance_volume,Text report)
	Apply_many(Element string,Real separation,Tin tin,Text many_template_file,Real &cut,Real &fill,Real &balance,Text report,Integer do_strings,Dynamic_Element &strings,Integer do_sections,Dynamic_Element §ions,Integer section_colour,Integer do_polyg...

	Strings Edits
	String_reverse(Element in,Element &out)
	Extend_string(Element elt,Real before,Real after,Element &newelt)
	Clip_string(Element string,Real chainage1,Real chainage2, Element &left_string,Element &mid_string,Element &right_string)
	Clip_string(Element string,Integer direction,Real chainage1,Real chainage2,Element &left_string,Element &mid_string,Element &right_string)
	Polygons_clip(Integer npts_clip,Real xclip[],Real yclip[],Integer npts_in,Real xarray_in[],Real yarray_in [],Real zarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[],Real yarray_out[])
	Split_string(Element string,Real chainage,Element &string1,Element &string2)
	Join_strings(Element string1,Real x1,Real y1,Real z1,Element string2,Real x2,Real y2,Real z2,Element &joined_string)
	Rectangle_clip(Real x1,Real y1,Real x2,Real y2,Integer npts_in,Real zarray_in [],Real yarray_in [],Integer &npts_out,Real xarray_out[],Real yarray_out[])

	Cuts Through Strings
	Cut_strings(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)
	Cut_strings_with_nulls(Dynamic_Element seed,Dynamic_Element strings,Dynamic_Element &result)

	Chains
	Run_chain(Text chain)

	12d Model Functions
	Create_macro_function(Text function_name,Macro_Function &func)
	Function_recalc(Function func)
	Function_exists(Text function_name)
	Function_rename(Text original_name,Text new_name)
	Get_name(Function func,Text &name)
	Get_time_created(Function func,Integer &time)
	Get_time_updated(Function func,Integer &time)
	Set_time_updated(Function func,Integer time)
	Get_all_functions(Dynamic_Text &functions)
	Function_delete(Text function_name)
	Get_function(Text function_name)
	Get_macro_function(Text function_name,Macro_Function &func)
	Add_dependancy_file(Macro_Function func,Text name,Text file)
	Add_dependancy_model(Macro_Function func,Text name,Model model)
	Add_dependancy_tin(Macro_Function func,Text name,Tin tin)
	Integer Add_dependancy_template(Macro_Function func,Text name,Text template)
	Add_dependancy_element(Macro_Function func,Text name,Element elt)
	Get_number_of_dependancies(Macro_Function func,Integer &count)
	Get_dependancy_name(Macro_Function func,Integer i,Text &name)
	Get_dependancy_type(Macro_Function func,Integer i,Text &type)
	Get_dependancy_file(Macro_Function func,Integer i,Text &file)
	Get_dependancy_model(Macro_Function func,Integer i,Model &model)
	Get_dependancy_tin(Macro_Function func,Integer i,Tin &tin)
	Get_dependancy_template(Macro_Function func,Integer i,Text &template)
	Get_dependancy_element(Macro_Function func,Integer i,Element &element)
	Get_dependancy_data(Macro_Function func,Integer i,Text &text)
	Get_dependancy_type(Macro_Function func,Text name,Text &type)
	Get_dependancy_file(Macro_Function func,Text name,Text &file)
	Get_dependancy_model(Macro_Function func,Text name,Model &model)
	Get_dependancy_tin(Macro_Function func,Text name,Tin &tin)
	Get_dependancy_template(Macro_Function func,Text name,Text &template)
	Get_dependancy_element(Macro_Function func,Text name,Element &elt)
	Get_dependancy_data(Macro_Function func,Text name,Text &text)
	Delete_dependancy(Macro_Function func,Text name)
	Delete_all_dependancies(Macro_Function func)
	Get_id(Function func,Integer &id)
	Get_id(Function func,Uid &id)
	Get_function_id(Element elt,Integer &id)
	Get_function_id(Element elt,Uid &id)
	Set_function_id(Element elt,Integer id)
	Set_function_id(Element elt,Uid id)
	Get_function(Integer function_id)
	Function_exists(Uid function_id)
	Get_function(Uid function_id)
	Function_attribute_exists(Macro_Function fcn,Text att_name)
	Function_attribute_exists(Function fcn,Text att_name)
	Function_attribute_exists(Function fcn,Text name,Integer &no)
	Function_attribute_exists(Macro_Function fcn,Text name,Integer &no)
	Function_attribute_delete(Macro_Function fcn,Text att_name)
	Function_attribute_delete(Function fcn,Text att_name)
	Function_attribute_delete(Macro_Function fcn,Integer att_no)
	Function_attribute_delete(Function fcn,Integer att_no)
	Function_attribute_delete_all(Function fcn)
	Function_attribute_delete_all(Macro_Function fcn)
	Function_attribute_dump(Function fcn)
	Function_attribute_dump(Macro_Function fcn)
	Function_attribute_debug(Macro_Function fcn)
	Function_attribute_debug(Function fcn)
	Get_function_number_of_attributes(Function fcn,Integer &no_atts)
	Get_function_number_of_attributes(Macro_Function fcn,Integer &no_atts)
	Get_function_attribute(Macro_Function fcn,Text att_name,Text &txt)
	Get_function_attribute(Function fcn,Text att_name,Text &txt)
	Get_function_attribute(Macro_Function fcn,Text att_name,Integer &int)
	Get_function_attribute(Function fcn,Text att_name,Integer &int)
	Get_function_attribute(Function fcn,Text att_name,Real &real)
	Get_function_attribute(Macro_Function fcn,Text att_name,Real &real)
	Get_function_attribute(Function fcn,Integer att_no,Text &txt)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Text &txt)
	Get_function_attribute(Function fcn,Integer att_no,Integer &int)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Integer &int)
	Get_function_attribute(Function fcn,Integer att_no,Real real)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Real real)
	Get_function_attribute_name(Macro_Function fcn,Integer att_no,Text &txt)
	Get_function_attribute_name(Function fcn,Integer att_no,Text &txt)
	Get_function_attribute_type(Macro_Function fcn,Text att_name,Integer &att_type)
	Get_function_attribute_type(Function fcn,Text att_name,Integer &att_type)
	Get_function_attribute_type(Function fcn,Integer att_no,Integer &att_type)
	Get_function_attribute_type(Macro_Function fcn,Integer att_no,Integer &att_type)
	Get_function_attribute_length(Function fcn,Text att_name,Integer &att_len)
	Get_function_attribute_length(Macro_Function fcn,Text att_name,Integer &att_len)
	Get_function_attribute_length(Function fcn,Integer att_no,Integer &att_len)
	Get_function_attribute_length(Macro_Function fcn,Integer att_no,Integer &att_len)
	Set_function_attribute(Function fcn,Text att_name,Text txt)
	Set_function_attribute(Macro_Function fcn,Text att_name,Text txt)
	Set_function_attribute(Function fcn,Text att_name,Integer int)
	Set_function_attribute(Macro_Function fcn,Text att_name,Integer int)
	Set_function_attribute(Macro_Function fcn,Text att_name,Real real)
	Set_function_attribute(Function fcn,Text att_name,Real real)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Text txt)
	Set_function_attribute(Function fcn,Integer att_no,Text txt)
	Set_function_attribute(Function fcn,Integer att_no,Integer int)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Integer int)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Real real)
	Set_function_attribute(Function fcn,Integer att_no,Real real)
	Get_function_attributes(Function fcn,Attributes &att)
	Get_function_attributes(Macro_Function fcn,Attributes &att)
	Set_function_attributes(Function fcn,Attributes att)
	Set_function_attributes(Macro_Function fcn,Attributes att)
	Get_function_attribute(Function fcn,Text att_name,Uid &uid)
	Get_function_attribute(Macro_Function fcn,Text att_name,Uid &uid)
	Get_function_attribute(Macro_Function fcn,Text att_name,Attributes &att)
	Get_function_attribute(Function fcn,Text att_name,Attributes &att)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Uid &uid)
	Get_function_attribute(Function fcn,Integer att_no,Uid &uid)
	Get_function_attribute(Function fcn,Integer att_no,Attributes &att)
	Get_function_attribute(Macro_Function fcn,Integer att_no,Attributes &att)
	Set_function_attribute(Function fcn,Text att_name,Uid uid)
	Set_function_attribute(Macro_Function fcn,Text att_name,Uid uid)
	Set_function_attribute(Macro_Function fcn,Text att_name,Attributes att)
	Set_function_attribute(Function fcn,Text att_name,Attributes att)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Uid uid)
	Set_function_attribute(Function fcn,Integer att_no,Uid uid)
	Set_function_attribute(Function fcn,Integer att_no,Attributes att)
	Set_function_attribute(Macro_Function fcn,Integer att_no,Attributes att)

	Plot Parameters
	Create_parameter_file(Plot_Parameter_File ppf,Text ppf_type)
	Create_section_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_section_x_plot_parameter_file(Plot_Parameter_File ppf)
	Create_melb_water_sewer_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_pipeline_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_drainage_long_plot_parameter_file(Plot_Parameter_File ppf)
	Create_drainage_plan_plot_parameter_file(Plot_Parameter_File ppf)
	Create_plot_frame_plot_parameter_file(Plot_Parameter_File ppf)
	Create_rainfall_methods_parameter_file(Plot_Parameter_File ppf)
	Create_design_parameters_parameter_file(Plot_Parameter_File ppf)
	Read_parameter_file(Plot_Parameter_File ppf,Text filename,Integer expand_includes)
	Write_parameter_file(Plot_Parameter_File ppf,Text filename)
	Set_parameter(Plot_Parameter_File ppf,Text parameter_name, Element parameter_value)
	Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Element ¶meter_value)
	Set_parameter(Plot_Parameter_File ppf,Text parameter_name,Text parameter_value)
	Get_parameter(Plot_Parameter_File ppf,Text parameter_name,Text ¶meter_value)
	Parameter_exists(Plot_Parameter_File ppf,Text parameter_name)
	Remove_parameter(Plot_Parameter_File ppf,Text parameter_name)
	Plot_parameter_file(Plot_Parameter_File ppf)
	Plot_parameter_file(Text file)
	Plot_ppf_file(Text name)

	Undos
	Functions to Create Undos
	Add_undo_add(Text name,Element elt)
	Add_undo_add(Text name,Dynamic_Element de)
	Add_undo_change(Text name,Element original,Element changed)
	Add_undo_delete(Text name,Element original,Integer make_copy)
	Add_undo_range(Text name,Integer id1,Integer id2)
	Add_undo_range(Text name,Uid id1,Uid id2)

	Functions for a 4DML Undo_List
	Get_number_of_items(Undo_List &undo_list,Integer &count)
	Get_item(Undo_List &undo_list,Integer n,Undo &undo)
	Set_item(Undo_List &undo_list,Integer n,Undo undo)
	Append(Undo undo,Undo_List &undo_list)
	Append(Undo_List list,Undo_List &to_list)
	Null(Undo_List &undo_list)
	Add_undo_list(Text name,Undo_List list)

	ODBC Macro Calls
	Connecting to an external data source
	Create_ODBC_connection()
	Connect(Connection connection,Text connection_string,Text user,Text password)
	Connect(Connection connection,Text connection_string)
	Close(Connection connection)
	Has_error(Connection connection)
	Get_last_error(Connection connection,Text &status,Text &message)

	Querying against a data source
	Create_select_query()
	Add_table(Select_Query query,Text table_name)
	Add_result_column(Select_Query query,Text table,Text column_name)
	Add_result_column(Select_Query query,Text table,Text column_name,Text return_as)
	Add_order_by(Select_Query query,Text table_name,Text column_name,Integer sort_ascending)
	Set_limit(Select_Query query,Integer start,Integer number_to_retrieve)
	Add_group_by(Select_Query query,Text table_name,Text column_name)
	Add_condition(Select_Query query,Query_Condition condition)
	Execute(Connection connection,Select_Query query)
	Execute(Connection connection,Select_Query query,Database_Result &result)

	Navigating results with Database_Result
	Move_next(Database_Result result)
	Close(Database_Result result)
	Get_result_column(Database_Result result,Integer column,Text &res)
	Get_result_column(Database_Result result,Integer column,Integer &res)
	Get_result_column(Database_Result result,Integer column,Real &res)
	Get_time_result_column(Database_Result result,Integer column,Integer &time)
	Get_result_column(Database_Result result,Text column,Text &res)
	Get_result_column(Database_Result result,Database_Result result,Text column, Integer &res)
	Get_result_column(Database_Result result,Text column,Real &res)
	Get_time_result_column(Database_Result result,Text column,Integer &time)

	Insert Query
	Create_insert_query(Text table)
	Add_data(Insert_Query query,Text column_name,Integer value)
	Add_data(Insert_Query query,Text column_name,Text value)
	Add_data(Insert_Query query,Text column_name,Real value)
	Add_time_data(Insert_Query query,Text column_name,Integer time)
	Execute(Connection connection,Insert_Query query)

	Update Query
	Create_update_query(Text table)
	Add_data(Update_Query query,Text column_name,Integer value)
	Add_data(Update_Query query,Text column_name,Text value)
	Add_data(Update_Query query,Text column_name,Real value)
	Add_time_data(Update_Query query,Text column_name,Integer time)
	Add_condition(Update_Query query,Query_Condition condition)
	Execute(Connection connection,Update_Query query)

	Delete Query
	Create_delete_query(Text table)
	Add_condition(Delete_Query query,Query_Condition condition)
	Execute(Connection connection,Delete_Query query)

	Manual Query
	Create_manual_query(Text query_text)
	Get_parameters(Manual_Query query,Parameter_Collection parameters)
	Execute(Connection connection,Manual_Query query)
	Execute(Connection connection,Manual_Query query,Database_Result &result)

	Query Conditions
	Create_value_condition(Text table_name,Text column_name,Integer operator,Text value)
	Create_value_condition(Text table_name,Text column_name,Integer operator, Integer value)
	Create_value_condition(Text table_name,Text column_name,Integer operator, Real value)
	Create_time_value_condition(Text table_name,Text column_name,Integer operator,Integer value)
	Create_column_match_condition(Text left_table,Text left_column,Integer operator,Text right_table,Text right_column)
	Create_value_in_sub_query_condition(Text table_name,Text column_name, Integer not_in,Select_Query sub_query)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Integer values)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Text values)
	Create_value_in_list_condition(Text table_name,Text column_name,Integer not_in,Dynamic_Real values)
	Create_manual_condition(Text sql)
	Add_table(Manual_Condition manual,Text table)
	Get_parameters(Manual_Condition manual,Parameter_Collection ¶m)

	Transactions
	Create_transaction(Connection connection)
	Begin_transaction(Transaction transaction)
	Commit_transaction(Transaction transaction)
	Rollback_transaction(Transaction transaction)

	Parameters
	Add_parameter(Parameter_Collection parameters,Integer value)
	Add_parameter(Parameter_Collection parameters,Text value)
	Add_parameter(Parameter_Collection parameters,Real value)
	Add_time_parameter(Parameter_Collection parameters,Integer value)

	Macro Console
	Set_message_mode(Integer mode)
	Set_message_text(Text msg)
	Prompt(Text msg)
	Prompt(Text msg,Text &ret)
	Prompt(Text msg,Integer &ret)
	Prompt(Text msg,Real &ret)
	Choice_prompt(Text msg,Integer no_choices,Text choices[],Text &ret)
	Colour_prompt(Text msg,Text &ret)
	Error_prompt(Text msg)
	File_prompt(Text msg,Text key,Text &ret)
	Model_prompt(Text msg,Text &ret)
	Template_prompt(Text msg,Text &ret)
	Tin_prompt(Text msg,Text &ret)
	Tin_prompt(Text msg,Integer mode,Text &ret)
	View_prompt(Text msg,Text &ret)
	Yes_no_prompt(Text msg,Text &ret)
	Plotter_prompt(Text msg,Text &ret)
	Sheet_size_prompt(Text msg,Text &ret)
	Linestyle_prompt(Text msg,Text &ret)
	Textstyle_prompt(Text msg,Text &ret)
	Justify_prompt(Text msg,Text &ret)
	Angle_prompt(Text msg,Text &ret)
	Function_prompt(Text msg,Text &ret)
	Project_prompt(Text msg,Text &ret)
	Directory_prompt(Text msg,Text &ret)
	Text_units_prompt(Text msg,Text &ret)
	XYZ_prompt(Text msg,Real &x,Real &y,Real &z)
	Name_prompt(Text msg,Text &ret)
	Panel_prompt(Text panel_name, Integer interactive, Integer no_field,Text field_name[], Text field_value[])

	6 Examples
	Set Ups.h
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14

	A Appendix - Set_ups.h File
	Model Mode
	File Mode
	View Mode
	Tin Mode
	Template Mode
	Project Mode
	Directory Mode
	Function Mode
	Linestyle Mode
	Symbol Mode
	Snap Mode
	Super String Use Mode
	Select Mode

	Macro Language Course
	1.0 Course Introduction
	2.0 Getting Started
	2.1 Comments
	2.2 Variables and Operators
	2.2.1 Reserved Words
	2.2.2 Integers, Real and Text
	2.2.3 Arrays
	2.2.4 Operators

	3.0 Functions and Your First Macro
	3.1 Prompt().... your first 4DML function
	3.2 Creating Your First Macro
	3.3 Compiling the Macro

	4.0 Common Compile Messages
	5.0 Using Input and Output Functions
	5.1 Output to the Output Window
	5.1.1 Input via the Macro Console (quick and easy)
	5.1.2 Dialogue Boxes (covered later)
	5.1.3 Files
	5.1.4 Clipboard

	6.0 Using Flow Control
	6.1 “if” statements
	6.2 “for” loops
	6.3 “while” loops

	7.0 Unleashing the Power - 12d Database Handles
	7.1 Locks
	7.2 Models
	7.3 Elements, Dynamic_Elements, Points and Properties

	8.0 Writing Reports
	9.0 12d Menu System (Usermenu.4d)
	10.0 Dialogue Basics

